
Guidelines for Developing a Nios II HAL Device Driver
2015.06.12

AN-459 Subscribe Send Feedback

This application note explains the process of creating and debugging a hardware abstraction layer (HAL)
software device driver. The included example of a HAL software device driver, called my_uart_driver,
illustrates various software development stages. The example driver targets the Altera_Avalon_UART
device, connected through a Vectored Interrupt Controller (VIC) to the Nios® II processor.

This application note helps you with custom device driver development for Nios II systems in the
following ways:

• Shows the development process steps, from sending bits out the transmit pin in the main() through
the construction of device access macros and automatic device initialization in alt_sys_init()

• Shows how to develop a driver with the command-line based Nios II Software Build Tools (SBT)
• Shows how to create applications and a board support package (BSP) based on your driver
• Shows how to import and debug the applications and BSP with the Nios II Software Build Tools for

Eclipse
• Explains interrupt latency, interrupt nesting, and determinism
• Identifies system calls that cannot be included in a device driver interrupt service routine (ISR)
• Describes debugging tips and techniques, such as identifying UART transmission errors

Note: This application note uses the Nios II Gen2, Cyclone® V E FPGA Development Kit, as an example
hardware platform.

For more information about the HAL, refer to the "Overview of the Hardware Abstraction Layer" chapter
in the Nios II Software Developer's Handbook. For more information about interrupt latency, refer to the
"Exception Handling" chapter in the Nios II Software Developer's Handbook.

Related Information

• Overview of the Hardware Abstraction Layer
• Exception Handling

Prerequisites for HAL Device Driver Development
This document targets advanced systems developers with a basic understanding of the following concepts:

• Nios II application development, including creating and building software applications and BSPs with
the Nios II SBT, including the Nios II SBT for Eclipse.

• The Quartus® II software, including opening Quartus II projects that match the target board,
launching the Qsys system integration tool, and examining various peripheral settings.

• Using the Quartus II Programmer tool to program an SRAM Object File (.sof) to an FPGA through an
Altera® USB-Blaster™ download cable.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=AN-459
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(AN-459%202015.06.12)%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52003.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

To gain the minimum prerequisite knowledge, refer to the following resources:

• The "Nios II Hardware Development Tutorial", available on the Nios II Hardware Development Design
Example page of the Altera website

• The "Getting Started with the Graphical User Interface" chapter of the Nios II Software Developer's
Handbook

• The "Getting Started from the Command Line" chapter of the Nios II Software Developer's Handbook

Related Information

• Nios II Hardware Development Design Example
• Getting Started with the Graphical User Interface
• Getting Started form the Command Line

Using the HAL Architecture and Services
The HAL application programming interface (API) provides an interface to hardware similar to a
portable operating system interface for unix (POSIX). This interface abstracts the hardware details from
upper-level clients of the HAL, such as operating systems, networking stacks, or Nios II applications. The
HAL provides a variety of generic device classes, including character-mode, file subsystem, Ethernet,
timestamp and system timers, direct memory access (DMA), and flash memory. The
Altera_Avalon_UART is a member of the character-mode class of HAL devices. The HAL has an API for
character-mode class devices, which you can use to manipulate the Altera_Avalon_UART. Mutual
exclusion resources are available, provided either by MicroC/OS-II (if present) or by the HAL. These
services include semaphores and event flags. When the HAL device driver makes calls to these resources,
the calls are simply translated to non-operations when the multi-threading services are not available.

For additional information about HAL services, refer to the "Developing Programs Using the Hardware
Abstraction Layer" chapter in the Nios II Software Developer's Handbook.

For additional information about the HAL API, refer to the "HAL API Reference" chapter in the Nios II
Software Developer's Handbook.

Related Information

• Developing Programs Using the Hardware Abstraction Layer
• HAL API Reference

Software Requirements for the Driver Example
The following components are required:

• Quartus II software version 15.0 SP1 or higher.
• Nios II Embedded Design Suite (EDS) version 15.0 SP1 or higher.
• The an459-design-files.zip archive.

The an459-design-files.zip archive contains a hardware design example for the Nios II Cyclone V E
FPGA Development Kit, along with software examples and a driver example named my_uart_driver.
The following software example projects are included:

• The bit_bang_uart application
• The hello_world_my_uart application
• The hal_my_uart BSP

an459-design-files.zip is available on the HAL Device Drivers Design Example page of the Altera website.

2 Using the HAL Architecture and Services
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-hardware-tutorial.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52017.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52014.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52004.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52010.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
HAL Device Drivers Design Example

HAL Device Drivers and Components
This application note discusses Nios II device drivers and components at several levels. To understand
these levels, you need to be familiar with the following concepts:

• HAL-compatible component—A design for a piece of hardware that can be incorporated into a Nios II
system and supported by the HAL. A component is an abstract IP core that can be configured for a
specific application. A component has abstract parameters, such as base address. These parameters
have no specific value until a component instance is created. The Altera Avalon UART is an example
of a component.

• Component instance—A component that is instantiated in a system. Component instance parameters
have specific values, assigned at the time of instantiation. For example, an instance of the Altera
Avalon UART must have a specific base address. There can be multiple instances of a component in a
system. Each instance has a unique name, such as uart1, assigned in Qsys.

• HAL-device driver—A piece of software written to interface a component to the HAL. A device driver
supports a specific component. A Nios II BSP contains a single device driver for each component
found in the system. If there are multiple instances of one component, they are all supported by a
single driver. In this application note, my_uart_driver is an example of a device driver.

• HAL-generic device model class—A group of device drivers with similar characteristics and a common
high-level API. Generic device models allow you to use a consistent set of API calls with a variety of
hardware designs. The class of character-mode devices is an example of a HAL device class, and the
printf() function is an example of a function call supported by this device class.

For more information about HAL device classes, refer to “HAL Architecture” in the Overview of the
Hardware Abstraction Layer chapter of the Nios II Software Developer's Handbook.

Related Information
Overview of the Hardware Abstraction Layer

Developing the HAL UART Device Driver
This section walks you through creation of the HAL device driver named my_uart_driver.

Preparing the bit_bang_uart Application and hal_my_uart BSP
First, you need to set up a development and debugging environment for the UART. This example uses the
Nios II Cyclone V E FPGA Development Kit with an accompanying design example in an459-design-
files.zip.

AN-459
2015.06.12 HAL Device Drivers and Components 3

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-developing-hal-drivers.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to build the bit_bang_uart project:

• Get the most up-to-date version of an459-design-files.zip which is available on the HAL Device
Drivers Design Example page of the Altera website.

• Unzip an459-design-files.zip to a working directory, such as C:/my_design. This application note
refers to this directory as <my_design>. Be sure to preserve the directory structure of the extracted
software archive. Extraction creates a directory structure tree under <my_design> with the following
four subdirectories:

• ip/my_uart

• software_examples/bsp/hal_my_uart

• software_examples/app/bit_bang_uart

• software_examples/app/hello_world_my_uart

Note: The working directory name you choose must not contain any spaces.

After extracting an459-design-files.zip, refer to <my_design>/readme.txt for a list of any required
software patches or other updated information. If a patch is required, install it according to the instruc‐
tions in readme.txt.

Related Information
HAL Device Drivers Design Example

Preparing the my_uart_driver Device Driver
This section provides some background on how the my_uart_driver device driver is associated with a
component instance. You must specify the name of the directory to store both the software device drivers
and the custom components. The name should be descriptive enough to identify the custom component.
The directory must be under the <my_design>/ip directory. The librarian searches for user component
files named <component_name>_sw.tcl in directories below this ip directory.

Every HAL device driver has a software description file. The software description file naming convention
is <component_name>_sw.tcl. This name must match the corresponding <component_name>_hw.tcl file
generated by the Component Editor.

The my_uart_driver device driver’s software description file is <my_design>/ip/my_uart/
my_uart_sw.tcl.
All components generated by the Component Editor have a <component_name>_hw.tcl file. However,
certain components provided by Altera, such as the Altera_Avalon_UART, are generated outside the
Component Editor, and therefore do not have a <component_name>_hw.tcl file.

For additional information about creating device driver Tcl scripts, refer to the “Driver and Software
Package Tcl Script Creation” section of the Developing Device Drivers for the Hardware Abstraction Layer
chapter in the Nios II Software Developer’s Handbook.

Altera provides an additional tool with the Nios II processor, the System Console, that is useful for testing
component instances and software device drivers, and for constructing BSPs. This application note does
not describe the System Console.

For information about the System Console, refer to the System Console User Guide.

Related Information

• Developing Device Drivers for the Hardware Abstraction Layer
• System Console User Guide

4 Preparing the my_uart_driver Device Driver
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-developing-hal-drivers.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52005.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_system_console.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuring the Altera_Avalon_UART Component
In this section, you configure the Altera_Avalon_UART hardware component in Qsys. Perform the
following steps:

1. Start the Quartus II software. In the File menu, click Open Project.
2. Browse to <my_design>.
3. Select the Quartus II project file AN459.qpf, and click Open.
4. In the Tools menu, click Qsys and open system.qsys.
5. In Qsys, in the Module Name column, double-click on uart1.
6. In the UART (RS-232 Serial Port) - uart1 dialog box, verify the baud rate is set to 115200 bps, as

shown in the figure below.
Figure 1: Verify UART Baud Rate

7. Click Finish.
8. In the System Contents tab of Qsys, verify the value for the UART base address.

This design example uses a value of 0x80 for the UART’s register base address. If you use a hardware
design other than the design example accompanying this application note, the value of the UART's
register base address might be different. Open Qsys and find the UART base address for your board.
The "uart1 Peripheral Register Base Address" figure shows the base address for the UART used in this
example.

9. Click Generate HDL in Qsys to regenerate the system.
10.Recompile the Quartus II project.
11.In the Quartus II software, in the Tools menu, click Programmer.
12.To program the AN459.sof image to the development board, ensure that Program/Configure is

turned on and click Start.
13.In Qsys, on the Tools menu, click Nios II Command Shell.
14.Change the directory to <my_design>/software_examples/app/bit_bang_uart.

AN-459
2015.06.12 Configuring the Altera_Avalon_UART Component 5

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2: uart1 Peripheral Register Base Address

15.Run the create-this-app script as follows:

./create-this-app

This step might take several minutes to complete.

The create-this-app script specifies the BSP named hal_my_uart. The hal_my_uart BSP associates the
component instance uart1 with the software driver my_uart_driver, as shown in the summary.html
excerpt in the "Driver Mapping in summary.html" figure. The create-this-bsp script for the
hal_my_uart BSP selects component instance uart1 for the stdio device. Build messages are stored in
bsp/hal_my_uart/hal_my_uart_build_log.txt.

The compiler might report a small number of harmless warnings when you build bit_bang_uart. For a
list of expected warnings, refer to the <my_design>/readme.txt file, extracted from an459-design-
files.zip.

16.Change the directory to <my_design>/software_examples/bsp/hal_my_uart.
17.Edit alt_sys_init.c in your favorite editor. The vi editor is available from the Nios II Command Shell.

Figure 3: Driver Mapping in summary.html

18.Disable the automatic invocation of the HAL UART device driver initialization function by
commenting out invocations of the following macros in alt_sys_init.c:

• ALTERA_AVALON_UART_INSTANCE()

• ALTERA_AVALON_UART_INIT()

19.Save alt_sys_init.c.

6 Configuring the Altera_Avalon_UART Component
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

20.Rebuild the bit_bang_uart project by changing the directory back to <my_design>/
software_examples/app/bit_bang_uart, and executing make.

21.Connect a serial cable from the 9-pin console port on the Nios II development board to an RS-232
serial port on your development host computer.

22.Ensure that your host serial port is configured with the following settings:
Figure 4: Tera Term Serial Settings

Importing Projects
Follow these steps to import the bit_bang_uart application project and the hal_my_uart BSP project:

1. In Qsys, in the tools menu, select Nios II Software Build Tools for Eclipse to launch the Nios II SBT
for Eclipse.

2. In Nios II SBT for Eclipse, in the File menu, click Import. The Import dialog box appears.
3. Expand the Nios II Software Build Tools Project folder, and select Import Nios II Software Build

Tools Project.
4. Click Next. The Import Software Build Tools Project wizard appears.
5. Next to Project Location, click Browse. Navigate to and select the <my_design>/

software_examples/app/bit_bang_uart directory.
6. Click OK.
7. Name the project bit_bang_uart.
8. Turn on Managed Project to have Nios II SBT for Eclipse manage your makefile for you.
9. Click Finish. The wizard imports the bit_bang_uart application project.
10.Repeat steps 2 through 9, but at step 5 instead import the <my_design>/software_examples/bsp/

hal_my_uart BSP.

For additional information about importing Nios II SBT command-line projects, refer to “Importing a
Command-Line Project” in the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer's Handbook.

Related Information
Getting Started with the Graphical User Interface

AN-459
2015.06.12 Importing Projects 7

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Verifying Software Functionality
This example demonstrates how you can verify hardware functionality by specifying an explicit, hard-
coded memory address. In the Nios II SBT for Eclipse Project Explorer tab, in the Nios II Project
Explorer view, expand the bit_bang_uart project, and open bit_bang_uart.c. In the main() procedure of
bit_bang_uart.c, you can see that the first call to IOWR() uses a hard-coded base address of 0x80 for
uart1.

Using a hard-coded address can be helpful when you first bring up new hardware, to rule out any software
errors, such as C pointer reference software coding errors, in obtaining the peripheral's memory-mapped
registers base address. This technique provides confidence that your software is referencing the actual
hardware peripheral register.

Preview: Customizing the Design
This section describes typical modifications you might make to the software or hardware after you have
verified that it works with hard-coded addresses.

Before carrying out these modifications, work through the steps in Debugging the bit_bang_uart Project.
Design modifications are described in detail starting in The BitBangUartTransmit() Function.

After you confirm successful communication from the software to the hardware, you can change the
hard-coded address to a symbolic name found in system.h. Replacing the hard-coded register address
with a symbolic definition enables the Nios II SBT to update the software if the peripheral's register base
address changes in the future.

UART1_BASE is a definition provided by system.h. When defining macros in system.h, the Nios II SBT
takes the peripheral name as defined in Qsys, and converts it to uppercase. The Nios II SBT creates the
peripheral's base address by appending _BASE to the peripheral's name.

Related Information

• Debugging the bit_bang_uart Project on page 9
• The BitBangUartTransmit() Function on page 14

Making Software Modifications

UART1_BASE is defined in system.h, a generated header file, and used in the bit_bang_uart.c source file. If
you use a different hardware design, and the UART peripheral name is not uart1, search and replace the
occurrences of UART1_BASE in bit_bang_uart.c with the name <your_uart_peripheral_name>_BASE.
Find the UART peripheral module name and register base on the System Contents tab in Qsys. Refer to
the "uart1 Peripheral Register Base Address" figure in the "Configuring the Altera_Avalon_UART
Component" section.

Related Information
Configuring the Altera_Avalon_UART Component on page 5

Making Hardware Modifications

If you make hardware design modifications, you must regenerate your Nios II system in Qsys and
recompile the Quartus II project in the Quartus II software. In the regeneration step, Qsys updates the
SOPC Information File (.sopcinfo) for your hardware design.

If you have a pre-existing BSP, such as the example design, an updated .sopcinfo file requires that you
regenerate your BSP in the BSP Editor (or by executing nios2-bsp on the command line). Then you must
do a clean build of the BSP as well as the application that depends on it. The clean build is required
because the software needs to obtain the new value of the _BASE symbol from system.h.

8 Verifying Software Functionality
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For additional information about updating BSP files after a hardware change, refer to Board Support
Packages in the "Nios II Software Build Tools" chapter of the Nios II Software Developer's Handbook.

In the Nios II Command Shell, to force the SBT to copy or regenerate all BSP and application files, simply
perform the following steps:

1. Delete the application makefile, for example app/bit_bang_uart/Makefile.
2. Delete the BSP’s public.mk file, for example bsp/hal_my_uart/public.mk.
3. Execute the create-this-app script in the application directory, for example app/bit_bang_uart/

create-this-app. The create-this-app script runs the create-this-bsp script, which in turn runs nios2-
bsp.

Related Information
Nios II Software Build Tools

Debugging the bit_bang_uart Project
This section demonstrates debugging techniques with the bit_bang_uart project. To start debugging
bit_bang_uart, perform the following steps:

1. In the Project Explorer view of the Nios II SBT for Eclipse, right click the bit_bang_uart, and select
Nios II -> BSP Editor. Ensure the stdin, stdout and stderr are set to uart1.

2. Open a Tera Term terminal and configure the connection to serial.
3. In the Tera Term, on the setup menu, click serial port.
4. Configure the serial port settings as shown in Debug Configuration Project figure.
5.

Click the New launch configuration button to create a new debug configuration. To name the
debug configuration, in the Name box type neek_uart, and click Apply. Refer to the "Debug Configu‐
ration Project Tab" figure.

Figure 5: Debug Configuration Project Tab

6. On the Project tab, set Project name to bit_bang_uart, and set ELF file name to the path name of the
application project’s Executable and Linking Format File (.elf).

AN-459
2015.06.12 Debugging the bit_bang_uart Project 9

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Verify that none of the tabs contains a red “x”, indicating an error. If any do, select that tab, and fill in
the required data necessary to resolve the error as indicated by the tool's messages. For example, if
more than one USB-Blaster cable is connected to your development host computer, the Target
Connection tab has a red “x“. In this case, you must select the appropriate cable under Processors to
resolve the error.

Note: If the message at the top of the dialog box says Actual system ID not found at target base
address, on the Target Connection tab, click Refresh Connections. You might need to click
Refresh Connections several times to establish a connection.

Note: If the message at the top of the dialog box says System timestamp mismatch, on the Target
connection tab, check on the Ignore mismatched system timestamp selection under the
System ID checks.

8. Click the Target Connection tab, see the Debug Configuration Target Connection Tab figure below.
The message at the top of the dialog box says The expected Stdout device name does not match the
selected target byte stream device name. This message is expected, because in the Connections panel,
under Byte Stream Devices, the listed device is jtag_uart, while the stdout device used by the
bit_bang_uart application is uart1. You use Tera Term to send and receive serial I/O. Tera Term is
required because the Nios II SBT for Eclipse does not support the use of a UART as a byte stream
device.

Figure 6: Debug Configuration Target Connection Tab

The jtag_uart byte stream device is used to receive Altera logging messages, as described in Debugging
with the Altera Logging Functions section.

For additional information about setting up a debug configuration for Nios II SBT projects, refer to
"Run Configurations" section in the "Getting Started with the Graphical User Interface" chapter of the
Nios II Software Developer's Handbook.

10 Debugging the bit_bang_uart Project
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Click Debug.
10.If Eclipse prompts you to switch to the Nios II Debug perspective, click Yes.

Note: Depending on how the Eclipse preferences are configured, Eclipse might automatically switch
to the Nios II Debug perspective.

11.Select the Nios II Console view.
12.On the Window menu, choose to Show View and select Memory to open the Memory view.
13.If the Memory view appears in the lower left corner, sharing a tabbed area with the Console view, drag

the memory tab to the upper right corner of the perspective. This arrangement allows you to view the
Console and Memory views simultaneously.

14.Click the Add Memory Monitor button in the Memory view, as shown in the Specifying Memory
Address to Monitor figure below. This action opens a Monitor Memory dialog box in which you can
type the memory address that you want to monitor.

15.Enter the UART peripheral's register base address, as shown in the Specifying Memory Address to
Monitor figure below (0x80 for the uart1 peripheral in the design example accompanying this
application note).

16.Click OK.
17.In the Memory view, right-click any cell under the column labeled 0 – 3, and click Format. Set

Column Size to 1 unit per column.
18.Click OK

Figure 7: Specifying Memory Address to Monitor

AN-459
2015.06.12 Debugging the bit_bang_uart Project 11

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

19.
Use the Step Over button to advance the program execution over the IOWR() macro. This macro
transmit an asterisk to Tera Term by writing directly to the UART's transmit register as shown in the
Asterisk Transmitted from Memory-Mapped Register figure.

If you do not see an asterisk in Tera Term, verify your hardware cable is properly connected and your
UART peripheral base address matches the one in your hardware design.

Figure 8: Asterisk Transmitted from Memory-Mapped Register

The red numbers in the Memory view indicate which memory values changed during the last “step
over” operation. This change helps you verify that a new peripheral is functioning correctly. The 2A in
the Memory view is the hexadecimal value for the asterisk character (*), as shown in the Transmit
Asterisk figure below.

12 Debugging the bit_bang_uart Project
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9: Transmit Asterisk

20.To show the Memory view in ASCII rather than hexadecimal, click the New Renderings tab. Refer to
the "Adding an ASCII Rendering to the Memory View" figure below. In the New Renderings tab,
select ASCII and click Add Rendering(s).

The 2A in the Memory view changes to an asterisk.

Figure 10: Adding an ASCII Rendering to the Memory View

21.You can transmit characters over the UART by directly changing memory values in the Memory view
as follows:

AN-459
2015.06.12 Debugging the bit_bang_uart Project 13

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. In the ASCII rendering, type an h in the cell currently occupied by the asterisk in the Memory view.
This cell represents the transmit register.

b. Press Enter.
c. Type an i in the same cell in the Memory view.
d. Press Enter.

The word hi appears in Tera Term, as shown in the "Characters Transmitted by manipulating UART
Register" figure below.

The peripheral memory-mapped registers bypass the cache. Therefore, the status register value
displayed in the Memory view reflects any changes to the status register made by the peripheral. The
IOWR() and IORD() macros always bypass the cache.

Figure 11: Characters Transmitted by manipulating UART Register

Related Information

• Debugging with the Altera Logging Functions on page 33
• Getting Started with the Graphical User Interface

The BitBangUartTransmit() Function
This section examines the BitBangUartTransmit() function in bit_bang_uart.c. The BitBangUart-
Transmit() function demonstrates transmission of characters over the UART.

In the Nios II SBT for Eclipse, step over the BitBangUartTransmit() function. The characters BIT BANH
appear in Tera Term, as shown in the "Stepping Over the BitBangUartTransmit() Function" figure below.
The following steps show why the string appears as it does.

14 The BitBangUartTransmit() Function
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12: Stepping Over the BitBangUartTransmit() Function

To begin analyzing BitBangUartTransmit(), perform the following steps:

1. Restart the debugging session as follows:

a.
Click Terminate to stop the current debugging session.

b. In the Run menu, click Debug Configurations.
c. With the neek_uart debug configuration selected (the default), click Debug.

2. Click Step Over to step to the call to the BitBangUartTransmit() function.
3. Click Step Into to step into the BitBangUartTransmit() function.
4. Click Step Over to execute one line at a time until the string BIT BANGBASH appears in Tera Term, as

shown in the Transmitting BIT BANGBASH by Stepping Through the Function figure below.

bit_bang_uart.c writes a value of zero to the status register to clear any existing errors on the UART. The
IOWR() macro accomplishes this step by writing to UART1_BASE.

Next, a loop cycles through the bitbang[] array, printing out the characters BIT BANG to the UART. To
prevent overruns, the loop checks the transmit ready bit before each subsequent character transmission.
Immediately after the loop, the software transmits characters BASH one after the other without checking
the transmit ready bit.

If you step through each line to the end of the BitBangUartTransmit() function, the software transmits
the characters BIT BANGBASH through the UART. These characters appear in Tera Term, as shown in the
Transmitting BIT BANGBASH by Stepping Through the Function figure below. There is no transmitter
overrun, because the UART transmits each character much faster than you can single-step.

AN-459
2015.06.12 The BitBangUartTransmit() Function 15

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13: Transmitting BIT BANGBASH by Stepping Through the Function

To observe BitBangUartTransmit()’s real-time behavior, perform the following steps:

1. Restart the debugging session, as in the above Step 1 begin Analyzing BitBangUartTransmit().
2. Place a breakpoint in BitBangUartTransmit(), on the following statement:

uart_status = IORD (UART1_BASE, 2);

To set a breakpoint, double-click in the gray area left of the line, as shown in the Setting a Breakpoint
in BitBangUartTransmit() figure below.

3. Click the Resume button . The program runs until it reaches the breakpoint.
4. In the Variables view, right-click the uart_status variable name, point to Format, and click Hexadec‐

imal.

16 The BitBangUartTransmit() Function
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14: Setting a Breakpoint in BitBangUartTransmit()

5. Step over the assignment of uart_status. The Variables view shows that the value of uart_status
has changed to 0x170, as shown in the figure below.

Figure 15: Value of uart_status Variable is 0x170

AN-459
2015.06.12 The BitBangUartTransmit() Function 17

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The register map for the Altera Avalon UART core shows that the status register's value of 0x170 means
that the following bits are set:

• Bit 8, the exception (E) bit
• Bit 4, the transmitter overrun error (TOE) bit

The register map for the Altera Avalon UART core is described in the UART Core chapter in Embedded
Peripherals IP User Guide.

Because the software does not wait for the transmitter to be ready before writing the final characters
(GBASH), the transmitter is overrun and only the last character, H, is transmitted, as shown in the
Transmitter Overrun figure below.

Figure 16: Transmitter Overrun

Related Information
Embedded Peripherals IP User Guide

The BitBangUartReceive() Function
This section examines the BitBangUartReceive() function in bit_bang_uart.c. The BitBangUartRe-
ceive() function demonstrates receiving characters over the UART.

To analyze the BitBangUartReceive() function, perform the following steps:

1. Step into the BitBangUartReceive() function.
2. Set a breakpoint on the while loop immediately after the statement that reads a character into

incoming_character, as shown in the Setting a Breakpoint in BitBangUartReceive() figure below.
3. Click the Resume button.

18 The BitBangUartReceive() Function
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii51010.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17: Setting a Breakpoint in BitBangUartReceive()

4. In the following loop statement, the Nios II processor is waiting for the receive ready (RRDY) bit to go
high:

while (!(uart_status=IORD(UART1_BASE, 2) & 0x80));

Tera Term displays a prompt, as shown in the figure below.

Figure 18: Waiting to Receive Character on UART

5. In the Tera Term, type * (asterisk). The debugger hits the breakpoint you set, as shown in the figure
below.

6. Examine the Variables view (expand it if necessary to see the incoming_character variable). The
incoming_character variable holds the asterisk you sent through Tera Term, as shown in the figure
below.

Completing these steps verifies that both the transmit and receive functions of the UART work in polled
mode.

AN-459
2015.06.12 The BitBangUartReceive() Function 19

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19: incoming_character Variable Is Set to the Character Entered on the Console

Creating Device Hardware Access Macros
After you verify the functionality of the peripheral registers with the bit_bang_uart test software, you can
replace the IORD() and IOWR() macros and their hard-coded address parameters with register access
macros. You define the register access macros for the component, under the

<my_design>/ip/<componentfolder>/inc/<component>_regs.h source code header file.

The base address, component instance name, and interrupt request (IRQ) priority are all available to HAL
device drivers from system.h. You can write macros that access specific peripheral registers by name,
constructed from the information provided in system.h. The macros remove the hard-coded nature of the
register accesses and instead pull the register base address information out of system.h. This procedure
allows automatic incorporation of any changes made to the component instance base address in the
hardware design. For example, to access the UART's transmit register, the code in bit_bang_uart.c uses
an IOWR() macro with a hard-coded offset (value 1). Convert this method to a device access macro that
can adapt to changes in system.h automatically.

The Device Access Macros in my_uart_regs.h example (from my_uart_regs.h) defines a set of device
access macros and related access masks for the UART status register.

20 Creating Device Hardware Access Macros
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1: Device Access Macros in my_uart_regs.h

#define MY_UART_STATUS_REG 2
#define IOADDR_MY_UART_STATUS(base) IO_CALC_ADDRESS_NATIVE(base,
MY_UART_STATUS_REG)
#define IORD_MY_UART_STATUS(base) IORD(base, MY_UART_STATUS_REG)
#define IOWR_MY_UART_STATUS(base, data) IOWR(base, MY_UART_STATUS_REG,
data)

#define MY_UART_STATUS_PE_MSK (0x1)
#define MY_UART_STATUS_PE_OFST (0)
#define MY_UART_STATUS_FE_MSK (0x2)
#define MY_UART_STATUS_FE_OFST (1)
#define MY_UART_STATUS_BRK_MSK (0x4)
#define MY_UART_STATUS_BRK_OFST (2)
#define MY_UART_STATUS_ROE_MSK (0x8)
#define MY_UART_STATUS_ROE_OFST (3)
#define MY_UART_STATUS_TOE_MSK (0x10)
#define MY_UART_STATUS_TOE_OFST (4)
#define MY_UART_STATUS_TMT_MSK (0x20)
#define MY_UART_STATUS_TMT_OFST (5)
#define MY_UART_STATUS_TRDY_MSK (0x40)
#define MY_UART_STATUS_TRDY_OFST (6)
#define MY_UART_STATUS_RRDY_MSK (0x80)
#define MY_UART_STATUS_RRDY_OFST (7)
#define MY_UART_STATUS_E_MSK (0x100)
#define MY_UART_STATUS_E_OFST (8)
#define MY_UART_STATUS_DCTS_MSK (0x400)
#define MY_UART_STATUS_DCTS_OFST (10)
#define MY_UART_STATUS_CTS_MSK (0x800)
#define MY_UART_STATUS_CTS_OFST (11)
#define MY_UART_STATUS_EOP_MSK (0x1000)
#define MY_UART_STATUS_EOP_OFST (12)

The Altera Nios II component also provides the address construction macro
IO_CALC_ADDRESS_NATIVE(). The UART device access macros in nios2eds/components/
altera_nios2/HAL/inc/io.h use this macro. IO_CALC_ADDRESS_NATIVE() computes the native address of
a specified peripheral register. To compute this address, it adds the second parameter (offset) to the first
parameter (peripheral base address). The offset is represented in system bus width units, for example, 32
bits. The IORD() and IOWR() macros translate to the Nios II assembler instructions, ldwio and stwio,
respectively.

Native addressing mode is deprecated, because Altera is moving to a direct addressing model. New
components should be written to use byte-enable signals. Write new device drivers for these components
with direct addressing macros, such as IORD_32DIRECT(), which utilize the byte-enable signals. Offsets for
direct address macros are always represented in bytes. The bit_bang_uart example application uses native
addressing. The my_uart device driver also uses native addressing.

For example, the following addressing macro:

IOWR(UART1_BASE, 2, 0);

translates to the following direct addressing macro:

IOWR_32DIRECT(UART1_BASE, 8, 0);

Notice that the offset specified is now eight bytes, instead of two long words.

For more details on direct addressing macros, refer to "Writing Device Drivers" in the "Cache and Tightly-
Coupled Memory" chapter in the Nios II Software Developer's Handbook.

AN-459
2015.06.12 Creating Device Hardware Access Macros 21

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the BitBangUartTransmit() function in bit_bang_uart.c, you use an IORD() macro with hard-coded
values to read the UART status register:

uart_status = IORD(UART1_BASE, 2);

You can achieve the same functionality by using the UART's device access macro:

uart_status = IORD_MY_UART_STATUS(UART1_BASE)

Using this macro makes the device driver code easier to write and easier to understand after it is written.

Altera recommends that you create device access macros for all of your custom component's registers, and
that you create masks for each of the bits represented in those macros. These steps result in a driver that is
much easier to understand; therefore, it is easier to verify the correctness of the device driver.

Related Information
Cache and Tightly-Coupled Memory

Staging the HAL Device Driver Development
The following sections describe the existing my_uart_driver source code, particularly the device access
descriptors used to manipulate the peripheral. my_uart_driver is based on the Altera Avalon UART
device driver, with all of the names changed to represent the “my” flavored device, as an illustration of
how you can incorporate your own device driver. All of the function and macro names (except for the
*_INIT() and *_INSTANCE() macros) in the Altera Avalon UART device driver have had the
“altera_avalon” portion of the name replaced with “my”. For example,
ALTERA_AVALON_UART_STATUS_REG() has become MY_UART_STATUS_REG().

The two macros for _INSTANCE() and _INIT() are exceptions, because their names must match the
hardware component name. As a result, the my_uart_driver device driver has definitions for
ALTERA_AVALON_UART_INIT() and ALTERA_AVALON_UART_INSTANCE(). These _INIT() and _INSTANCE()
macros must be defined in a header file that also matches the device name, which in this case is
altera_avalon_uart.h. This restriction is necessary for the automatic construction of alt_sys_init.c, a
generated C source file that handles of component instance initialization.

This example shows you how to write a software device driver that fits the HAL structure, either for
manipulation of your own new device, or to override the functionality of the provided software device
driver for an Altera component or other third party device.

The file bit_bang_uart.c demonstrates how to write source code. The source code development
progresses toward a complete device driver. Source code development starts from direct access of the
peripheral's registers and goes on to validating the proper functioning of the Altera_Avalon_UART
hardware. bit_bang_uart.c is the first piece of software to communicate with the Altera Avalon UART
hardware.

To develop the source code that accesses a new device, perform the following steps:

1. Use IOWR() macros with hard-coded address values in main() to write values directly to the memory-
mapped UART registers. IOWR() macros are the most direct way to access the UART hardware. Direct
hardware access is useful for validating proper functioning of the component instance, while
minimizing the potential for any software coding errors to interfere with hardware validation.

22 Staging the HAL Device Driver Development
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about HAL device driver access macros, refer to the "Accessing Hardware"
section of the "Developing Device Drivers for the Hardware Abstraction Layer" chapter in the Nios II
Software Developer's Handbook.

2. After developing some direct peripheral manipulation code for your custom component, modeled
after bit_bang_uart.c, write custom device access macros.

3. Using the custom device access macros from the previous step, develop and test polled routines for the
init(), read(), and write() functions.

4. Write the ISRs for interrupt driven mode. An ISR is an interrupt-driven software routine, responding
to a hardware interrupt that the peripheral generates when it requires servicing. An interrupt-driven
device driver is much more efficient than a polled device driver, which wastes processor clock cycles by
repeatedly querying the peripheral to determine if there is work to be performed. An ISR allows the
Nios II processor to do other work while the peripheral is idle, or while it is operating autonomously
and does not require servicing by the Nios II processor. Call alt_ic_isr_install() from main() to
install the ISRs.

5. After you have tested the ISR and polled routines from main(), create and test the INIT and INSTANCE
macros. alt_sys_init.c invokes these initialization macros to initialize both the software device driver
and the hardware driver. The INIT macro needs to initialize an alt_dev structure for the software
device driver with the tested functions for reading and writing to the UART hardware device. The
INSTANCE macro declares a structure for each component instance to hold component instance-
specific information, such as the baud rate and the transmit and receive memory buffers. At this point,
you move the alt_ic_isr_install() calls from function main() to the device’s initialization code, as
described in the next section.

For more information about the alt_dev structure, refer to "Character-Mode Device Drivers" in the
"Developing Device Drivers for the Hardware Abstraction Layer" chapter of the Nios II Software
Developer's Handbook.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer

Understanding the Hardware-Specific INSTANCE and INIT Macros
The INSTANCE macro creates the alt_dev structure, which represents the component instance. This macro
creates unique component instance-specific data structures.

The INIT macro must perform the following tasks:

• Create mutual exclusion resources
• Install the component's ISR with alt_ic_isr_register()

The my_uart_driver example driver supports both the enhanced and the legacy HAL interrupt APIs.
Supporting both APIs ensures that the driver can be used in combination with legacy drivers
supporting only the legacy API. For information about supporting both APIs, refer to "Interrupt
Service Routines" in the "Exception Handling" chapter in the Nios II Software Developer's Handbook.

• Register the alt_dev structure with alt_dev_reg()
• Enable interrupts

Related Information
Exception Handling

AN-459
2015.06.12 Understanding the Hardware-Specific INSTANCE and INIT Macros 23

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52005.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integrating a New HAL Device Driver in the BSP
When you integrate a HAL device driver into a BSP, the following services are enabled:

• Automatic initialization with the alt_sys_init() function for the HAL device drivers.

alt_sys_init() is an automatically generated function. alt_sys_init() calls the INIT and
INSTANCE macros for each component instance found in the hardware design that has a specific source
code directory structure and set of file names. The directory structure for hardware components
provided by Altera conforms to:

<Altera installation>/ip/altera/sopc_builder_ip/<component_folder>

The easiest option for a directory structure for your custom components conforms to:

<my_design>/ip/<component_folder>

Place the device driver source code files in a folder structure under <component_folder>. The file
names conform to the following:

• /inc/<component>_regs.h

• /HAL/inc/<component>.h

• /HAL/src/<component>.c

This document uses the variable <Altera installation> to represent the location where the Altera
Complete Design Suite is installed. On a Windows system, by default, that location is c:/altera/
<version number>.

• HAL device-class services can access any specific HAL device in that class. For example,
Altera_Avalon_UART is a character-mode device, and so has access to higher level services such as
buffer management. HAL software device drivers become available to the UNIX-style POSIX API for
device functions such as open() and read().

For more information about adding device drivers using the Nios II SBT, refer to the "Integrating a Device
Driver in the HAL" section of the "Developing Device Drivers for the Hardware Abstraction Layer"
chapter of the Nios II Software Developer's Handbook.

For more information about how to integrate your own VHDL or Verilog HDL source code as a new
HAL-compatible Qsys component, and for details about the Component Editor tool, refer to the
"Creating Qsys Components" chapter of Volume 1: Design and Synthesis in the Quartus II Handbook.

Related Information

• Developing Device Drivers for the Hardware Abstraction Layer
• Creating Qsys Components

Understanding HAL Mutual Exclusion Resources
Software device drivers can use mutual exclusion resources to control access to any data structure or
peripheral register. Event flags and semaphores provide synchronization and mutual exclusion services.
These resources allow only one task to access a shared piece of data at a time in a multi-threaded environ‐
ment.

If the MicroC/OS-II operating system is present, its resources are used. Otherwise, the HAL provides its
own set of event flags and semaphores. The HAL event flags and semaphores support device driver source
code portability. The event flags and semaphores do nothing in this example.

24 Integrating a New HAL Device Driver in the BSP
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52005.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qsys_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The my_uart_driver device driver creates two semaphores and one event flag. The two semaphores are
called read_lock and write_lock. my_uart_driver uses them to control access to the transmit and receive
circular buffers. The event flag, called events, indicates to the software device driver when data is ready to
be transmitted or received.

Overview of Debugging Tools for HAL Device Drivers
The Nios II EDS and Quartus II software tools provide a variety of mechanisms for debugging device
drivers:

• You can monitor individual component instance signals for activity with the SignalTap™ II logic
analyzer. For example, you can hook up the SignalTap II logic analyzer to the UART hardware
transmit line to watch for any activity while you write characters to the Altera_Avalon_UART
component instance through the my_uart_driver device driver.

For information about using SignalTap II with Nios II systems, refer to AN446: Debugging Nios II Systems
with the SignalTap II Embedded Logic Analyzer.

• You can step into the fprintf() function, stepping through the various layers of abstraction until you
reach the HAL’s invocation of my_uart_write() function in the my_uart_driver device driver.

• You can set breakpoints in the driver’s ISRs, or set watchpoints on UART memory-mapped registers
to pause the processor when a character is received.

Note: Use caution when setting a breakpoint in an ISR. When you resume, there might be problems
with other devices, if they generated interrupts that were not handled. However, sometimes the
best way to debug a specific device driver is to set a breakpoint in it. When this technique is
required, you can reset or download the software containing the device driver again when you
are done with a particular debugging session.

These mechanisms can help you diagnose an incorrectly configured system. For example, if the interrupt
controller receives a spurious interrupt signal, the interrupt might not be properly handled. When
interrupts are enabled after low-level system initialization, there is no way to clear the interrupt source. As
a result, the application does not work correctly. The Nios II SBT for Eclipse debugger might even stop
communicating with the processor.

Related Information
AN446: Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Debugging the HAL UART Device Driver
For the next set of debugging examples, you must create a new application. For these examples, create the
hello_world_my_uart application and import it to the Nios II SBT for Eclipse. Next, regenerate the files
which make up the hal_my_uart BSP. This time, instead of commenting out the invocation of the macros
ALTERA_AVALON_UART_INSTANCE() and ALTERA_AVALON_UART_INIT(), let the alt_sys_init() function
install the Altera Avalon UART HAL device driver, after which you can inspect its operation.

The following sections show examples of placing breakpoints and watchpoints in HAL device driver
source code to analyze component instance behavior.

To create and import the hello_world_my_uart project, perform the following steps:

1. Delete the generated file public.mk from the hal_my_uart BSP. Enter the following command in the
Nios II Command Shell:

rm <my_design>/software_examples/bsp/hal_my_uart/public.mk

AN-459
2015.06.12 Overview of Debugging Tools for HAL Device Drivers 25

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an446.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Deleting these files causes the next build to regenerate the hal_my_uart BSP files, including
alt_sys_init.c.

2. Create the hello_world_my_uart application by invoking its create-this-app script. Enter the
following commands:

cd <my_design>/software_examples/app/hello_world_my_uart r ./create-this-app

This action accomplishes several tasks:

• Invokes the create-this-bsp script for the hal_my_uart BSP.
• In the BSP, deletes and rebuilds generated files and object files from the previous build.
• Builds the libhal_bsp.a BSP library in the

<my_design>/software_examples/bsp/hal_my_uart directory.
• Builds the hello_world_my_uart.elf file in the

<my_design>/software_examples/app/hello_world_my_uart directory.
• Generates a new public.mk file.
• Sets the software device descriptors stdout, stderr, and stdin to uart1. The <my_design>/

software_examples/bsp/hal_my_uart/create-this-bsp script sets up these software device descrip‐
tors by calling nios2-bsp.

• Creates the software device driver, my_uart_driver, in the <my_design>/ip/my_uart directory,
and associates it with the Altera_Avalon_UART device. The <my_design>/ip/my_uart/
my_uart_sw.tcl script creates the driver and associates it with its device.

• Sets the software device driver called my_uart_driver to the component instance named uart1.
The <my_design>/software_examples/bsp/hal_my_uart/ hal_my_uart.tcl script, passed to nios2-
bsp, sets the driver to uart1.

• Regenerates alt_sys_init.c by invoking of ALTERA_AVALON_UART_INIT().

Note: You can invoke nios2-bsp with the --debug parameter, which displays verbose information
about the construction steps in this section. The --debug parameter can be very useful for
finding errors in the construction of the relevant Tcl scripts and command shell scripts.

3. Import the hello_world_my_uart application to the Nios II SBT for Eclipse as described in the section
Importing Projects in Steps 2 through 8, substituting the hello_world_my_uart application for the
bit_bang_uart application. It is not necessary to re-import the BSP.

Related Information
Importing Projects on page 7

Setting Breakpoints in the my_uart_driver Device Driver
This section demonstrates the use of breakpoints to examine HAL device driver activity. Perform the
following steps:

1. After importing the hello_world_my_uart project, open the my_uart_init.c device driver source file,
located in the hal_my_uart project, at the following directory:

<my_design>/software_examples/bsp/hal_my_uart/drivers/src/my_uart_init.c
2. Place a breakpoint at the top of the function named my_uart_irq(), as shown in the figure below.
3. Restart Tera Term if it is not already running.
4. Create a debug configuration for hello_world_my_uart by following the steps 3 through 8 in

Debugging the bit_bang_uart Project and substituting the hello_world_my_uart application for the
bit_bang_uart application.

5. Start debugging the hello_world_my_uart application. The processor pauses at the top of function
main().

26 Setting Breakpoints in the my_uart_driver Device Driver
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Click the Resume button. The Nios II processor pauses at the my_uart_irq() invocation.
Figure 20: Setting a Breakpoint on my_uart_irq()

7. Step up to and over the following assignment of the status register:

status = IORD_MY_UART_STATUS(base);

8. In the Variables view, set the format of the status variable to hex. The status register now holds the
value 0x60. This value indicates bits 5 and 6 are set. According to the my_uart_driver register
description in drivers/inc/my_uart_regs.h, these two bits indicate transmit ready and transmit. The
UART driver is in an interrupt context, ready to transmit the first character of the string "Hello from
Nios II!".

9. Continue stepping through the procedure. The my_uart_irq() function invokes my_uart_txirq() in
response to a transmit interrupt.

Press Resume after each character is transmitted. Stop after the entire string “Hello from Nios II!”
is transmitted.

10.Remove the breakpoint.

After you pause the debugger in an ISR, the rest of the system is in an unknown state, because it could not
respond to other interrupt requests while paused in the driver. Therefore, you need to start a new
debugging session to perform further debugging.

Related Information
Debugging the bit_bang_uart Project on page 9

AN-459
2015.06.12 Setting Breakpoints in the my_uart_driver Device Driver 27

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Watchpoints in the HAL UART Device Driver
In this section, you intercept the Nios II processor by placing a watchpoint on a UART peripheral register.
A watchpoint is a special breakpoint that pauses the execution of an application whenever the value of a
given expression changes. To watch for any writes to the transmit register on the UART, you can set up a
write-access watchpoint on the register.

To set a watchpoint, perform the following steps:

1. Start the debugging session for the hello_world_my_uart project.
2. Open the Breakpoints view. If the Breakpoints view is not visible, open it through the Window menu,

by pointing to Show View and clicking Breakpoints.
3. Open the menu by clicking the drop-down arrow in the upper right corner of the view, and click Add

Watchpoint (C/C++).
4. In the Add Watchpoint dialog box, type a value in the Expression to watch field that equals the uart1

base value plus an offset of one long word. This value accesses the transmit register. In the case of the
design example accompanying this application note, this value is 0x84.

5. In the Access section, turn on Write and turn off Read.
6. Click OK. The Add Watchpoint dialog box closes.
7. Click the Resume button.

The Nios II processor executes until it writes the first character, H. The processor writes this character
when the my_uart_txirq() function invokes the macro IOWR_MY_UART_TXDATA(), as shown in the
figure below.

View the transmit register value in the Eclipse Memory view. Notice that the value changes when the
debugging stops at the watchpoint.

Look at the call stack in the upper left corner of the Nios II Debug perspective. The call stack records
each call leading up to this point, including each function invoked to process the transmit interrupt.

The alt_shadow_non_preemptive_interrupt() function calls my_uart_irq().

28 Setting Watchpoints in the HAL UART Device Driver
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21: Setting Watchpoints in the UART's Transmit Register

Reducing Driver Code and Memory Footprint
The Nios II SBT provides BSP settings to configure the HAL. You manipulate these settings through the
BSP Editor, or with the --set parameter to nios2-bsp.

The Nios II SBT settings are described in "Settings" in the "Nios II Software Build Tools Reference"
chapter in the Nios II Software Developer's Handbook.

The Reduced device drivers and Lightweight device driver API options are of particular interest,
because they reduce the code and data footprint at the expense of device driver functionality. Addition‐
ally, they set #define parameters that the my_uart_driver device driver needs to examine and handle.
The setting values are documented in the summary.html file generated by nios2-bsp, in <my_design>/
software_examples/bsp/hal_my_uart.

Related Information
Nios II Software Build Tools Reference

AN-459
2015.06.12 Reducing Driver Code and Memory Footprint 29

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Reduced Device Drivers API Option

The Reduced device drivers option generates a #define statement for ALT_USE_SMALL_DRIVERS. To turn
on this option, set hal.enable_reduced_device_drivers to true. Setting this option has the following
effects on correctly-written UART device drivers:

• Sets #define ALT_USE_SMALL_DRIVERS
• Activates polled mode only for the UART device
• Disables floating-point support in printf() and sprintf()
• Configures drivers to ignore flow control.

The figure below shows excerpts from the summary.html file generated by the SBT for a BSP with
reduced device drivers enabled.

Figure 22: hal.enable_reduced_device_drivers in summary.html

Note: For more information about the Reduced device drivers option, refer to "Reducing Code Footprint"
in the "Developing Programs Using the Hardware Abstraction Layer" chapter and to "Reducing
Code Footprint" in the "Developing Device Drivers for the Hardware Abstraction Layer" chapter of
the Nios II Software Developer's Handbook.

Related Information

• Developing Programs Using the Hardware Abstraction Layer
• Developing Device Drivers for the Hardware Abstraction Layer

30 Using the Reduced Device Drivers API Option
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52004.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Lightweight Device Drivers API Option

The Lightweight device driver API option generates a #define statement for ALT_USE_DIRECT_DRIVERS.
To turn on this option, set hal.enable_lightweight_device_driver_api to true. Setting this option has the
following effects on correctly-written UART device drivers:

• Sets #define ALT_USE_DIRECT_DRIVERS.
• Eliminates the option of using a file system. File descriptors cannot be created.
• Disables stdio device descriptor redirection. alt_main() cannot call alt_io_redirect().
• Disables the open() and close() functions. Attempting to call these functions generates a link time

error.
• Causes direct calls to your UART device driver using macros, bypassing the device manipulation

function invocations normally accessed through the file descriptor structure. The macros are defined
in alt_driver.h, which is in the BSP folder, in HAL/inc/sys.

For example, a call to alt_putstr() is normally treated as a call to the run-time library function fputs().
With lightweight device drivers enabled, alt_putstr() is translated to ALT_DRIVER_WRITE() (defined in
alt_driver.h) and state-obtaining macros. The ALT_DRIVER_WRITE() macro in turn calls the
ALT_DRIVER_FUNC_NAME() macro (also defined in alt_driver.h), and eventually
ALTERA_AVALON_UART_WRITE(), which is defined in the altera_avalon_uart_write.c driver file for the
UART, where the UART is defined for stdout. Calling ALT_DRIVER_FUNC_NAME(uart1, write) returns
ALTERA_AVALON_UART_WRITE.

ALT_USE_DIRECT_DRIVERS is dual-purposed in the my_uart_driver device driver. It provides a
convenient way to map the names of the ALTERA_AVALON_UART_INIT() and
ALTERA_AVALON_UART_INSTANCE() macros, which are tied to the component name, to names that are
specific to the my_uart_driver device driver. This setting of ALT_USE_DIRECT_DRIVERS already maps
ALTERA_AVALON_UART_INIT() and ALTERA_AVALON_UART_INSTANCE() to macros that change based on
the setting of ALT_USE_DIRECT_DRIVERS in altera_avalon_uart.h. At the same time, the
ALTERA_AVALON_UART_INIT() and ALTERA_AVALON_UART_INSTANCE() macros have the ALTERA_AVALON
portion of their names change to MY_UART. The resulting four macro name mappings are
MY_UART_DEV_INIT(), MY_UART_STATE_INIT(), MY_UART_DEV_INSTANCE(), and
MY_UART_STATE_INSTANCE().

The figure below shows excerpts from the summary.html file generated by the SBT for a BSP with
lightweight device drivers enabled.

AN-459
2015.06.12 Using the Lightweight Device Drivers API Option 31

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23: hal.enable_lightweight_device_driver_api in summary.html

Note: For more information about the Lightweight device driver API option, refer to "Reducing Code
Footprint" in the "Developing Programs Using the Hardware Abstraction Layer" chapter and to
"Reducing Code Footprint" in the "Developing Device Drivers for the Hardware Abstraction Layer"
chapter of the Nios II Software Developer's Handbook.

Related Information

• Developing Programs Using the Hardware Abstraction Layer
• Developing Device Drivers for the Hardware Abstraction Layer

Interrupt Latency and Determinism
This section discusses the crucial topics of interrupt latency and determinism. For the purposes of this
discussion, you need to be familiar with the following concepts:

• Interrupt latency—The difference between the time that a component instance asserts an interrupt and
the execution of the first instruction at the interrupt vector address. This instruction is typically part of
the interrupt funnel, rather than the interrupt handler itself.

• Interrupt response time—The time elapsed between the event that causes the interrupt and the
execution of the handler.

• Determinism—An attribute of a piece of source code that is guaranteed to execute within a fixed
amount of time. Overall interrupt latency impacts the deterministic behavior for all source code in the
system for which interrupts are not disabled.

For more information, refer to "Nios II Exception Handling Overview" section in the "Exception
Handling" chapter of the Nios II Software Developer's Handbook.

32 Interrupt Latency and Determinism
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52004.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To minimize interrupt latency, thus directly improving system determinism, follow these guidelines:

• In the software ISR, perform the minimum processing necessary to clear the interrupt.
• Complete noncritical-section interrupt processing outside of the interrupt context. If your software is

based on an operating system, a high priority task can be pending on an event flag. The ISR posts to
the event flag, notifying the task to complete interrupt processing.

• Use an External Interrupt Controller (EIC), such as the VIC used in the hardware design for this
application note.

If it is not possible to use an EIC, you can improve the performance of the internal interrupt controller
(IIC) by using the interrupt vector custom instruction.

The interrupt vector custom instruction is not compatible with the EIC interface. The performance of the
IIC with the interrupt vector custom instruction is generally inferior to the performance of the VIC.

For information about using the EIC and shadow register sets, or the interrupt vector custom instruction,
refer to "Improving ISR Performance" in the "Exception Handling" chapter in the Nios II Software
Developer's Handbook and "Exception and Interrupt Controllers" section in the "Processor Architecture"
chapter in the Nios II Processor Reference Handbook. For information about tightly coupled memory, refer
to the Using Tightly Coupled Memory with the Nios II Processor Tutorial.
For details of the interrupt vector custom instruction implementation, refer to the Exception and Interrupt
Controllers section in the Processor Architecture chapter of the Nios II Processor Reference Handbook.

For more information about tightly-coupled memories, refer to the Tightly-Coupled Memory section in
the Processor Architecture chapter of the Nios II Processor Reference Handbook.

Restrict the use of synchronization resources to post-function calls. Do not call the following types of
functions from within an ISR:

• Functions and macros, such as ALT_SEM_PEND(), that explicitly wait for a resource
• Library functions, such as printf(), that might wait for a resource
• Other functions that wait for resources

Calling these types of functions from an ISR can have serious consequences, from the destruction of
overall system latency to complete system deadlock.

Avoid using alt_irq_interruptible(), which can enable ISR nesting, but is likely to worsen interrupt
latency (unless the ISR is abnormally long) because of the interrupt context switch overhead. If the ISR is
lengthy, instead of making it interruptible, consider moving much of the less time-critical processing of
the interrupt outside of the ISR to a task. Write the ISR to do only as much as is required to clear the
interrupt and capture state so that the hardware can proceed, and then signal a task to complete
processing of the interrupt request.

Related Information

• Exception Handling
• Processor Architecture
• Using Tightly Coupled Memory with the Nios II Processor Tutorial

Debugging with the Altera Logging Functions
The Altera logging functions are a very useful mechanism for debugging device drivers. Altera logging
uses macros to bypass the HAL driver and access the peripheral directly. As a result, software can print
debugging messages during the boot process before the devices are initialized.

You do not need to regenerate the .sopcinfo file in Qsys or recompile the .sof image in the Quartus II
software.

AN-459
2015.06.12 Debugging with the Altera Logging Functions 33

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52006.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii51002.pdf
https://www.altera.com/en_US/pdfs/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Another advantage of Altera logging is that you can disable it without modifying your source code. You
simply change a BSP setting and recompile, leaving zero residual impact in the compiled and linked
application .elf file. All the Altera logging mechanisms are macros, and so the compiler eliminates them
when they are not enabled. As a result, you can leave these calls to obtain debugging information in the
source code for your released final product, with no loss of speed or code memory space. Compiling with
Altera logging disabled creates a .elf file identical to a .elf compiled from source code without the Altera
logging macros.

When Altera logging is enabled, the behavior of the application might be less deterministic, due to the
collection and output of Altera logging messages.

Altera Logging Usage

You enable Altera logging with the hal.log_port BSP setting by setting the logging level with
ALT_LOG_FLAGS. This setting causes the SBT to define ALT_LOG_ENABLE in public.mk.

You can add Altera logging diagnostic messages to your code by invoking ALT_LOG_PRINTF(), a macro
that handles most printf() formatting options.

Writes to the Altera logging device are blocking. Therefore, when hal.log_port is set to a component
instance of type altera_avalon_jtag_uart, you must run an application to accept the Altera logging output
in order for the Nios II application to complete initialization. Otherwise, the application pends on an
ALT_LOG_PRINTF() statement until the Altera logging device's output buffer can be drained.

You can handle the JTAG UART logging output in either of the following ways:

• Run your application in the Nios II SBT for Eclipse. JTAG UART logging output appears in the Nios II
Console view.

• Run your application from the Nios II Command Shell, with the nios2-download command. From
another Nios II Command Shell, run nios2-terminal to accept the JTAG UART logging output.

You can disable the Altera logging feature by setting the hal.log_port setting in the BSP to none. This is
the default setting. In the example BSP, hal_my_uart, the create-this-bsp script initially sets
hal.log_port to jtag_uart. You can enable and disable it in the BSP Editor. After regenerating a BSP,
you can check the value of hal.log_port in summary.html, located in the bsp/hal_my_uart folder.

Disabling Altera logging has the effect of leaving ALT_LOG_ENABLE undefined in bsp/hal_my_uart/
public.mk. When this feature is disabled, the application does not pend on ALT_LOG_PRINTF()
statements, even when no terminal capable of receiving Altera logging output is connected.

You can leave your ALT_LOG_PRINTF() debugging statements in the final source code version intended
for production release, provided you set hal.log_port to none. With this setting, the definition of
ALT_LOG_PRINTF() is empty, and so the compiler effectively removes these macro invocations. They have
no impact on code footprint or performance unless you re-enable Altera logging.

For complete information about using the Altera logging functions, refer to "Using Character-Mode
Devices" section in the "Developing Programs Using the Hardware Abstraction Layer" chapter in the Nios
II Software Developer's Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer

Altera Logging Example

The example applications, bit_bang_uart and hello_world_my_uart, and the example BSP,
hal_my_uart, use the Altera logging functions.

34 Altera Logging Usage
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52004.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To see an example of Altera logging, run or debug hello_world_my_uart. You can see the logging
messages in the Nios II Console view, as shown in the figure below.

You enable Altera logging by setting the hal.alt_log_flags BSP setting to 3. Refer to the create-this-
bsp script in the bsp/hal_my_uart directory for an example.

Figure 24: Altera Logging Output for hello_world_my_uart.c with ALT_LOG_FLAGS=3

Conclusion
By dissecting the Altera_Avalon_UART component and the my_uart_driver HAL software device driver,
and examining the UART status register bit manipulation in detail, you gain insight into the HAL device
driver development process. You now have the tools necessary to develop and debug at this low level of
the system, close to the hardware. Your set of tools includes analysis and debugging techniques for
tackling even the most elusive and deterministic embedded software specification deviations.

With your new knowledge about the HAL's facilities, and with the array of techniques for debugging and
development described in this document, you are now better prepared to write HAL software device
drivers for your own embedded system's components. You can also apply these tools at higher levels in
the software hierarchy.

AN-459
2015.06.12 Conclusion 35

Guidelines for Developing a Nios II HAL Device Driver Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
Table 1: Document Revision History

Date Version Changes

May 2015 2015.05.07 • NEEK changed to Nios II Cyclone V E FPGA Development Kit
• nios2-terminal changed to Tera Term
• Updated Software Requirements for the Driver Example section
• Updated Debugging the bit_bang_uart Project section
• Updated Asterisk Transmitted from Memory-Mapped Register

image
• Updated Characters Transmitted by Manipulating UART Register

image
• Updated Stepping Over the BitBangUartTransmit() Function

image
• Updated Transmitting BIT BANGBASH by Stepping Through the

Function image
• Updated Transmitter Overrun image
• Updated Waiting to Receive Character on UART image

July 2011 4.0 Updated instructions and design example for Qsys
January 2010 3.0 • Update for the Nios II Software Build Tools for Eclipse

• Update the examples to run on the NEEK
• Update the design example to use the EIC and VIC
• Update the software examples to use the HAL enhanced interrupt

API

November 2008 2.0 • Nios II version 8.0 upgrade, adaptation of the Altera_Avalon_
UART device driver to become the my_uart_driver device driver

• Nios II Software Build Tools conversion for my_uart IP, hal_my_
uart BSP, and bit_bang_uart and hello_world_my_uart applica‐
tions

• Changed size of document to 8.5 x 11 inches

August 2007 1.0 Initial release.

36 Document Revision History
AN-459

2015.06.12

Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Guidelines%20for%20Developing%20a%20Nios%20II%20HAL%20Device%20Driver%20(AN-459%202015.06.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Guidelines for Developing a Nios II HAL Device Driver
	Prerequisites for HAL Device Driver Development
	Using the HAL Architecture and Services
	Software Requirements for the Driver Example
	HAL Device Drivers and Components

	Developing the HAL UART Device Driver
	Preparing the bit_bang_uart Application and hal_my_uart BSP
	Preparing the my_uart_driver Device Driver
	Configuring the Altera_Avalon_UART Component
	Importing Projects
	Verifying Software Functionality
	Preview: Customizing the Design
	Making Software Modifications
	Making Hardware Modifications

	Debugging the bit_bang_uart Project
	The BitBangUartTransmit() Function
	The BitBangUartReceive() Function
	Creating Device Hardware Access Macros
	Staging the HAL Device Driver Development
	Understanding the Hardware-Specific INSTANCE and INIT Macros
	Integrating a New HAL Device Driver in the BSP
	Understanding HAL Mutual Exclusion Resources
	Overview of Debugging Tools for HAL Device Drivers
	Debugging the HAL UART Device Driver
	Setting Breakpoints in the my_uart_driver Device Driver
	Setting Watchpoints in the HAL UART Device Driver
	Reducing Driver Code and Memory Footprint
	Using the Reduced Device Drivers API Option
	Using the Lightweight Device Drivers API Option

	Interrupt Latency and Determinism
	Debugging with the Altera Logging Functions
	Altera Logging Usage
	Altera Logging Example

	Conclusion
	Document Revision History

