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9. Optimizing Qsys System Performance
This chapter provides information on optimizing system interconnect performance
for designs generated by the Altera® Qsys system integration tool.

The foundation of any large system is the interconnect logic used to connect hardware
blocks or components. Creating interconnect logic is prone to errors, is time
consuming to write, and is difficult to modify when design requirements change. The
Qsys system integration tool addresses these issues by providing an automatically
generated and optimized interconnect designed to satisfy your system requirements.

Qsys supports standard Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™

(version 2.0), and AMBA APB™ 3 (version 1.0) interfaces. For more information about
Avalon and AMBA interfaces, refer to the Avalon Interface Specifications and the
AMBA Protocol Specifications on the ARM® website. AXI4-Lite is not supported.

f For more discussion about determining which interface standard you want to use to
create your Qsys design, refer to the Creating a System With Qsys chapter in volume 1
of the Quartus II Handbook.

Following the design practices recommended in this chapter may improve the clock
frequency, throughput, logic utilization, or power consumption of your Qsys design.
When you design a Qsys system, use your knowledge of your design intent and goals
to further optimize system performance beyond the automated optimization available
in Qsys.

The following sections describe Qsys support for optimization of interconnect logic:

■ “Designing with Avalon and AXI Interfaces” on page 9–1

■ “Using Hierarchy in Systems” on page 9–3

■ “Using Concurrency in Memory-Mapped Systems” on page 9–5

■ “Insert Pipeline Stages to Increase System Frequency” on page 9–10

■ “Using Avalon Bridges” on page 9–10

■ “Increasing Transfer Throughput” on page 9–21

■ “Reducing Logic Utilization” on page 9–28

■ “Reducing Power Consumption” on page 9–34

■ “Design Examples” on page 9–39

Designing with Avalon and AXI Interfaces
Qsys Avalon and AXI interconnect for memory-mapped interfaces is flexible, partial
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9–2 Chapter 9: Optimizing Qsys System Performance
Designing with Avalon and AXI Interfaces
Avalon Streaming (Avalon-ST) links connect point-to-point, unidirectional interfaces,
and are typically used in data stream applications. Each a pair of components is
connected without any requirement to arbitrate between the data source and sink.

Because Qsys supports multiplexed memory-mapped and streaming connections,
you can implement systems that use multiplexed logic for control and streaming logic
for data in a single design.

f For more information about designing streaming and memory-mapped components,
refer to the Creating Qsys Components chapter in volume 1 of the Quartus II Handbook.

Designing Streaming Components
When you design streaming component interfaces, you must consider integration and
communication for each component in the system. One common consideration is
buffering data internally to accommodate latency between components. For example,
if the component’s Avalon-ST output or source of streaming data is back-pressured
because the ready signal is deasserted, then the component must back-pressure its
input or sink interface to avoid overflow.

You can use a FIFO to back-pressure internally on the output side of the component,
so that the input can accept more data even if the output is back-pressured. Then, you
use the FIFO almost full flag to back-pressure the sink interface or input data when
the FIFO has only enough space left to satisfy the internal latency. You drive the data
valid signal of the output or source interface with the not empty flag of the FIFO when
that data is available.

1 AXI streaming and bridge components are not available in the Quartus II software,
version 12.1.

Designing Memory-Mapped Components
When designing with memory-mapped components, “Example of Control and Status
Registers (CSR) in a Slave Component” on page 9–3 is an example that you can use to
implement any component that contains multiple registers mapped to memory
locations. Components that implement read and write memory-mapped transactions
require three main building blocks: an address decoder, a register file, and a read
multiplexer.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
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Chapter 9: Optimizing Qsys System Performance 9–3
Using Hierarchy in Systems
Figure 9–1 shows how to implement a set of four output registers to support software
read back from logic.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer, adding a pipeline stage so that the component can achieve a
higher clock frequency. This component has write wait states and one read wait state.
Alternatively, if you want high throughput, you might set both the read and write
wait states to zero, and then specify a read latency of one, because the component also
supports pipelined reads.

Using Hierarchy in Systems
You can use hierarchy to sub-divide a system into smaller subsystems that can be
connected together in a top-level Qsys system. You can use hierarchy to simplify
verification control of slaves connected to each master in a memory-mapped system.
Before you begin implementing subsystems in your design, you should plan the
system hierarchical blocks at the top level, using the following guidelines:

Figure 9–1. Example of Control and Status Registers (CSR) in a Slave Component
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Using Hierarchy in Systems
■ Plan shared resources—For example, determine the best location for shared
resources in the system hierarchy. For example, if two subsystems share resources,
you should add the components that use those resources to a higher-level system
for easy access.

■ Plan shared address space between subsystems—Planning the address space
ensures you can set appropriate sizes for bridges between subsystems.

■ Plan how much latency you might add to your system—When you add a
pipeline bridge between subsystems, you might add more latency to the overall
system. You can reduce the added latency by parameterizing the pipeline bridge
with zero cycles of latency.

Figure 9–2 shows an example of two Nios II processor subsystems with shared
resources for message passing. Bridges in each subsystem export the Nios II data
master to the top-level system that includes the mutex (mutual exclusion component)
and shared memory component (which could be another on-chip RAM, or a
controller for an off-chip RAM device).

If a design contains one or more identical functional units, the functional unit can be
defined as a subsystem and instantiated multiple times within a top-level system. You
can also design systems that process multiple data channels by instantiating the same
subsystem for each channel. This approach is easier to maintain than a larger, non
hierarchical system. In addition, such systems are easier to scale because you can
calculate the required resources as a simple multiple of the subsystem requirements.

Figure 9–2. Message Passing Between Subsystems
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Using Concurrency in Memory-Mapped Systems
Figure 9–3 shows a design with three subsystems, each processing a unique channel.

Using Concurrency in Memory-Mapped Systems
Qsys interconnect takes advantage of parallel hardware in FPGAs, which allows you
to design concurrency into your system and process multiple transactions
simultaneously. The following sections describe design choices that can increase
concurrency in your system.

Create Multiple Masters
Implementing concurrency requires multiple masters in the system. Systems that
include a processor contain at least two master interfaces because the processors
include separate instruction and data masters. Master components can be categorized
as follows:

■ General purpose processors, such as Nios II processors

■ DMA (direct memory access) engines

■ Communication interfaces, such as PCI Express

Figure 9–3. Multi Channel System
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Using Concurrency in Memory-Mapped Systems
Because Qsys generates an interconnect with slave-side arbitration, every master
interface in your system can issue transfers concurrently. Masters in the system can
issue transfers concurrently as long as they are not posting transfers to the same slave.
Concurrency is limited by the number of master interfaces sharing any particular
slave interface. If your design requires higher data throughput, you can increase the
number of master and slave interfaces to increase the number of transfers that occur
simultaneously. Refer to “Create Multiple Slave Interfaces” on page 9–8 for more
information.

Figure 9–4 shows a system with three master interfaces. The lines are examples of
connections that can be active simultaneously.

In this Avalon example, the DMA engine operates with Avalon-MM read and write
masters. However, an AXI DMA interface typically has only one master, because in
the AXI standard the write and read channels on the master are independent and can
process transactions simultaneously.

Figure 9–4. Avalon Multiple Master Parallel Access
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Chapter 9: Optimizing Qsys System Performance 9–7
Using Concurrency in Memory-Mapped Systems
Figure 9–5 shows an AXI example where the DMA engine operates with a single
master, because in AXI the write and read channels on the master are independent
and can process transactions simultaneously. This example shows concurrency
between the read and write channels, with the yellow lines representing concurrent
data paths.

Figure 9–5. AXI Multi Master Parallel Access
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Using Concurrency in Memory-Mapped Systems
Create Multiple Slave Interfaces
You can create multiple slave interfaces for a particular function to increase
concurrency in your design. Figure 9–6 shows two channel processing systems. In the
first, four hosts must arbitrate for the single slave interface of the channel processor. In
the second, each host drives a dedicated slave interface, allowing all master interfaces
to simultaneously access the slave interfaces of the component. Arbitration is not
necessary when there is a single host and slave interface.

Figure 9–6. Single Interface Vs Multiple Interfaces
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Using Concurrency in Memory-Mapped Systems
Use DMA Engines
In some systems, you can use DMA engines to increase throughput. You can use a
DMA engine to transfer blocks of data between interfaces, which then frees the CPU
from carrying out this routine task. A DMA engine transfers data between a
programmed start and end address without intervention, and the data throughput is
dictated by the components connected to the DMA. Factors that affect data
throughput include data width and clock frequency. Figure 9–7 shows a system that
can sustain more concurrent read and write operations by including more DMA
engines, for the case that accesses to the read and write buffers in the top system can
be split between two DMA engines, as shown in the Dual DMA Channels system at
the bottom of the figure.

1 In this example, the DMA engine operates with Avalon-MM write and read masters.
An AXI DMA typically has only one master, because in AXI the write and read
channels on the master are independent and can process transactions simultaneously.

Figure 9–7. Single or Dual DMA Channels
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Insert Pipeline Stages to Increase System Frequency
Insert Pipeline Stages to Increase System Frequency
Qsys provides the Limit interconnect pipeline stages to option on the Project
Settings tab to automatically add pipeline stages to the Qsys interconnect when you
generate your system. You can specify between 0 to 4 pipeline stages, where 0 means
that the interconnect has a combinational data path. You can specify a unique
interconnect pipeline stage value for each subsystem.

Adding pipeline stages might increase the fMAX of your design by reducing the
combinational logic depth, at the cost of additional latency and logic utilization.

The insertion of pipeline stages requires certain interconnect components. For
example, in a system with a single slave interface, there is no multiplexer; therefore
multiplexer pipelining does not occur. When there is an Avalon or AXI single-master
to single-slave system, no pipelining occurs, regardless of the Limit interconnect
pipeline stages to parameter.

1 For more information about the Limit interconnect pipeline stages to parameter,
refer to the Qsys Interconnect chapter in volume 1 of the Quartus II Handbook.

Using Avalon Bridges
You can use bridges to increase system frequency, minimize generated Qsys logic,
minimize adapter logic, and to structure system topology when you want to control
where Qsys adds pipelining. You can also use bridges with arbiters when there is
concurrency in the system.

1 AXI bridges are not supported in the Quartus II software, version 12.1; however, you
can use Avalon bridges between AXI interfaces, and between Avalon domains. Qsys
automatically creates interconnect logic between the AXI and Avalon interfaces, so
you do not have to explicitly instantiate bridges between these domains. For more
discussion about the benefits and disadvantages of shared and separate domains,
refer to the Qsys Interconnect chapter in volume 1 of the Quartus II Handbook.

An Avalon bridge has an Avalon-MM slave interface and an Avalon-MM master
interface. You can have many components connected to the bridge slave interface, or
many components connected to the bridge master interface, or a single component
connected to a single bridge slave or master interface. You can configure the data
width of the bridge, which can affect how Qsys generates bus sizing logic in the
interconnect. Both interfaces support Avalon-MM pipelined transfers with variable
latency, and can also support configurable burst lengths.

Transfers to the bridge slave interface are propagated to the master interface, which
connects to components downstream from the bridge. When you need greater control
over the interconnect pipelining, you can use bridges instead of using the Limit
Interconnect Pipeline Stages to parameter.

Increasing System Frequency
In Qsys, you can introduce interconnect pipeline stages or pipeline bridges to increase
clock frequency in your system. Bridges control the system interconnect topology and
allow you to subdivide the interconnect, giving you more control over pipelining and
clock crossing functionality.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
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Chapter 9: Optimizing Qsys System Performance 9–11
Using Avalon Bridges
Insert Pipeline Bridges
You can insert an Avalon-MM pipeline bridge to insert registers in the path between
the bridges and its master and slaves. If a critical register-to-register delay occurs in
the Qsys interconnect, a pipeline bridge can help reduce this delay and improve
system fMAX.

The Avalon-MM pipeline bridge component integrates into any Qsys system. The
pipeline bridge options can increase logic utilization and read latency. The change in
topology may also reduce concurrency if multiple masters arbitrate for the bridge.

You can use the Avalon-MM pipeline bridge to control topology without adding a
pipeline stage. A pipeline bridge that does not add a pipeline stage is optimal in some
latency-sensitive applications. For example, a CPU may benefit from minimal latency
when accessing memory.

Figure 9–8 shows the architecture of an Avalon-MM pipeline bridge.

Implement Command Pipelining (Master-to-Slave)

When many masters share a slave device, use command pipelining to improve
performance. The arbitration logic for the slave interface must multiplex the address,
writedata, and burstcount signals. The multiplexer width increases proportionally
with the number of masters connecting to a single slave interface. The increased
multiplexer width might become a timing critical path in the system. If a single

Figure 9–8. Avalon-MM Pipeline Bridge
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9–12 Chapter 9: Optimizing Qsys System Performance
Using Avalon Bridges
pipeline bridge does not provide enough pipelining, you can instantiate multiple
instances of the bridge in a tree structure to increase the pipelining and further reduce
the width of the multiplexer at the slave interface, as Figure 9–9 shows.

Response Pipelining (Slave-to-Master)

A system can benefit from slave-to-master pipelining for masters that connect to
many slaves that support read transfers. The interconnect inserts a multiplexer for
every read data path back to the master. As the number of slaves supporting read
transfers connecting to the master increases, so does the width of the read data
multiplexer. As with master-to-slave pipelining, if the performance increase is
insufficient with one bridge, you can use multiple bridges in a tree structure to
improve fMAX.

Use Clock Crossing Bridges
Transfers to the slave interface are propagated to the master interface. The clock
crossing bridge contains a pair of clock crossing FIFOs, which isolate the master and
slave interfaces in separate, asynchronous clock domains.

When you use a FIFO clock crossing bridge for the clock domain crossing, you add
data buffering. Buffering allows pipelined read masters to post multiple reads to the
bridge, even if the slaves downstream from the bridge do not support pipelined
transfers.

Figure 9–9. Tree of Bridges
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Using Avalon Bridges
Separate Component Frequencies

You can use of a clock crossing bridge to place high and low frequency components in
separate clock domains. If you limit the fast clock domain to the portion of your
design that requires high performance, you might achieve a higher fMAX for this
portion of the design.

For example, the majority of processor peripherals included in embedded designs do
not need to operate at high frequencies, therefore you do not need to use a high-
frequency clock for these components. When you compile a design with the
Quartus II software, compilation may take more time when the clock frequency
requirements are difficult to meet because the Fitter needs more time to place registers
to achieve the required fMAX. To reduce the amount of effort that the Fitter uses on low
priority and low performance components, you can place these behind a clock
crossing bridge operating at a lower frequency, allowing the Fitter to increase the
effort placed on the higher priority and higher frequency data paths.

Minimize Design Logic
Bridges can reduce the interconnect logic by reducing the amount of arbitration and
multiplexer logic that Qsys generates. This reduction occurs because bridges limit the
number of concurrent transfers that can occur. The following sections discuss how
you can use bridges to minimize the logic generated by Qsys.

Avoid Speed Optimizations That Increase Logic
Adding an additional pipeline stage with a pipeline bridge between masters and
slaves reduces the amount of combinational logic between registers, which can
increase system performance, as described in the section “Increasing System
Frequency” on page 9–10.

If you can increase the fMAX of your design logic, you may be able to turn off the
Quartus II optimization settings, such as the Perform register duplication setting.
Register duplication creates duplicate registers to be placed in two or more physical
locations in the FPGA to reduce register-to-register delays. You might also want to
choose Speed for the optimization method, which typically results in higher logic
utilization due to logic duplication. By making use of the registers or FIFOs available
in the Avalon-MM bridges, you can increase the design speed and avoid needless
logic duplication or speed optimizations, thereby reducing the logic utilization of the
design.

Reduced Concurrency
The amount of logic generated for the interconnect often increases as the system
becomes larger because Qsys creates arbitration logic for every slave interface that is
shared by multiple master interfaces. Qsys inserts multiplexer logic between master
interfaces that connect to multiple slave interfaces if both support read data paths.
Most embedded processor designs contain components that are either incapable of
supporting high data throughput, or do not need to be accessed frequently. These
components can contain Avalon-MM master or slave interfaces. Because the
interconnect supports concurrent accesses, you might want to limit concurrency by
inserting bridges into the datapath to limit the amount of arbitration and multiplexer
logic generated.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
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Using Avalon Bridges
For example, if your system contains three masters and three slave interfaces that are
interconnected, Qsys generates three arbiters and three multiplexers for the read data
path. If these masters do not require a significant amount of simultaneous
throughput, you can reduce the resources that your design consumes by connecting
the three masters to a pipeline bridge. The bridge masters the three slave interfaces,
and reduces the interconnect into a bus structure. Qsys creates one arbitration block
between the bridge and the three masters, and a single read data path multiplexer
between the bridge and three slaves, and prevents concurrency; similar to that of a
standard bus architecture. You should not use this method for high throughput data
paths to ensure that you do not limit overall system performance.

Figure 9–10 shows the difference in architecture between systems with or without a
pipeline bridge.

Minimizing Adapter Logic
Qsys generates adapter logic for clock crossing, width adaptation, and burst support
when there is a mismatch between the clock domains, widths, or bursting capabilities
of the master and slave interface pairs. Qsys creates burst adapters when the
maximum burst length of the master is greater than the master burst length of the
slave. The adapter logic creates extra logic resources, which can be substantial when
your system contains master interfaces connected to many components that do not
share the same characteristics. By placing bridges in your design, you can reduce the
amount of adapter logic that Qsys generates.

Figure 9–10. Switch Interconnect to Bus
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Using Avalon Bridges
Effective Placement of Bridges
To determine the effective placement of a bridge, you should initially analyze each
master in your system to determine if the connected slave devices support different
bursting capabilities or operate in a different clock domain. The maximum
burstcount of a component is visible as the burstcount signal in the HDL file of the
component. The maximum burst length is 2 (width(burstcount -1)), so that if the burstcount
width is four bits, the maximum burstcount is eight. If no burstcount signal is
present, the component does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the master and
slave interfaces, check the clock column beside the master and slave interfaces in
Qsys. If the clock is different for the master and slave interfaces, Qsys inserts a clock
crossing adapter between them. To avoid creating multiple adapters, you can place
the components containing slave interfaces behind a bridge so that only one adapter
is created. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

You can use a bridge to separate AXI and Avalon domains to minimize burst
adaptation logic. For example, if there are multiple Avalon slaves that are connected
to an AXI master, you can consider inserting a bridge to access the adaptation logic
once before the bridge, instead once per slave. This costs latency, though, and you
would also lose concurrency between reads and writes.

Changing the Response Buffer Depth
When you use automatic clock-crossing adapters, Qsys determines the required depth
of FIFO buffering based on the slave properties. If a slave has a high Maximum
Pending Reads parameter, the resulting deep response buffer FIFO that Qsys inserts
between the master and slave can consume a lot of device resources. To control the
response FIFO depth, you can use a clock crossing bridge and manually adjust its
FIFO depth to trade off throughput with smaller memory utilization. For example, if
you have masters that cannot saturate the slave, you do not need response buffering,
so that using a bridge reduces the FIFO memory depth and reduces the Maximum
Pending Reads available from the slave.

Consequences of Using Bridges
Before you use pipeline or clock crossing bridges in your design, you should carefully
consider their effects. Bridges can have any combination of the following
consequences on your design, which could be positive or negative. You can
benchmark your system before and after inserting bridges to determine their impact.
The following sections discuss the possible consequences of adding bridges to your
system.

Increased Latency
Adding a bridge to your design has an effect on the read latency between the master
and the slave. Depending on the system requirements and the type of master and
slave, this latency increase may or may not be acceptable in your design.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
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Using Avalon Bridges
Acceptable Latency Increase

For a pipeline bridge, a cycle of latency is added for each pipeline option that is
enabled. The buffering in the clock crossing bridge also adds latency. If you use a
pipelined or burst master that posts many read transfers, the increase in latency does
not impact performance significantly because the latency increase is very small
compared to the length of the data transfer.

For example, if you use a pipelined read master such as a DMA controller to read data
from a component with a fixed read latency of four clock cycles, but only perform a
single word transfer, the overhead is three clock cycles out of the total four, assuming
there is no additional pipeline latency in the Qsys interconnect. The read throughput
is only 25%. Figure 9–11 shows this type of low-efficiency read transfer.

However, if 100 words of data are transferred without interruptions, the overhead is
three cycles out of the total of 103 clock cycles, corresponding to a read efficiency of
approximately 97% when there is no additional pipeline latency in the interconnect.
Adding a pipeline bridge to this read path adds two extra clock cycles of latency. The
transfer requires 105 cycles to complete, corresponding to an efficiency of
approximately 94%. Although the efficiency decreased by 3%, adding the bridge
might increase the fMAX by 5%, for example, and in that case, if the clock frequency can
be increased, the overall throughput would improve. As the number of words
transferred increases, the efficiency increases to nearly 100%, whether or not a
pipeline bridge is present. Figure 9–12 shows this type of high-efficiency read transfer.

Figure 9–11. Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency

Figure 9–12. High Efficiency Read Transfer
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Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically fetch data for use in
calculations that cannot proceed until the data arrives. Before adding a bridge to the
data path of a processor instruction or data master, determine whether the clock
frequency increase justifies the added latency. Figure 9–13 shows the performance of a
Nios II processor and memory operating at 100 MHz. The Nios II processor
instruction master has a cache memory with a read latency of four cycles, that is eight
sequential words of data return for each read. At 100 MHz, the first read takes 40 ns to
complete. Each successive word takes 10 ns so that eight reads complete in 110 ns.

Adding a clock crossing bridge allows the memory to operate at 125 MHz in this
example. However, this increase in frequency is negated by the increase in latency for
the following reasons, as shown in Figure 9–14. If the clock crossing bridge adds six
clock cycles of latency at 100 MHz, then the memory continues to operate with a read
latency of four clock cycles; consequently, the first read from memory takes 100 ns,
and each successive word takes 10 ns because reads arrive at the frequency of the
processor, which is 100 MHz. In total, eight reads complete after 170 ns. Although the
memory operates at a higher clock frequency, the frequency at which the master
operates limits the throughput.

Figure 9–13. Processor System: Eight Reads with Four Cycles Latency
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Figure 9–14. Processor System: Eight Reads with Ten Cycles Latency
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Limited Concurrency
Placing an bridge between multiple master and slave interfaces limits the number of
concurrent transfers your system can initiate. This limitation is the same as connecting
multiple master interfaces to a single slave interface. The slave interface of the bridge
is shared by all the masters and, as a result, Qsys creates arbitration logic. If the
components placed behind a bridge are infrequently accessed, this concurrency
limitation might be acceptable.

Bridges can have a negative impact on system performance if you use them
inappropriately. For example, if multiple memories are used by several masters, you
should not place the memory components behind a bridge. The bridge limits memory
performance by preventing concurrent memory accesses. Placing multiple memory
components behind a bridge can cause the separate slave interfaces to appear as one
large memory to the masters accessing the bridge; all masters must access the same
slave interface.

Figure 9–15 shows a memory subsystem with one bridge that acts as a single slave
interface for the Avalon-MM Nios II and DMA masters, which results in a bottleneck
architecture. The bridge acts as a bottleneck between the two masters and the
memories. An AXI DMA typically has only one master, because in the AXI standard
the write and read channels on the master are independent and can process
transactions simultaneously.

Figure 9–15. Inappropriate Use of a Bridge in a Hierarchical System
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If the fMAX of your memory interfaces is low and you want to use a pipeline bridge
between subsystems, you can place each memory behind its own bridge, which
increases the fMAX of the system without sacrificing concurrency, as Figure 9–16
shows.

Address Space Translation
The slave interface of a pipeline or clock crossing bridge has a base address and
address span. You can set the base address or allow Qsys to set it automatically. The
address of the slave interface is the base offset address of all the components
connected to the bridge. The address of components connected to the bridge is the
sum of the base offset and the address of that component.

Address Shifting

The master interface of the bridge drives only the address bits that represent the offset
from the base address of the bridge slave interface. Any time a master accesses a slave
through a bridge, both addresses must be added together, otherwise the transfer fails.
The Address Map tab in Qsys displays the addresses of the slaves connected to each
master and includes address translations caused by system bridges.

Figure 9–16. Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System
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Figure 9–17 shows how address translation functions. In this example, the Nios II
processor connects to a bridge located at base address 0x1000, a slave connects to the
bridge master interface at an offset of 0x20, and the processor performs a write
transfer to the fourth 32-bit or 64-bit word within the slave. Nios II drives the address
0x102C to interconnect, which is within the address range of the bridge. The bridge
master interface drives 0x2C, which is within the address range of the slave, and the
transfer completes.

Address Coherency
To simplify the system design, all masters should access slaves at the same location. In
many systems, a processor passes buffer locations to other mastering components,
such as a DMA controller. If the processor and DMA controller do not access the slave
at the same location, Qsys must compensate for the differences.

In Figure 9–18, a Nios II processor and DMA controller access a slave interface located
at address 0x20. The processor connects directly to the slave interface. The DMA
controller connects to a pipeline bridge located at address 0x1000, which then
connects to the slave interface. Because the DMA controller accesses the pipeline
bridge first, it must drive 0x1020 to access the first location of the slave interface.
Because the processor accesses the slave from a different location, you must maintain
two base addresses for the slave device.

Figure 9–17. Avalon Bridge Address Translation
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Figure 9–18. Slave at Different Addresses, Complicating the Software
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To avoid the requirement for two addresses, you can add an additional bridge to the
system, set its base address to 0x1000, and then disable all the pipelining options in
the second bridge so that the bridge has minimal impact on system timing and
resource utilization. Because this second bridge has the same base address as the
original bridge, the DMA controller connects to both the processor and DMA
controller and accesses the slave interface with the same address range, as shown in
Figure 9–19.

Increasing Transfer Throughput
Increasing the transfer efficiency of the master and slave interfaces in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because you can then use
less expensive, lower frequency devices. Designs requiring high performance also
benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that can be transferred in
a given clock cycle of time period. Read latency is the number of clock cycles between
the address and data phase of a transaction. For example, a read latency of two means
that the data is valid two cycles after the address is posted. If the master has to wait
for one request to finish before the next begins, such as with a processor, then the read
latency is very important to the overall throughput.

f You can measure throughput and latency in simulation by observing the waveforms,
or using the verification IP monitors. For more information, refer to the Avalon
Verification IP Suite User Guide or the Mentor Graphics AXI Verification IP Suite - Altera
Edition on the Altera website.

Figure 9–19. Address Translation Corrected With Bridge
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Using Pipelined Transfers
Pipelined transfers increase the read efficiency by allowing a master to post multiple
reads before data from an earlier read returns.

Masters that support pipelined transfers post transfers continuously, relying on the
readdatavalid signal to indicate valid data. Avalon-MM slaves support pipelined
transfers by including the readdatavalid signal or operating with a fixed read
latency.

AXI masters declare how many outstanding writes and reads it can issue with the
writeIssuingCapability and readIssuingCapability parameters. In the same way, a
slave can declare how many reads it can accept with the readAcceptanceCapability
parameter.

AXI masters with a read issuing capability greater than one are pipelined in the same
way as Avalon masters and the readdatavalid signal.

Using the Maximum Pending Reads Parameter
If you create a custom component with a slave interface supporting variable-latency
reads, you must specify the Maximum Pending Reads parameter in the Component
Editor. Qsys uses the Maximum Pending Reads parameter to generate the
appropriate interconnect, and represents the maximum number of read transfers that
your pipelined slave component can process. If the number of reads presented to the
slave interface exceeds the Maximum Pending Reads parameter, then the slave
interface must assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires a good
understanding of the latencies of your custom components. This parameter should be
based on the component’s highest read latency for the various logic paths inside the
component. For example, if your pipelined component has two modes, one requiring
two clock cycles and the other five, set the Maximum Pending Reads parameter to 5,
which allows your component to pipeline five transfers, eliminating dead cycles after
the initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads parameter
by monitoring the number of reads that are pending during system simulation or
while running the hardware. To use this method, set the Maximum Pending Reads to
a very high value and use a master that issues read requests on every clock. You can
use a DMA for this task as long as the data is written to a location that does not
frequently assert waitrequest. If you implement this method with the hardware, you
can observe your component with a logic analyzer or built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your
custom pipelined read component is important. If you underestimate the Maximum
Pending Reads value, you might cause a master interface to stall with a waitrequest
until the slave responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO
inserted into the interconnect for each master connected to the slave. This FIFO does
not use significant hardware resources. Overestimating the Maximum Pending
Reads parameter for your custom component results in a slight increase in hardware
utilization. For these reasons, if you are not sure of the optimal value, you should
overestimate this value.
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If your system includes a bridge, you must set the Maximum Pending Reads
parameter on the bridge as well. To allow maximum throughput, this value should be
equal to or greater than the Maximum Pending Reads value for the connected slave
that has the highest value. As described in “Changing the Response Buffer Depth” on
page 9–15, you can limit the maximum pending reads of a slave and reduce the buffer
depth by reducing the parameter value on the bridge if the high throughput is not
required. If you do not know the Maximum Pending Reads value for all your slave
components, you can monitor the number of reads that are pending during system
simulation while running the hardware. To use this method, set the Maximum
Pending Reads parameter to a high value and use a master that issues read requests
on every clock, such as a DMA. Then, reduce the number of maximum pending reads
of the bridge until the bridge reduces the performance of any masters accessing the
bridge.

Arbitration Shares and Bursts
Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm allocates evenly, with all masters receiving one share.

You can adjust the arbitration process to your system requirements by assigning a
larger number of shares to the masters that need greater throughput. The larger the
arbitration share, the more transfers are allocated to the master to access a slave. The
masters gets uninterrupted access to the slave for its number of shares, as long as the
master is transacting (reading or writing).

If a master cannot post a transfer and other masters are waiting to gain access to a
particular slave, the arbiter grants another master access. This mechanism prevents a
master from wasting arbitration cycles if it cannot post back-to-back transfers. A
bursting transaction contains multiple beats (or words) of data, starting from a single
address. Bursts allow a master to maintain access to a slave for more than a single
word transfer. If a bursting master posts a write transfer with a burst length of eight, it
is guaranteed arbitration for eight write cycles.

You can assign arbitration shares to Avalon-MM bursting master and AXI masters
(which are always considered a bursting master). Each share consists of one burst
transaction (such as multi-cycle write), and allows a master to complete a number of
bursts before arbitration switches to the next master.

f For more information about arbitration shares and bursts, refer to the Avalon Interface
Specifications, or the AMBA Protocol Specification on the ARM website.

Differences Between Arbitration Shares and Bursts
The following three key characteristics distinguish arbitration shares and bursts:

■ Arbitration lock

■ Sequential addressing

■ Burst adapters
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Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master;
consequently, the bursting master should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the master deasserts the write
(Avalon-MM write or AXI wvalid) signal for fifty cycles, all other masters continue to
wait for access during this stalled period.

To avoid wasted bandwidth, your master designs should wait until a full burst
transfer is ready before requesting access to a slave device. Alternatively, you can
avoid wasted bandwidth by posting burstcounts equal to the amount of data that is
ready. For example, if you create a custom bursting write master with a maximum
burstcount of eight, but only three words of data are ready, you can simply present a
burstcount of three. This strategy does not result in optimal use of the system
bandwidth if the slave is capable of handling a larger burst; however, this strategy
prevents stalling and allows access for other masters in the system.

Avalon-MM Sequential Addressing

An Avalon-MM burst transfer includes a base address and a burstcount. The
burstcount represents the number of words of data to be transferred, starting from
the base address and incrementing sequentially. Burst transfers are common for
processors, DMAs, and buffer processing accelerators; however, sometimes when a
master must access non-sequential addresses. Consequently, a bursting master must
set the burstcount to the number of sequential addresses, and then reset the
burstcount for the next location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom master can update the address it presents to the interconnect for every read or
write transaction.

f AXI has different burst types than the Avalon interface. For more information about
AXI burst types, refer to the Qsys Interconnect chapter in volume 1 of the Quartus II
Handbook, and the AMBA AXI Protocol Specification on the ARM website.

Burst Adapters

Qsys allows you to create systems that mix bursting and non-bursting master and
slave interfaces. This design strategy allows you to connect bursting master and slave
interfaces that support different maximum burst lengths, and Qsys generates burst
adapters when appropriate.

Qsys inserts a burst adapter whenever a master interface burst length exceeds the
burst length of the slave interface, or if the master issues a burst type that the slave
cannot support. For example, if you connect an AXI master to an Avalon slave, a burst
adapter is inserted.

Qsys assigns non-bursting masters and slave interfaces a burst length of one. The
burst adapter divides long bursts into shorter bursts. As a result, the burst adapter
adds logic to the address and burstcount paths between the master and slave
interfaces.
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Choosing Avalon-MM Interface Types
To avoid inefficient Avalon-MM transfers, custom master or slave interfaces must use
the appropriate simple, pipelined, or burst interfaces. The three possible transfer
types are described below.

Simple Avalon-MM Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between masters and infrequently used slave interfaces. In Qsys, the PIO,
UART, and Timer include slave interfaces that use simple transfers.

Pipelined Avalon-MM Interfaces

Pipelined read transfers allow a pipelined master interface to start multiple read
transfers in succession without waiting for the prior transfers to complete. Pipelined
transfers allow master-slave pairs to achieve higher throughput, even though the
slave port might require one or more cycles of latency to return data for each transfer.

In many systems, read throughput becomes inadequate if simple reads are used and
pipelined transfers can increase throughput. If you define a component with a fixed
read latency, Qsys automatically provides the pipelining logic necessary to support
pipelined reads. Altera recommends using fixed latency pipelining as the default
design starting point for slave interfaces. If your slave interface has a variable latency
response time, use the readdatavalid signal to indicate when valid data is available.
The interconnect implements read response FIFO buffering to handle the maximum
number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined
system interconnect efficiently, your system must contain pipelined masters. Refer to
the “Avalon Pipelined Read Master Example” on page 9–39 for an example of a
pipelined read master. Altera recommends using pipelined masters as the default
starting point for new master components. Use the readdatavalid signal for these
master interfaces.

Because master and slaves often have mismatched pipeline latency, interconnect often
contains logic to reconcile the differences. Many cases of pipeline latency are possible,
as shown in Table 9–1.

Table 9–1. Various Cases of Pipeline Latency in a Master-Slave Pair (Part 1 of 2)

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline The Qsys interconnect does not instantiate logic to handle pipeline latency.

No pipeline Pipelined with fixed
or variable latency

The Qsys interconnect forces the master to wait through any slave-side latency
cycles. This master-slave pair gains no benefits from pipelining, because the
master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline
The Qsys interconnect carries out the transfer as if neither master nor slave were
pipelined, causing the master to wait until the slave returns data. An example of
a non-pipeline slave is an asynchronous off-chip interface.
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Burst Avalon-MM Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip
communication interfaces such as PCI Express. To use a burst-capable slave interface
efficiently, you must connect to a bursting master. Components that require bursting
to operate efficiently typically have an overhead penalty associated with short bursts
or non-bursting transfers.

Altera recommends that you design a burst-capable slave interface if you know that
your component requires sequential transfers to operate efficiently. Because SDRAM
memories incur a penalty when switching banks or rows, performance improves
when SDRAM memories are accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from
bursting. Whenever an address is transferred over shared address and data signals,
the throughput of the data transfer is reduced. Because the address phase adds
overhead, using large bursts increases the throughput of the connection.

Avalon-MM Burst Master Example
Figure 9–20 shows the architecture of a bursting write master that receives data from a
FIFO and writes the contents to memory. You can use this master as a starting point
for your own bursting components, such as custom DMAs, hardware accelerators, or
off-chip communication interfaces. In Figure 9–20, the master performs word accesses
and writes to sequential memory locations.

Pipelined Pipelined with fixed
latency

The Qsys interconnect allows the master to capture data at the exact clock cycle
when data from the slave is valid, to enable maximum throughput. An example
of a fixed latency slave is an on-chip memory.

Pipelined Pipelined with
variable latency

The slave asserts a signal when its readdata is valid, and the master captures
the data. The master-slave pair can achieve maximum throughput if the slave
has variable latency. Examples of variable latency slaves include SDRAM and
FIFO memories.

Table 9–1. Various Cases of Pipeline Latency in a Master-Slave Pair (Part 2 of 2)

Master Slave Pipeline Management Logic Structure
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f For more information about the example in Figure 9–20, refer to the write master
design in the Avalon Memory-Mapped Master Templates on the Altera website.

When go is asserted, the start_address and transfer_length are registered. On the
next clock cycle, the control logic asserts burst_begin. The burst_begin signal
synchronizes the internal control signals in addition to the master_address and
master_burstcount presented to the interconnect. The timing of these two signals is
important because during bursting write transfers address, byteenable, and
burstcount must be held constant for the entire burst.

To avoid inefficient writes, the master only posts a burst when enough data has been
buffered in the FIFO. To maximize the burst efficiency, the master should stall only
when a slave asserts waitrequest. In this example, the FIFO’s used signal tracks the
number of words of data that are stored in the FIFO and determines when enough
data has been buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts and complete
the transfer.

Figure 9–20. Avalon Bursting Write Master
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Reducing Logic Utilization
This section describes how to minimize logic size of Qsys systems. Typically, there is a
trade-off between logic utilization and performance. Information in this section
applies to both Avalon and AXI interfaces.

Minimize Interconnect Logic
In Qsys, changes to the connections between master and slave reduce the amount of
interconnect logic required in the system.

Create Dedicated Master and Slave Connections
You might be able to create a system so that a master interface connects to a single
slave interface. This configuration eliminates address decoding, arbitration, and
return data multiplexing, which simplifies the interconnect. Dedicated master-to-
slave connections attain the same clock frequencies as Avalon-ST connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or
hardware accelerator. For example, if you insert a pipeline bridge between a slave and
all other master interfaces, the logic between the bridge master and slave interface is
reduced to wires. Figure 9–16 on page 9–19 shows this technique. If a hardware
accelerator connects only to a dedicated memory, no system interconnect logic is
generated between the master and slave pair.

Removing Unnecessary Connections
The number of connections between master and slave interfaces affects the fMAX of
your system. Every master interface that you connect to a slave interface increases the
width of the multiplexer width. As a multiplexer width increases, so does the logic
depth and width that implements the multiplexer in the FPGA. To improve your
system performance, connect masters and slaves only when necessary.

When you connect a master interface to many slave interfaces, the multiplexer for the
read data signal grows. Avalon typically uses a readdata signal, and AXI read data
signals add a response status and last indicator to the read response channel using the
commands rdata, rresp, and rlast. Use bridges to help control the depth of
multiplexers, as shown in Figure 9–9.

Simplifying Address Decode Logic
If address code logic is in the critical path, you may be able to change the address map
to simplify the decode logic. Experiment with different address maps, including a
one-hot encoding, to see if results improve.

Minimize Arbitration Logic by Consolidating Multiple Interfaces Into One
As the number of components in your design increases, the amount of logic required
to implement the interconnect also increases. The number of arbitration blocks
increases for every slave interface that is shared by multiple master interfaces. The
width of the read data multiplexer increases as the number of slave interfaces
supporting read transfers increases on a per master interface basis. For these reasons,
consider implementing multiple blocks of logic as a single interface to reduce
interconnect logic utilization.
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Logic Consolidation Trade-Offs
You should consider the following trade-offs before making modifications to your
system or interfaces.

1 Refer to “Using Concurrency in Memory-Mapped Systems” on page 9–5 for
additional discussion on concurrency trade-offs.

First, consider the impact on concurrency that results when you consolidate
components. When your system has four master components and four slave
interfaces, it can initiate four concurrent accesses. If you consolidate the four slave
interfaces into a single interface, then the four masters must compete for access.
Consequently, you should only combine low priority interfaces such as low speed
parallel I/O devices if the combination does not impact the performance.

Second, determine whether consolidation introduces new decode and multiplexing
logic for the slave interface that the interconnect previously included. If an interface
contains multiple read and write address locations, the interface already contains the
necessary decode and multiplexing logic. When you consolidate interfaces, you
typically reuse the decoder and multiplexer blocks already present in one of the
original interfaces; however, combining interfaces might simply move the decode and
multiplexer logic, rather than eliminate duplication.

Finally, consider whether consolidating interfaces makes the design complicated. If
so, Altera recommends that you do not consolidate interfaces.

System Example of Consolidating Interfaces
In this example, the Nios II/e core maintains communication between the Nios II /f
core and external processors. The Nios II/f core supports a maximum burst size of
eight. The external processor interface supports a maximum burst length of 64. The
Nios II/e core does not support bursting. The only memory in the system is SDRAM
with an Avalon maximum burst length of two.
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Figure 9–21 shows a system with a mix of components with different burst
capabilities. It includes a Nios II/e core, a Nios II/f core, and an external processor,
which off-loads some processing tasks to the Nios II/f core.

Qsys automatically inserts burst adapters to compensate for burst length mismatches.
The adapters reduce bursts to a single transfer, or the length of two transfers. For the
external processor interface connecting to DDR SDRAM, a burst of 64 words is
divided into 32 burst transfers, each with a burst length of two.

When you generate a system, Qsys inserts burst adapters based on maximum
burstcount values; consequently, the interconnect logic includes burst adapters
between masters and slave pairs that do not require bursting, if the master is capable
of bursts. In Figure 9–21, Qsys inserts a burst adapter between the Nios II processors
and the timer, system ID, and PIO peripherals. These components do not support
bursting and the Nios II processor performs only single word read and write accesses
to these components.

Figure 9–21. Mixed Bursting System
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To reduce the number of adapters, you can add pipeline bridges, as Figure 9–22
shows. The pipeline bridge between the Nios II/f core and the peripherals that do not
support bursts eliminates three burst adapters from Figure 9–21. A second pipeline
bridge between the Nios II/f core and the DDR SDRAM, with its maximum burst size
set to eight, eliminates another burst adapter.

Implementing Multiple Clock Domains
You specify clock domains in Qsys on the System Contents tab. Clock sources can be
driven by external input signals to Qsys, or by PLLs inside Qsys. Clock domains are
differentiated based on the name of the clock. You may create multiple asynchronous
clocks with the same frequency.

Figure 9–22. Mixed Bursting System with Bridges
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Clock Domain Crossing Logic
Qsys generates Clock Domain Crossing Logic (CDC) that hides the details of
interfacing components operating in different clock domains. The system interconnect
supports the memory-mapped protocol with each port independently, and therefore
masters do not need to incorporate clock adapters in order to interface to slaves on a
different domain. Qsys interconnect logic propagates transfers across clock domain
boundaries automatically.

Clock-domain adapters provide the following benefits:

■ Allow component interfaces to operate at different clock frequencies.

■ Eliminates the need to design CDC hardware.

■ Allows each memory-mapped port to operate in only one clock domain, which
reduces design complexity of components.

■ Enable masters to access any slave without communication with the slave clock
domain.

■ Allows you to focus performance optimization efforts on components that require
fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock
domain, that use a simple hand-shaking protocol to propagate transfer control signals
(read_request, write_request, and the master waitrequest signals) across the clock
boundary.

Figure 9–23 shows illustrates a clock domain adapter between one master and one
slave.

The synchronizer blocks in Figure 9–23 use multiple stages of flipflops to eliminate
the propagation of metastable events on the control signals that enter the handshake
FSMs. The CDC logic works with any clock ratio.

Figure 9–23. Block Diagram of Clock Crossing Adapter
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The typical sequence of events for a transfer across the CDC logic is described as
follows:

1. Master asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and immediately forces
the master to wait.

1 The FSM uses only the control signals, not address and data. For example,
the master simply holds the address signal constant until the slave side has
safely captured it.

3. Master handshake FSM initiates a transfer request to the slave handshake FSM.

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the requested
transfer with the slave.

6. When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the Qsys forces the master to wait until the transfer
terminates. As a result, pipeline master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Qsys automatically determines where to insert CDC logic based on the system
contents and the connections between components, and places CDC logic to maintain
the highest transfer rate for all components. Qsys evaluates the need for CDC logic for
each master and slave pair independently, and generates CDC logic wherever
necessary.

Duration of Transfers Crossing Clock Domains
CDC logic extends the duration of master transfers across clock domain boundaries.
In the worst case which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the Master
domain synchronizer length and the Slave domain synchronizer length, the
components of this delay are the following:

■ Four additional master clock cycles, due to the master-side clock synchronizer

■ Four additional slave clock cycles, due to the slave-side clock synchronizer

■ One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains
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1 Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism, so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

f For more information, refer to Avalon Memory-Mapped Design Optimizations in the
Embedded Design Handbook.

Reducing Power Consumption
This section describes various low power design changes that you can make to reduce
the power consumption of the interconnect and your custom components.

1 Qsys does not support AXI standard low power extensions in the current version of
the QII software.

Use Multiple Clock Domains
When you use multiple clock domains, you should put non-critical logic in the slower
clock domain. Qsys automatically reconciles data crossing over asynchronous clock
domains by inserting clock crossing logic (handshake or FIFO).

You can use clock crossing in Qsys to reduce the clock frequency of the logic that does
not require a high frequency clock, allowing you to reduce power consumption. You
can use either handshaking clock crossing bridges or handshaking clock crossing
adapters to separate clock domains.

Clock Crossing Bridge
You can use the clock crossing bridge to connect master interfaces operating at a
higher frequency to slave interfaces running a a lower frequency. Only connect low
throughput or low priority components to a clock crossing bridge that operates at a
reduced clock frequency. The following are examples of low throughput or low
priority components:

■ PIOs

■ UARTs (JTAG or RS-232)

■ System identification (SysID)

■ Timers

■ PLL (instantiated within Qsys)

■ Serial peripheral interface (SPI)

■ EPCS controller

■ Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you
reduce the dynamic power consumption of your design. Dynamic power is a function
of toggle rates and decreasing the clock frequency decreases the toggle rate.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf


Chapter 9: Optimizing Qsys System Performance 9–35
Reducing Power Consumption
Figure 9–24 shows a system where a bridge reduces power consumption.
.

Qsys automatically inserts clock crossing adapters between master and slave
interfaces that operate at different clock frequencies. You can choose the type of clock
crossing adapter in the Qsys Project Settings tab. There are three types of clock
crossing adapter types available in Qsys, as described below. Adapters do not appear
in the Qsys Connection column because you do not insert them.

Clock Crossing Adapter Types
Specifies the default implementation for automatically inserted clock crossing
adapters. The following adapter types are available:

■ Handshake—Uses a simple handshaking protocol to propagate transfer control
signals and responses across the clock boundary. This adapter uses fewer
hardware resources because each transfer is safely propagated to the target
domain before the next transfer can begin. The Handshake adapter is appropriate
for systems with low throughput requirements.

Figure 9–24. Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II 
Processor

M M

Arbiter

DDR 
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Conduit

S

M

Clock 
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S
Low-Frequency Components
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis



9–36 Chapter 9: Optimizing Qsys System Performance
Reducing Power Consumption
■ FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO
adapter is approximately two clock cycles more than the handshake clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it
can support multiple transactions simultaneously. The FIFO adapter requires more
resources. The FIFO adapter is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

■ Auto—Qsys specifies the appropriate FIFO adapter for bursting links and the
Handshake adapter for all other links.

Throughput
Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters are not pipelined, so that each
transaction is blocking until the transaction completes. Blocking transactions may
lower the throughput substantially; consequently, if you want to reduce power
consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design simply
requires single read transfers, a clock crossing adapter is preferable because the
latency is lower.

Resource Utilization
The clock crossing bridge requires few logic resources besides on-chip memory. The
number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use on-chip memory and requires a moderate number of logic
resources. The address span, data width, and the bursting capabilities of the clock
crossing adapter determine the resource utilization of the device.

Throughput versus Memory Trade-Offs
When you decide to use a clock crossing bridge or clock crossing adapter, you must
consider the effects of throughput and memory utilization in your design. If on-chip
memory resources are limited, you may be forced to choose the clock crossing
adapter. Using the clock crossing bridge to reduce the power of a single component
may not justify using more resources. However, if you can place all your low priority
components behind a single clock crossing bridge, you reduce power consumption in
your design.

Minimizing Toggle Rates
Your design consumes power whenever logic transitions between on and off states.
When the state is held constant between clock edges, no charging or discharging
occurs. This section discusses the following three design techniques that you can use
to reduce the toggle rates of your system:

■ Registering component boundaries

■ Using clock enable signals

■ Inserting bridges
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Registering Component Boundaries
Qsys interconnect is uniquely combinational when no adapters or bridges are present
and there is no interconnect pipelining. When a slave interface is not selected by a
master, various signals may toggle and propagate into the component. By registering
the boundary of your component at the master or slave interface, you can minimize
the toggling of the interconnect and your component. In addition, registering
boundaries can improve operating frequency. When you register the signals at the
interface level, you must ensure that the component continues to operate within the
interface standard specification.

Avalon-MM waitrequest is a difficult signal to synchronize when you add registers
to your component. waitrequest must be asserted during the same clock cycle that a
master asserts read or write to, in order to prolong the transfer. A master interface
may read the waitrequest signal too early and post more reads and writes
prematurely.

1 There is no direct AXI equivalent for waitrequest and burstcount, though the
AMBA Protocol Specification implies that ready (the equivalent of Avalon-MM
waitrequest) cannot depend combinatorially on AXI valid. Therefore, Qsys typically
buffers AXI component boundaries (at least for the ready signal).

For slave interfaces, the interconnect manages the begintransfer signal, which is
asserted during the first clock cycle of any read or write transfer. If your waitrequest
is one clock cycle late, you can logically OR your waitrequest and the begintransfer
signals to form a new waitrequest signal that is properly synchronized, as shown in
Figure 9–25.

Alternatively, your component can assert waitrequest before it is selected,
guaranteeing that the waitrequest is already asserted during the first clock cycle of a
transfer.

Figure 9–25. Variable Latency
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Using Clock Enables
You can use clock enables to hold your logic in a steady state. You can use the write
and read signals as clock enables for slave components. Even if you add registers to
your component boundaries, your interface can potentially toggle without the use of
clock enables.

You can also use the clock enable to disable combinational portions of your
component. For example, you can use an active high clock enable to mask the inputs
into your combinational logic to prevent it from toggling when the component is
inactive. Before preventing inactive logic from toggling, you must determine if the
masking causes your circuit to function differently. If masking causes a functional
failure, it might be possible to use a register stage to hold the combinational logic
constant between clock cycles.

Inserting Bridges
You can use bridges to reduce toggle rates, if you do not want to modify the
component by using boundary registers or clock enables. A bridge acts as a repeater
where transfers to the slave interface are repeated on the master interface. If the
bridge is not accessed, the components connected to its master interface are also not
accessed. The master interface of the bridge remains idle until a master accesses the
bridge slave interface.

Bridges can also reduce the toggle rates of signals that are inputs to other master
interfaces. These signals are typically readdata, readdatavalid, and waitrequest.
Slave interfaces that support read accesses drive the readdata, readdatavalid, and
waitrequest signals. A bridge inserts either a register or clock crossing FIFO between
the slave interface and the master to reduce the toggle rate of the master input signals.

Disabling Logic
There are typically two types of low power modes: volatile and non-volatile. A
volatile low power mode holds the component in a reset state. When the logic is
reactivated, the previous operational state is lost. A non-volatile low power mode
restores the previous operational state. This section discusses using either software-
controlled or hardware-controlled sleep modes to disable a component in order to
reduce power consumption.

Software-Controlled Sleep Mode
To design a component that supports software controlled sleep mode, create a single
memory mapped location that enables and disables logic, by writing a zero or one.
Use the register’s output as a clock enable or reset, depending on whether the
component has non-volatile requirements. The slave interface must remain active
during sleep mode so that the enable bit can be set when the component needs to be
activated.

If multiple masters can access a component that supports sleep mode, you can use the
mutex core available in Qsys to provide mutually exclusive accesses to your
component. You can also build in the logic to re-enable the component on the very
first access by any master in your system. If the component requires multiple clock
cycles to re-activate, then it must assert wait request to prolong the transfer as it exits
sleep mode.
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f For more information about the mutex core, refer to the Mutex Core chapter of the
Embedded Peripherals IP User Guide.

Hardware-Controlled Sleep Mode
You can implement a timer in your component that automatically causes the
component to enter a sleep mode based on a timeout value specified in clock cycles
between read or write accesses. Each access resets the timer to the timeout value. Each
cycle with no accesses decrements the timeout value by one. If the counter reaches
zero, the hardware enters sleep mode until the next access. Figure 9–26 provides a
schematic for this logic. If restoring the component to an active state takes a long time,
use a long timeout value so that the component is not continuously entering and
exiting sleep mode.

The slave interface must remain functional while the rest of the component is in sleep
mode. When the component exits sleep mode, the component must assert the
waitrequest signal until it is ready for read or write accesses.

f For more information on reducing power utilization, refer to Power Optimization in the
Quartus II Handbook.

Design Examples
The following examples illustrate the resolution of Qsys system design challenges.

Avalon Pipelined Read Master Example
For a high throughput system using the Avalon-MM standard, you can design a
pipelined read master that allows your system to issue multiple read requests before
data returns. Pipelined read masters hide the latency of read operations by posting
reads as frequently as every clock cycle. You can use this type of master when the
address logic is not dependent on the data returning.

Design Requirements
You must carefully design the logic for the control and data paths of pipelined read
masters. The control logic must extend a read cycle whenever the waitrequest signal
is asserted. This logic must also control the master address, byteenable, and read
signals. To achieve maximum throughput, pipelined read masters should post reads
continuously as long as waitrequest is deasserted. While read is asserted, the address
presented to the interconnect is stored.

Figure 9–26. Hardware-Controlled Sleep Components
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The data path logic includes the readdata and readdatavalid signals. If your master
can accept data on every clock cycle, you can register the data with the readdatavalid
as an enable bit. If your master cannot process a continuous stream of read data, it
must buffer the data in a FIFO. The control logic must stop issuing reads when the
FIFO reaches a predetermined fill level to prevent FIFO overflow.

f Refer to the Avalon Interface Specifications to learn more about the signals that
implement an Avalon pipelined read master.

Expected Throughput Improvement
The throughput improvement that you can achieve with a pipelined read master is
typically directly proportional to the pipeline depth of the interconnect and the slave
interface. For example, if the total latency is two cycles, you can double the
throughput by inserting a pipelined read master, assuming the slave interface also
supports pipeline transfers. If either the master or slave does not support pipelined
read transfers, then the interconnect asserts waitrequest until the transfer completes.
You can also gain throughput when there are some cycles of overhead before a read
response.

The “Increased Latency” on page 9–15 describes an example in which both the master
and slave interfaces support pipelined read transfers. In this example, data can flow
on a continuous stream after the initial latency. Where reads are not pipelined, the
throughput is reduced. When both the master and slave interfaces support pipelined
read transfers, data flows in a continuous stream after the initial latency. Figure 9–27
illustrates reads that are not pipelined. The system uses three cycles of latency for
each read, achieving an overall throughput of 25%. Figure 9–20 shows reads that are
pipelined. After the three cycles of latency, the data flows continuously.

You can use a pipelined read master that stores data in a FIFO to implement a custom
DMA, hardware accelerator, or off-chip communication interface. Figure 9–27 shows a
pipeline read master that stores data in a FIFO. The master performs word accesses
that are word-aligned and reads from sequential memory addresses. The transfer
length is a multiple of the word size. In Figure 9–27, the master performs word
accesses that are word-aligned and reads from sequential memory addresses. The
transfer length is a multiple of the word size.
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Figure 9–27 shows a pipeline read master that stores data in a FIFO.

When the go bit is asserted, the master registers the start_address and
transfer_length signals. The master begins issuing reads continuously on the next
clock until the length register reaches zero. In this example, the word size is four
bytes so that the address always increments by four and the length decrements by
four. The read signal remains asserted unless the FIFO fills to a predetermined level.
The address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The master posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The master issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block monitors the done bit.
When the length register reaches zero, some reads are outstanding. The tracking logic
prevents assertion of done until last read completes. The tracking logic monitors the
number of reads posted to the interconnect so that it does not exceed the space
remaining in the readdata FIFO. This logic includes a counter that verifies the
following conditions are met:

■ If a read is posted and readdatavalid is deasserted, the counter increments.

■ If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach zero, all the reads have
completed and the done bit is asserted. The done bit is important if a second master
overwrites the memory locations that the pipelined read master accesses. This bit
guarantees that the reads have completed before the original data is overwritten.

Figure 9–27. Pipelined Read Master
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Multiplexer Examples
You can combine adapters with streaming components to create datapaths whose
input and output streams have different properties. The following sections provide
examples of datapaths in which the output stream is higher performance than the
input stream. Figure 9–28 shows an output with double the throughput of each
interface with a corresponding doubling of the clock frequency. Figure 9–29 doubles
the data width. Figure 9–30 boosts the frequency of a stream by 10% by multiplexing
input data from two sources.

Example to Double Clock Frequency
Figure 9–28 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory and Avalon-ST channel multiplexer to merge the 100 MHz input from two
streaming data sources into a single 200 MHz streaming output. This example
increases throughput by increasing the frequency and combining inputs.

Example to Double Data Width and Maintain Frequency
Figure 9–29 illustrates a datapath that uses the data format adapter and Avalon-ST
channel multiplexer to convert two, 8-bit inputs running at 100 MHz to a single 16-bit
output at 100 MHz.

Figure 9–28. Datapath that Doubles the Clock Frequency

Figure 9–29. Datapath to Double Data Width and Maintain Original Frequency
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Example to Boost the Frequency
Figure 9–30 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory to boost the frequency of input data from 100 MHz to 110 MHz by sampling
two input streams at differential rates. In this example, the on-chip FIFO memory has
an input clock frequency of 100 MHz and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time and the second 72.7 percent of the time.

You do not need to know what the typical and maximum input channel utilizations
are before this type of design. For example, if the first channel hits 50% utilization, the
output stream exceeds 100% utilization.

Conclusion
Recommendations presented in this chapter may improve your system’s maximum
clock frequency, concurrency and throughput, logic utilization, or even power
utilization. When you design a Qsys system, use your knowledge of the design intent
and goals to further optimize system performance beyond the automated
optimization available within Qsys.

Document Revision History
Table 9–2 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive

Figure 9–30. Datapath to Boost the Clock Frequency
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