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1 Embedded Peripherals IP User Guide Introduction
This user guide describes the IP cores provided by Intel® Quartus® Prime design
software.

The IP cores are optimized for Intel FPGA devices and can be easily implemented to
reduce design and test time. You can use the IP parameter editor from Platform
Designer to add the IP cores to your system, configure the cores, and specify their
connectivity.

Before using Platform Designer, review the Intel Quartus Prime software Release
Notes for known issues and limitations. To submit general feedback or technical
support, click Feedback on the Intel Quartus Prime software Help menu and also on
all Intel FPGA technical documentation.

Related Links

• Quartus Prime Handbook Volume 1: Design and Synthesis

• Quartus Prime Handbook Volume 2: Design Implementation and Optimization

• Quartus Prime Handbook Volume 3: Verification

• Quartus Prime Software and Device Support Release Notes

1.1 Tool Support

Platform Designer is a system-level integration tool which is included as part of the
Intel Quartus Prime software. Platform Designer saves significant time and effort in
the FPGA design process by automatically generating interconnect logic to connect
intellectual property (IP) functions and subsystems. You can implement a design using
the IP cores from the Platform Designer component library.

All the IP cores described in this user guide are supported by both Intel Quartus Prime
Pro Edition and Intel Quartus Prime Standard Edition except for the following cores
which are only supported by Intel Quartus Prime Standard Edition.

• SDRAM Controller Core

• Tri-State SDRAM Core

• Compact Flash Core

• EPCS Serial Flash Controller Core

• 16207 LCD Controller Core

• Scatter-Gather DMA Controller Core

• Video Sync Generator and Pixel Converter Cores

• Avalon®-ST Test Pattern Generator and Checker Cores

• Avalon-MM DDR Memory Half Rate Bridge Core
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Note: Intel Quartus Prime Pro Edition only supports Intel Stratix® 10, Intel Arria® 10, and
Intel Cyclone® 10 GX device families.

1.2 Device Support

below.

The following IP cores support Intel FPGA device families that are only supported in
Intel Quartus Prime Standard Edition:

• EPCS Serial Flash Controller Core

• SDRAM Controller Core

• Tri-State SDRAM Core

• Compact Flash Core

• 16207 LCD Controller Core

• Scatter-Gather DMA Controller Core

• Video Sync Generator and Pixel Converter Cores

• Avalon-ST Test Pattern Generator and Checker Cores

• Avalon-MM DDR Memory Half Rate Bridge Core

Other IP cores described in this user guide support all Intel FPGA device families.

Different device families support different I/O standards, which may affect the ability
of the core to interface to certain components. For details about supported I/O types,
refer to the device handbook for the target device family.

1.3 Document Revision History

Table 1. Embedded Peripheral IP User Guide Introduction Revision History

Date Version Changes

November 2017 2017.11.06 • Clarified the tool and device support information.
• Removed section Obsolescence.

May 2016 2016.05.03 Maintenance release.

June 2015 2015.06.12 Maintenance release.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer.

December 2013 v13.1.0 Removed listing of the DMA Controller core in the Platform Designer
unsupported list. The DMA controller core is now supported in Platform
Designer.
Removed listing of the MDIO core in Device Support Table. The MDIO core
support all device families that the 10-Gbps Ethernet MAC IP Core
supports.

December 2010 v10.1.0 Initial release.
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2 Avalon-ST Multi-Channel Shared Memory FIFO Core

2.1 Core Overview

The Avalon Streaming (Avalon-ST) Multi-Channel Shared Memory FIFO core is a FIFO
buffer with Avalon-ST data interfaces. The core, which supports up to 16 channels, is
a contiguous memory space with dedicated segments of memory allocated for each
channel. Data is delivered to the output interface in the same order it was received on
the input interface for a given channel.

The example below shows an example of how the core is used in a system. In this
example, the core is used to buffer data going into and coming from a four-port Triple
Speed Ethernet IP Core. A processor, if used, can request data for a particular channel
to be delivered to the Triple Speed Ethernet IP Core.

Figure 1. Multi-Channel Shared Memory FIFO in a System—An Example
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2.2 Performance and Resource Utilization

This section lists the resource utilization and performance data for various Intel FPGA
device families. The estimates are obtained by compiling the core using the Intel
Quartus Prime software.

The table below shows the resource utilization and performance data for a Stratix II
GX device (EP2SGX130GF1508I4).
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Table 2. Memory Utilization and Performance Data for Stratix II GX Devices

Channels ALUTs Logic
Registers

Memory Blocks fMAX
(MHz)

M512 M4K M-RAM

4 559 382 0 0 1 > 125

12 1617 1028 0 0 6 > 125

The table below shows the resource utilization and performance data for a Stratix III
device (EP3SL340F1760C3). The performance of the IP Core in Stratix IV devices is
similar to Stratix III devices.

Table 3. Memory Utilization and Performance Data for Stratix III Devices

Channels ALUTs Logic
Registers

Memory Blocks fMAX
(MHz)

M9K M144K MLAB

4 557 345 37 0 0 > 125

12 1741 1028 0 24 0 > 125

The table below shows the resource utilization and performance data for a Cyclone III
device (EP3C120F780I7).

Table 4. Memory Utilization and Performance Data for Cyclone III Devices

Channels Total Logic Elements Total Registers Memory
M9K

fMAX
(MHz)

4 711 346 37 > 125

12 2284 1029 412 > 125

2.3 Functional Description

Figure 2. Avalon-ST Multi-Channel Shared Memory FIFO Core
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2.3.1 Interfaces

This section describes the core's interfaces.

Avalon-ST Interfaces

The core includes Avalon-ST interfaces for transferring data and almost-full status.

Table 5. Properties of Avalon-ST Interfaces

Feature Property

Data Interfaces Status Interfaces

Backpressure Ready latency = 0. Not supported.

Data Width Configurable. Data width = 2 bits.
Symbols per beat = 1.

Channel Supported, up to 16 channels. Supported, up to 16 channels.

Error Configurable. Not used.

Packet Supported. Not supported.

Avalon-MM Interfaces

The core can have up to three Avalon-MM interfaces:

• Avalon-MM control interface—Allows master peripherals to set and access
almost-full and almost-empty thresholds. The same set of thresholds is used by all
channels. See Control Interface Register Map figure for the description of the
threshold registers.

• Avalon-MM fill-level interface—Allows master peripherals to retrieve the fill
level of the FIFO buffer for a given channel. The fill level represents the amount of
data in the FIFO buffer at any given time. The read latency on this interface is
one. See the Fill-level Interface Register Map table for the description of the
fill-level registers.

• Avalon-MM request interface—Allows master peripherals to request data for a
given channel. This interface is implemented only when the Use Request
parameter is turned on. The request_address signal contains the channel
number. Only one word of data is returned for each request.

For more information about Avalon interfaces, refer to the Avalon Interface
Specifications.

2.3.2 Operation

The Avalon-ST Multi-Channel Shared FIFO core allocates dedicated memory segments
within the core for each channel, and is implemented such that the memory segments
occupy a single memory block. The parameter FIFO depth determines the depth of
each memory segment.

The core receives data on its in interface (Avalon-ST sink) and stores the data in the
allocated memory segments. If a packet contains any error (in_error signal is
asserted), the core drops the packet.

2 Avalon-ST Multi-Channel Shared Memory FIFO Core
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When the core receives a request on its request interface (Avalon-MM slave), it
forwards the requested data to its out interface (Avalon-ST source) only when it has
received a full packet on its in interface. If the core has not received a full packet or
has no data for the requested channel, it deasserts the valid signal on its out
interface to indicate that data is not available for the channel. The output latency is
three and only one word of data can be requested at a time.

When the Avalon-MM request interface is not in use, the request_write signal is
kept asserted and the request_address signal is set to 0. Hence, if you configure
the core to support more than one channel, you must also ensure that the Use
request parameter is turned on. Otherwise, only channel 0 is accessible.

You can configure almost-full thresholds to manage FIFO overflow. The current
threshold status for each channel is available from the core's Avalon-ST status
interfaces in a round-robin fashion. For example, if the threshold status for channel 0
is available on the interface in clock cycle n, the threshold status for channel 1 is
available in clock cycle n+1 and so forth.

2.4 Parameters

Table 6. Configurable Parameters

Parameter Legal Values Description

Number of channels 1, 2, 4, 8, and 16 The total number of channels supported on the Avalon-ST data interfaces.

Symbols per beat 1–32 The number of symbols transferred in a beat on the Avalon-ST data
interfaces

Bits per symbol 1–32 The symbol width in bits on the Avalon-ST data interfaces.

Error width 0–32 The width of the error signal on the Avalon-ST data interfaces.

FIFO depth 2–232 The depth of each memory segment allocated for a channel. The value
must be a multiple of 2.

Use packets 0 or 1 Setting this parameter to 1 enables packet support on the Avalon-ST data
interfaces.

Use fill level 0 or 1 Setting this parameter to 1 enables the Avalon-MM status interface.

Number of almost-full
thresholds

0 to 2 The number of almost-full thresholds to enable. Setting this parameter to 1
enables Use almost-full threshold 1. Setting it to 2 enables both Use
almost-full threshold 1 and Use almost-full threshold 2.

Number of almost-empty
thresholds

0 to 2 The number of almost-empty thresholds to enable. Setting this parameter
to 1 enables Use almost-empty threshold 1. Setting it to 2 enables both
Use almost-empty threshold 1 and Use almost-empty threshold 2.

Section available threshold 0 to 2 Address Width Specify the amount of data to be delivered to the output interface. This
parameter applies only when packet support is disabled.

Packet buffer mode 0 or 1 Setting this parameter to 1 causes the core to deliver only full packets to
the output interface. This parameter applies only when Use packets is set
to 1.

Drop on error 0 or 1 Setting this parameter to 1 causes the core to drop packets at the Avalon-
ST data sink interface if the error signal on that interface is asserted.
Otherwise, the core accepts the packet and sends it out on the Avalon-ST
data source interface with the same error. This parameter applies only
when packet buffer mode is enabled.

Address width 1–32 The width of the FIFO address. This parameter is determined by the
parameter FIFO depth; FIFO depth = 2 Address Width.

continued...   
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Parameter Legal Values Description

Use request — Turn on this parameter to implement the Avalon-MM request interface. If
the core is configured to support more than one channel and the request
interface is disabled, only channel 0 is accessible.

Use almost-full threshold 1 — Turn on these parameters to implement the optional Avalon-ST almost-full
and almost-empty interfaces and their corresponding registers. See
Control Interface Register Map for the description of the threshold
registers.

Use almost-full threshold 2 —

Use almost-empty threshold 1 —

Use almost-empty threshold 2 —

Use almost-full threshold 1 0 or 1 This threshold indicates that the FIFO is almost full. It is enabled when the
parameter Number of almost-full threshold is set to 1 or 2.

Use almost-full threshold 2 0 or 1 This threshold is an initial indication that the FIFO is getting full. It is
enabled when the parameter Number of almost-full threshold is set to
2.

Use almost-empty threshold 1 0 or 1 This threshold indicates that the FIFO is almost empty. It is enabled when
the parameter Number of almost-empty threshold is set to 1 or 2.

Use almost-empty threshold 2 0 or 1 This threshold is an initial indication that the FIFO is getting empty. It is
enabled when the parameter Number of almost-empty threshold is set
to 2.

2.5 Software Programming Model

The following sections describe the software programming model for the Avalon-ST
Multi-Channel Shared FIFO core.

2.5.1 HAL System Library Support

The Intel-provided driver implements a HAL device driver that integrates into the HAL
system library for Nios II systems. HAL users should access the Avalon-ST Multi-
Channel Shared FIFO core via the familiar HAL API and the ANSI C standard library.

2.5.2 Register Map

You can configure the thresholds and retrieve the fill-level for each channel via the
Avalon-MM control and fill-level interfaces respectively. Subsequent sections describe
the registers accessible via each interface.

Control Register Interface

Table 7. Control Interface Register Map

Byte
Offset

Name Access Reset
Value

Description

0 ALMOST_FULL_THRESHOLD RW 0 Primary almost-full threshold. The bit
Almost_full_data[0] on the Avalon-ST
almost-full status interface is set to 1 when the
FIFO level is equal to or greater than this
threshold.

4 ALMOST_EMPTY_THRESHOLD RW 0 Primary almost-empty threshold. The bit
Almost_empty_data[0] on the Avalon-ST
almost-empty status interface is set to 1 when the
FIFO level is equal to or less than this threshold.

continued...   
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Byte
Offset

Name Access Reset
Value

Description

8 ALMOST_FULL2_THRESHOLD RW 0 Secondary almost-full threshold. The bit
Almost_full_data[1] on the Avalon-ST
almost-full status interface is set to 1 when the
FIFO level is equal to or greater than this
threshold.

12 ALMOST_EMPTY2_THRESHOLD RW 0 Secondary almost-empty threshold. The bit
Almost_empty_data[1] on the Avalon-ST
almost-empty status interface is set to 1 when the
FIFO level is equal to or less than this threshold.

Base + 8 Almost_Empty_Threshold RW The value of the primary almost-empty threshold.
The bit Almost_empty_data[0] on the Avalon-
ST almost-empty status interface is set to 1 when
the FIFO level is greater than or equal to this
threshold.

Base
+ 12

Almost_Empty2_Threshold RW The value of the secondary almost-empty
threshold. The bit Almost_empty_data[1]
Avalon-ST almost-empty status interface is set to
1 when the FIFO level is greater than or equal to
this threshold.

Fill-Level Register Interface

The table below shows the register map for the fill-level interface.

Table 8. Fill-level Interface Register Map

Byte
Offset

Name Access Reset
Value

Description

0 fill_level_0 RO 0 Fill level for each channel. Each register is
defined for each channel. For example, if the
core is configured to support four channel, four
fill-level registers are defined.

4 fill_level_1 RO 0

8 fill_level_2 RO 0

(n*4) fill_level_n RO 0

2.6 Document Revision History

Table 9. Avalon-ST Multi-Channel Shared Memory FIFO Core Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 Added the description of almost-empty thresholds and fill-level registers.
Revised the Operation section.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.
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3 Avalon-ST Single-Clock and Dual-Clock FIFO Cores

3.1 Core Overview

The Avalon Streaming (Avalon-ST) Single-Clock and Avalon-ST Dual-Clock FIFO cores
are FIFO buffers which operate with a common clock and independent clocks for input
and output ports respectively. The FIFO cores are configurable, Platform Designer-
ready, and integrate easily into any Platform Designer-generated systems.

3.2 Functional Description

The following two figures show block diagrams of the Avalon-ST Single-Clock FIFO and
Avalon-ST Dual-Clock FIFO cores.

Figure 3. Avalon-ST Single Clock FIFO Core
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Figure 4. Avalon-ST Dual Clock FIFO Core
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3.2.1 Interfaces

This section describes the interfaces implemented in the FIFO cores.

Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and
source interfaces in the dual-clock FIFO core are driven by different clocks.

Table 10. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.

Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM
interface, and the dual-clock FIFO core to include an Avalon-MM interface in each clock
domain. The Avalon-MM interface provides access to 32-bit registers, which allows you
to retrieve the FIFO buffer fill level and configure the almost-empty and almost-full
thresholds. In the single-clock FIFO core, you can also configure the packet and error
handling modes.

Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from
which you can obtain the FIFO buffer almost-full and almost empty statuses.

Related Links

Avalon Interface Specifications
For more information about Avalon interfaces.

3.2.2 Operating Modes

The following lists the FIFO operating modes:
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• Default mode—The core accepts incoming data on the in interface (Avalon-ST
data sink) and forwards it to the out interface (Avalon-ST data source). The core
asserts the valid signal on the Avalon-ST source interface to indicate that data is
available at the interface.

• Store and forward mode—This mode only applies to the single-clock FIFO core.
The core asserts the valid signal on the out interface only when a full packet of
data is available at the interface.

In this mode, you can also enable the drop-on-error feature by setting the
drop_on_error register to 1. When this feature is enabled, the core drops all
packets received with the in_error signal asserted.

• Cut-through mode— This mode only applies to the single-clock FIFO core. The
core asserts the valid signal on the out interface to indicate that data is
available for consumption when the number of entries specified in the
cut_through_threshold register are available in the FIFO buffer.

To use the store and forward or cut-through mode, turn on the Use store and
forward parameter to include the csr interface (Avalon-MM slave). Set the
cut_through_threshold register to 0 to enable the store and forward mode;
set the register to any value greater than 0 to enable the cut-through mode. The
non-zero value specifies the minimum number of FIFO entries that must be
available before the data is ready for consumption. Setting the register to 1
provides you with the default mode.

3.2.3 Fill Level

You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and
status interface. Turn on the Use fill level parameter (Use sink fill level and Use
source fill level in the dual-clock FIFO core) and read the fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the
latency of the clock crossing logic, the fill levels reported in the input and output clock
domains may be different at any given instance. In both cases, the fill level is
pessimistic for the clock domain; the fill level is reported high in the input clock
domain and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is
accounted for when calculating the output fill level, but not when calculating the input
fill level. Hence, the best measure of the amount of data in the FIFO is given by the fill
level in the output clock domain, while the fill level in the input clock domain
represents the amount of space available in the FIFO (Available space = FIFO depth
– input fill level).

3.2.4 Thresholds

You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO
overflow and underflow. This feature is only available in the single-clock FIFO core.

To use the thresholds, turn on the Use fill level, Use almost-full status, and Use
almost-empty status parameters. You can access the almost_full_threshold
and almost_full_threshold registers via the csr interface and set the registers to
an optimal value for your application.
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You can obtain the almost-full and almost-empty statuses from almost_full and
almost_empty interfaces (Avalon-ST status source). The core asserts the
almost_full signal when the fill level is equal to or higher than the almost-full
threshold. Likewise, the core asserts the almost_empty signal when the fill level is
equal to or lower than the almost-empty threshold.

3.3 Parameters

Table 11. Configurable Parameters

Parameter Legal Values Description

Bits per symbol 1–32 These parameters determine the width of the FIFO.
FIFO width = Bits per symbol * Symbols per beat, where:
Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in a beat.

Symbols per beat 1–32

Error width 0–32 The width of the error signal.

FIFO depth 1–32 The FIFO depth. An output pipeline stage is added to the FIFO to increase
performance, which increases the FIFO depth by one.

Use packets — Turn on this parameter to enable packet support on the Avalon-ST data interfaces.

Channel width 1–32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only

Use fill level — Turn on this parameter to include the Avalon-MM control and status register
interface.

Avalon-ST Dual Clock FIFO Only

Use sink fill level — Turn on this parameter to include the Avalon-MM control and status register
interface in the input clock domain.

Use source fill level — Turn on this parameter to include the Avalon-MM control and status register
interface in the output clock domain.

Write pointer
synchronizer length

2–8 The length of the write pointer synchronizer chain. Setting this parameter to a
higher value leads to better metastability while increasing the latency of the core.

Read pointer
synchronizer length

2–8 The length of the read pointer synchronizer chain. Setting this parameter to a
higher value leads to better metastability.

Use Max Channel — Turn on this parameter to specify the maximum channel number.

Max Channel 1–255 Maximum channel number.

For more information on metastability in Intel FPGA devices, refer to AN 42:
Metastability in Intel FPGA devices.

For more information on metastability analysis and synchronization register chains,
refer to the Area and Timing Optimization chapter in volume 2 of the Intel Quartus
Prime Handbook.

3.4 Register Description

The csr interface in the Avalon-ST Single Clock FIFO core provides access to
registers. The table below describes the registers.
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Table 12. Register Description for Avalon-ST Single-Clock FIFO

32-Bit Word
Offset

Name Access Reset Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are
unused.

1 Reserved — — Reserved for future use.

2 almost_full_threshold RW FIFO depth–1 Set this register to a value that indicates
the FIFO buffer is getting full.

3 almost_empty_threshold RW 0 Set this register to a value that indicates
the FIFO buffer is getting empty.

4 cut_through_threshold RW 0 0—Enables store and forward mode.
>0—Enables cut-through mode and
specifies the minimum of entries in the
FIFO buffer before the valid signal on
the Avalon-ST source interface is
asserted. Once the FIFO core starts
sending the data to the downstream
component, it continues to do so until
the end of the packet.
This register applies only when the Use
store and forward parameter is turned
on.

5 drop_on_error RW 0 0—Disables drop-on error.
1—Enables drop-on error.
This register applies only when the Use
packet and Use store and forward
parameters are turned on.

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports
the FIFO fill level. The table below describes the fill level.

Table 13. Register Description for Avalon-ST Dual-Clock FIFO

32-Bit Word
Offset

Name Access Reset
Value

Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are unused.

1 threshold RW Almost-full threshold in the input port domain;
almost-empty threshold in the output port
domain.

3.5 Document Revision History

Table 14. Avalon-ST Single-Clock and Dual-Clock FIFO Core Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 Added description of the new features of the single-clock FIFO: store and
forward mode, cut-through mode, and drop on error.
Added parameters and registers.

November 2009 v9.1.0 No change from previous release.
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Date Version Changes

March 2009 v9.0.0 Added description of new parameters, Write pointer synchronizer
length and Read pointer synchronizer length.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.
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4 Avalon-ST Serial Peripheral Interface Core

4.1 Core Overview

The Avalon Streaming (Avalon-ST) Serial Peripheral Interface (SPI) core is an SPI
slave that allows data transfers between Platform Designer systems and off-chip SPI
devices via Avalon-ST interfaces. Data is serially transferred on the SPI, and sent to
and received from the Avalon-ST interface in bytes.

The SPI Slave to Avalon Master Bridge is an example of how this core is used.

For more information on the bridge, refer to SPI Slave/JTAG to Avalon Master Bridge
Cores.

4.2 Functional Description

Figure 5. System with an Avalon-ST SPI Core
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4.2.1 Interfaces

The serial peripheral interface is full-duplex and does not support backpressure. It
supports SPI clock phase bit, CPHA = 1, and SPI clock polarity bit, CPOL = 0.

Table 15. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Not supported.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Not supported.

UG-01085 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

4.2.2 Operation

The Avalon-ST SPI core waits for the nSS signal to be asserted low, signifying that the
SPI master is initiating a transaction. The core then starts shifting in bits from the
input signal mosi. The core packs the bits received on the SPI to bytes and checks for
the following special characters:

• 0x4a—Idle character. The core drops the idle character.

• 0x4d—Escape character. The core drops the escape character, and XORs the
following byte with 0x20.

For each valid byte of data received, the core asserts the valid signal on its
Avalon-ST source interface and presents the byte on the interface for a clock
cycle.

At the same time, the core shifts data out from the Avalon-ST sink to the output
signal miso beginning with from the most significant bit. If there is no data to
shift out, the core shifts out idle characters (0x4a). If the data is a special
character, the core inserts an escape character (0x4d) and XORs the data with
0x20.

The data shifts into and out of the core in the direction of MSB first.

Figure 6. SPI Transfer Protocol
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SPI Transfer Protocol Notes:

• TL = The worst recovery time of sclk with respect with nSS.

• TT = The worst hold time for MOSI and MISO data.

• TI = The minimum width of a reset pulse required by Intel FPGA families.

4.2.3 Timing

The core requires a lead time (TL) between asserting the nSS signal and the SPI clock,
and a lag time (TT) between the last edge of the SPI clock and deasserting the nSS
signal. The nSS signal must be deasserted for a minimum idling time (TI) of one SPI
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clock between byte transfers. A Timing Analyzer SDC file (.sdc) is provided to remove
false timing paths. The frequency of the SPI master’s clock must be equal to or lower
than the frequency of the core’s clock.

4.2.4 Limitations

Daisy-chain configuration, where the output line miso of an instance of the core is
connected to the input line mosi of another instance, is not supported.

4.3 Configuration

The parameter Number of synchronizer stages: Depth allows you to specify the
length of synchronization register chains. These register chains are used when a
metastable event is likely to occur and the length specified determines the meantime
before failure. The register chain length, however, affects the latency of the core.

For more information on metastability in Intel FPGA devices, refer to AN 42:
Metastability in Intel FPGA devices.

For more information on metastability analysis and synchronization register chains,
refer to the Area and Timing Optimization chapter in volume 2 of the Intel Quartus
Prime Handbook.

4.4 Document Revision History

Table 16. Avalon-ST Serial Peripheral Interface Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Added a description to specify the shift direction.

March 2009 v9.0.0 Added description of a new parameter, Number of synchronizer stages:
Depth.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.
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5 SPI Core

5.1 Core Overview

SPI is an industry-standard serial protocol commonly used in embedded systems to
connect microprocessors to a variety of off-chip sensor, conversion, memory, and
control devices. The SPI core with Avalon interface implements the SPI protocol and
provides an Avalon Memory-Mapped (Avalon-MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When configured as a
master, the core can control up to 32 independent SPI slaves. The width of the receive
and transmit registers are configurable between 1 and 32 bits. Longer transfer lengths
can be supported with software routines. The core provides an interrupt output that
can flag an interrupt whenever a transfer completes.

5.2 Functional Description

The SPI core communicates using two data lines, a control line, and a synchronization
clock:

• Master Out Slave In (mosi)—Output data from the master to the inputs of the
slaves

• Master In Slave Out (miso)—Output data from a slave to the input of the master

• Serial Clock (sclk)—Clock driven by the master to slaves, used to synchronize
the data bits

• Slave Select (ss_n)— Select signal (active low) driven by the master to individual
slaves, used to select the target slave

The SPI core has the following user-visible features:

• A memory-mapped register space comprised of five registers: rxdata, txdata,
status, control, and slaveselect

• Four SPI interface ports: sclk, ss_n, mosi, and miso

The registers provide an interface to the SPI core and are visible via the Avalon-
MM slave port. The sclk, ss_n, mosi, and miso ports provide the hardware
interface to other SPI devices. The behavior of sclk, ss_n, mosi, and miso
depends on whether the SPI core is configured as a master or slave.
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Figure 7. SPI Core Block Diagram (Master Mode)
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The SPI core logic is synchronous to the clock input provided by the Avalon-MM
interface. When configured as a master, the core divides the Avalon-MM clock to
generate the SCLK output. When configured as a slave, the core's receive logic is
synchronized to SCLK input.

For more details, refer to the "Interval Timer Core" chapter.

5.2.1 Example Configurations

The core block diagram and the SPI core configured as a slave diagram show two
possible configurations. In Figure 8 on page 36 the core provides a slave interface to
an off-chip SPI master.

Figure 8. SPI Core Configured as a Slave
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In the SPI core block diagram, the SPI core provides a master interface driving
multiple off-chip slave devices. Each slave device in Figure 8 on page 36 must tristate
its miso output whenever its select signal is not asserted.

The ss_n signal is active-low. However, any signal can be inverted inside the FPGA,
allowing the slave-select signals to be either active high or active low.
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5.2.2 Transmitter Logic

The core transmitter logic consists of a transmit holding register (txdata) and
transmit shift register, each n bits wide. The register width n is specified at system
generation time, and can be any integer value from 8 to 32. After a master peripheral
writes a value to the txdata register, the value is copied to the shift register and then
transmitted when the next operation starts.

The shift register and the txdata register provide double buffering during data
transmission. A new value can be written into the txdata register while the previous
data is being shifted out of the shift register. The transmitter logic automatically
transfers the txdata register to the shift register whenever a serial shift operation is
not currently in process.

In master mode, the transmit shift register directly feeds the mosi output. In slave
mode, the transmit shift register directly feeds the miso output. Data shifts out LSB
first or MSB first, depending on the configuration of the SPI core.

5.2.3 Receiver Logic

The core receive logic consists of a receive holding register (rxdata) and receive shift
register, each n bits wide. The register width n is specified at system generation time,
and can be any integer value from 8 to 32. A master peripheral reads received data
from the rxdata register after the shift register has captured a full n-bit value of
data.

The shift register and the rxdata register provide double buffering while receiving
data. The rxdata register can hold a previously received data value while subsequent
new data is shifting into the shift register. The receiver logic automatically transfers
the shift register content to the rxdata register when a serial shift operation
completes.

In master mode, the shift register is fed directly by the miso input. In slave mode,
the shift register is fed directly by the mosi input. The receiver logic expects input
data to arrive LSB first or MSB first, depending on the configuration of the SPI core.

5.2.4 Master and Slave Modes

At system generation time, the designer configures the SPI core in either master
mode or slave mode. The mode cannot be switched at runtime.

5.2.4.1 Master Mode Operation

In master mode, the SPI ports behave as shown in the table below.

Table 17. Master Mode Port Configurations

Name Direction Description

mosi output Data output to slave(s)

miso input Data input from slave(s)

sclk output Synchronization clock to all slaves

ss_nM output Slave select signal to slave M, where M is a number between 0 and 31.
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In master mode, an intelligent host (for example, a microprocessor) configures the
SPI core using the control and slaveselect registers, and then writes data to the
txdata buffer to initiate a transaction. A master peripheral can monitor the status of
the transaction by reading the status register. A master peripheral can enable
interrupts to notify the host whenever new data is received (for example, a transfer
has completed), or whenever the transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and receives data at
the same time. The master transmits a new data bit on the mosi output and the slave
drives a new data bit on the miso input for each active edge of sclk. The SPI core
divides the Avalon-MM system clock using a clock divider to generate the sclk signal.

When the SPI core is configured to interface with multiple slaves, the core has one
ss_n signal for each slave. During a transfer, the master asserts ss_n to each slave
specified in the slaveselect register. Note that there can be no more than one slave
transmitting data during any particular transfer, or else there will be a contention on
the miso input. The number of slave devices is specified at system generation time.

5.2.4.2 Slave Mode Operation

In slave mode, the SPI ports behave as shown in the table below.

Table 18. Slave Mode Port Configurations

Name Direction Description

mosi input Data input from the master

miso output Data output to the master

sclk input Synchronization clock

ss_n input Select signal

In slave mode, the SPI core simply waits for the master to initiate transactions. Before
a transaction begins, the slave logic continuously polls the ss_n input. When the
master asserts ss_n, the slave logic immediately begins sending the transmit shift
register contents to the miso output. The slave logic also captures data on the mosi
input, and fills the receive shift register simultaneously. After a word is received by the
slave, the master must de-assert the ss_n signal and reasserts the signal again when
the next word is ready to be sent.

An intelligent host such as a microprocessor writes data to the txdata registers, so
that it is transmitted the next time the master initiates an operation. A master
peripheral reads received data from the rxdata register. A master peripheral can
enable interrupts to notify the host whenever new data is received, or whenever the
transmit buffer is ready for new data.

5.2.4.3 Multi-Slave Environments

When ss_n is not asserted, typical SPI cores set their miso output pins to high
impedance. The provided SPI slave core drives an undefined high or low value on its
miso output when not selected. Special consideration is necessary to avoid signal
contention on the miso output, if the SPI core in slave mode is connected to an off-
chip SPI master device with multiple slaves. In this case, the ss_n input should be
used to control a tristate buffer on the miso signal.
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Figure 9. SPI Core in a Multi-Slave Environment
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5.3 Configuration

The following sections describe the available configuration options.

5.3.1 Master/Slave Settings

The designer can select either master mode or slave mode to determine the role of
the SPI core. When master mode is selected, the following options are available:
Number of select (SS_n) signals, SPI clock rate, and Specify delay.

5.3.1.1 Number of Select (SS_n) Signals

This setting specifies the number of slaves the SPI master connects to. The range is 1
to 32. The SPI master core presents a unique ss_n signal for each slave.

5.3.1.2 SPI Clock (sclk) Rate

This setting determines the rate of the sclk signal that synchronizes data between
master and slaves. The target clock rate can be specified in units of Hz, kHz or MHz.
The SPI master core uses the Avalon-MM system clock and a clock divisor to generate
sclk.

The actual frequency of sclk may not exactly match the desired target clock rate.
The achievable clock values are:

<Avalon-MM system clock frequency> / [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target value.
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5.3.1.3 Specify Delay

Turning on this option causes the SPI master to add a time delay between asserting
the ss_n signal and shifting the first bit of data. This delay is required by certain SPI
slave devices. If the delay option is on, you must also specify the delay time in units
of ns, µs or ms. An example is shown in below.

Figure 10. Time Delay Between Asserting ss_n and Toggling sclk

The delay generation logic uses a granularity of half the period of sclk. The actual
delay achieved is the desired target delay rounded up to the nearest multiple of half
the sclk period, as shown in the follow two equations.

Table 19.

p = 1/2 x (period of sclk)

Table 20.

Actual delay = ceiling x (desired delay/ p)

5.3.2 Data Register Settings

The data register settings affect the size and behavior of the data registers in the SPI
core. There are two data register settings:

• Width—This setting specifies the width of rxdata, txdata, and the receive and
transmit shift registers. The range is from 1 to 32.

• Shift direction—This setting determines the direction that data shifts (MSB first
or LSB first) into and out of the shift registers.

5.3.3 Timing Settings

The timing settings affect the timing relationship between the ss_n, sclk, mosi and
miso signals. In this discussion the mosi and miso signals are referred to generically
as data. There are two timing settings:

• Clock polarity—This setting can be 0 or 1. When clock polarity is set to 0, the idle
state for sclk is low. When clock polarity is set to 1, the idle state for sclk is
high.

• Clock phase—This setting can be 0 or 1. When clock phase is 0, data is latched
on the leading edge of sclk, and data changes on trailing edge. When clock
phase is 1, data is latched on the trailing edge of sclk, and data changes on the
leading edge.

The following four clock polarity figures demonstrate the behavior of signals in all
possible cases of clock polarity and clock phase.
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Figure 11. Clock Polarity = 0, Clock Phase = 0

Figure 12. Clock Polarity = 0, Clock Phase = 1

Figure 13. Clock Polarity = 1, Clock Phase = 0

Figure 14. Clock Polarity = 1, Clock Phase = 1

5.4 Software Programming Model

The following sections describe the software programming model for the SPI core,
including the register map and software constructs used to access the hardware. For
Nios II processor users, Intel provides the HAL system library header file that defines
the SPI core registers. The SPI core does not match the generic device model
categories supported by the HAL, so it cannot be accessed via the HAL API or the
ANSI C standard library. Intel provides a routine to access the SPI hardware that is
specific to the SPI core.

5.4.1 Hardware Access Routines

Intel provides one access routine, alt_avalon_spi_command(), that provides
general-purpose access to the SPI core that is configured as a master.

5.4.1.1 alt_avalon_spi_command()

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,

                            alt_u32 write_length,
                           const alt_u8* wdata,

                           alt_u32 read_length,

                           alt_u8* read_data,

continued...   
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                           alt_u32 flags)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_spi.h>

Description: This function performs a control sequence on the SPI bus. It supports only SPI masters with data
width less than or equal to 8 bits. A single call to this function writes a data buffer of arbitrary
length to the mosi port, and then reads back an arbitrary amount of data from the miso port. The
function performs the following actions:
(1) Asserts the slave select output for the specified slave. The first slave select output is 0.
(2) Transmits write_length bytes of data from wdata through the SPI interface, discarding the
incoming data on the miso port.
(3) Reads read_length bytes of data and stores the data into the buffer pointed to by read_data.
The mosi port is set to zero during the read transaction.
(4) De-asserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from scattered buffers, call the
function multiple times and specify the merge flag on all the accesses except the last.
To access the SPI bus from more than one thread, you must use a semaphore or mutex to ensure
that only one thread is executing within this function at any time.

Returns: The number of bytes stored in the read_data buffer.

5.4.2 Software Files

The core is accompanied by the following software files. These files provide a low-level
interface to the hardware.

• altera_avalon_spi.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware.

• altera_avalon_spi.c—This file implements low-level routines to access the
hardware.
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5.4.3 Register Map

An Avalon-MM master peripheral controls and communicates with the core via the six
32-bit registers, shown in below in the Register Map for SPI Master Device figure.
The table assumes an n-bit data width for rxdata and txdata.

Table 21. Register Map for SPI Master Device

Internal
Address

Register Name Type
[R/W]

32-
11

10 9 8 7 6 5 4 3 2-0

0 rxdata (3) R RXDATA (n-1..0)

1 txdata (3) W TXDATA (n-1..0)

2 status (1) R/W EOP E RRDY TRDY TMT TOE ROE

3 control R/W SSO
(2)

IEOP IE IRRD
Y

ITRD
Y

ITOE IROE

4 Reserved —

5 slaveselect (2) R/W Slave Select Mask

6 eop_value(3) R/W End of Packet Value (n-1..0)

Reading undefined bits returns an undefined value. Writing to undefined bits has no
effect.

5.4.3.1 rxdata Register

A master peripheral reads received data from the rxdata register. When the receive
shift register receives a full n bits of data, the status register's RRDY bit is set to 1
and the data is transferred into the rxdata register. Reading the rxdata register
clears the RRDY bit. Writing to the rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not the previous
data was retrieved. If RRDY is 1 when data is transferred into the rxdata register
(that is, the previous data was not retrieved), a receive-overrun error occurs and the
status register's ROE bit is set to 1. In this case, the contents of rxdata are
undefined.

5.4.3.2 txdata Register

A master peripheral writes data to be transmitted into the txdata register. When the
status register's TRDY bit is 1, it indicates that the txdata register is ready for new
data. The TRDY bit is set to 0 whenever the txdata register is written. The TRDY bit
is set to 1 after data is transferred from the txdata register into the transmitter shift
register, which readies the txdata holding register to receive new data.

(1) A write operation to the status register clears the ROE, TOE, and E bits.

(2) Present only in master mode.

(3) Bits 31 to n are undefined when n is less than 32.

5 SPI Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
43



A master peripheral should not write to the txdata register until the transmitter is
ready for new data. If TRDY is 0 and a master peripheral writes new data to the
txdata register, a transmit-overrun error occurs and the status register's TOE bit is
set to 1. In this case, the new data is ignored, and the content of txdata remains
unchanged.

As an example, assume that the SPI core is idle (that is, the txdata register and
transmit shift register are empty), when a CPU writes a data value into the txdata
holding register. The TRDY bit is set to 0 momentarily, but after the data in txdata is
transferred into the transmitter shift register, TRDY returns to 1. The CPU writes a
second data value into the txdata register, and again the TRDY bit is set to 0. This
time the shift register is still busy transferring the original data value, so the TRDY bit
remains at 0 until the shift operation completes. When the operation completes, the
second data value is transferred into the transmitter shift register and the TRDY bit is
again set to 1.

5.4.3.3 status Register

The status register consists of bits that indicate status conditions in the SPI core.
Each bit is associated with a corresponding interrupt-enable bit in the control
register, as discussed in the Control Register section. A master peripheral can read
status at any time without changing the value of any bits. Writing status does clear
the ROE, TOE and E bits.

Table 22. status Register Bits

# Name Description

3 ROE Receive-overrun error
The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while the RRDY
bit is 1). In this case, the new data overwrites the old. Writing to the status register clears the ROE bit
to 0.

4 TOE Transmitter-overrun error
The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is, while the
TRDY bit is 0). In this case, the new data is ignored. Writing to the status register clears the TOE bit
to 0.

5 TMT Transmitter shift-register empty
In master mode, the TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift
register is empty.
In slave mode, the TMT bit is set to 0 when the slave is selected (SS_n is low) or when the SPI Slave
register interface is not ready to receive data.

6 TRDY Transmitter ready
The TRDY bit is set to 1 when the txdata register is empty.

7 RRDY Receiver ready
The RRDY bit is set to 1 when the rxdata register is full.

8 E Error
The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer to detect
error conditions. Writing to the status register clears the E bit to 0.

9 EOP End of Packet
The EOP bit is set when the End of Packet condition is detected. The End of Packet condition is detected
when either the read data of the rxdata register or the write data to the txdata register is matching
the content of the eop_value register.
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5.4.3.4 control Register

The control register consists of data bits to control the SPI core's operation. A
master peripheral can read control at any time without changing the value of any
bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register control
interrupts for status conditions represented in the status register. For example, bit 1
of status is ROE (receiver-overrun error), and bit 1 of control is IROE, which enables
interrupts for the ROE condition. The SPI core asserts an interrupt request when the
corresponding bits in status and control are both 1.

Table 23. control Register Bits

# Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

9 IEOP Setting IEOP to 1 enables interrupts for the End of Packet condition.

10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a serial shift
operation is in progress or not. The slaveselect register controls which ss_n outputs are asserted.
SSO can be used to transmit or receive data of arbitrary size, for example, greater than 32 bits.

After reset, all bits of the control register are set to 0. All interrupts are disabled
and no ss_n signals are asserted.

5.4.3.5 slaveselect Register

The slaveselect register is a bit mask for the ss_n signals driven by an SPI master.
During a serial shift operation, the SPI master selects only the slave device(s)
specified in the slaveselect register.

The slaveselect register is only present when the SPI core is configured in master
mode. There is one bit in slaveselect for each ss_n output, as specified by the
designer at system generation time.

A master peripheral can set multiple bits of slaveselect simultaneously, causing the
SPI master to simultaneously select multiple slave devices as it performs a
transaction. For example, to enable communication with slave devices 1, 5, and 6, set
bits 1, 5, and 6 of slaveselect. However, consideration is necessary to avoid signal
contention between multiple slaves on their miso outputs.

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after a device
reset, slave device 0 is automatically selected.

5.4.3.6 end of packet value Register

The end of packet value register allows you to specify the value of the SPI data word.
The SPI data word acts as the end of packet word.
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5.5 Document Revision History

Table 24. SPI Core Document Revision History

Date Version Changes

June 2016 2016.06.17 Updates:
• Removed content regarding Avalon-MM flow control
• Table 21 on page 43: eop_value added
• Table 22 on page 44: EOP added
• Table 23 on page 45: IEOP added
• end of packet value Register on page 45: New topic

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Revised register width in transmitter logic and receiver logic.
Added description on the disable flow control option.
Added R/W column in Table 8–3 .

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. Updated the width of the parameters
and signals from 16 to 32.

May 2008 v8.0.0 Updated the description of the TMT bit.
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6 Ethernet MDIO Core

6.1 Core Overview

The Intel Management Data Input/Output (MDIO) IP core is a two-wire standard
management interface that implements a standardized method to access the external
Ethernet PHY device management registers for configuration and management
purposes. The MDIO IP core is IEEE 802.3 standard compliant.

To access each PHY device, the PHY register address must be written to the register
space followed by the transaction data. The PHY register addresses are mapped in the
MDIO core’s register space and can be accessed by the host processor via the Avalon
Memory-Mapped (Avalon-MM) interface. This IP core can also be used with the Intel
FPGA 10-Gbps Ethernet MAC to realize a fully manageable system.

6.2 Functional Description

The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that allows
Avalon-MM master peripherals (such as a CPU) to communicate with the core and
access the external PHY by reading and writing the control and data registers. The
system interconnect fabric connects the Avalon-MM master and slave interface while a
buffer connects the MDIO interface signals to the external PHY.

For more information about system interconnect fabric for Avalon-MM interfaces, refer
to the System Interconnect Fabric for Memory-Mapped Interfaces.

Figure 15. MDIO Core Block Diagram
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6.2.1 MDIO Frame Format (Clause 45)

The MDIO core communicates with the external PHY device using frames. A complete
frame is 64 bits long and consists of 32-bit preamble, 14-bit command, 2-bit bus
direction change, and 16-bit data. Each bit is transferred on the rising edge of the
management data clock (MDC). The PHY management interface supports the standard
MDIO specification (IEEE802.3 Ethernet Standard Clause 45).

Figure 16. MDIO Frame Format (Clause 45)

Z0      Read
10      Address/Write

PRE ST OP PRTAD DEVAD TA REGAD/Data Idle

00      Address
01      Write
11      Read

32 bits 2 bits 2 bits 5 bits 5 bits 2 bits 16 bits 1 bit

Table 25. MDIO Frame Field Descriptions—Clause 45

Field Name Description

PRE Preamble. 32 bits of logical 1 sent prior to every transaction.

ST The start of frame for indirect access cycles is indicated by the <00> pattern. This pattern assures a
transition from the default one and identifies the frame as an indirect access.

OP The operation code field indicates the following transaction types:
00 indicates that the frame payload contains the address of the register to access.
01 indicates that the frame payload contains data to be written to the register whose address was provided
in the previous address frame.
11 indicates that the frame is a read operation.
The post-read-increment-address operation <10> is not supported in this frame.

PRTAD The port address (PRTAD) is 5 bits, allowing 32 unique port addresses. Transmission is MSB to LSB. A
station management entity (STA) must have a prior knowledge of the appropriate port address for each
port to which it is attached, whether connected to a single port or to multiple ports.

DEVAD The device address (DEVAD) is 5 bits, allowing 32 unique MDIO manageable devices (MMDs) per port.
Transmission is MSB to LSB.

TA The turnaround time is a 2-bit time spacing between the device address field and the data field of a
management frame to avoid contention during a read transaction.
For a read transaction, both the STA and the MMD remain in a high-impedance state (Z) for the first bit
time of the turnaround. The MMD drives a 0 during the second bit time of the turnaround of a read or
postread-increment-address transaction.
For a write or address transaction, the STA drives a 1 for the first bit time of the turnaround and a 0 for the
second bit time of the turnaround.

REGAD/

Data

The register address (REGAD) or data field is 16 bits. For an address cycle, it contains the address of the
register to be accessed on the next cycle. For the data cycle of a write frame, the field contains the data to
be written to the register. For a read frame, the field contains the contents of the register. The first bit
transmitted and received is bit 15.

Idle The idle condition on MDIO is a high-impedance state. All tri-state drivers are disabled and the MMDs pullup
resistor pulls the MDIO line to a one.

6 Ethernet MDIO Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
48



6.2.2 MDIO Clock Generation

The MDIO core’s MDC is generated from the Avalon-MM interface clock signal, clk.
The MDC_DIVISOR parameter specifies the division parameter. For more information
about the parameter, refer to the Parameter section.

The division factor must be defined such that the MDC frequency does not exceed
2.5 MHz.

6.2.3 Interfaces

The MDIO core consists of a single Avalon-MM slave interface. The slave interface
performs Avalon-MM read and write transfers initiated by an Avalon-MM master in the
client application logic. The Avalon-MM slave uses the waitrequest signal to
implement backpressure on the Avalon-MM master for any read or write operation
which has yet to be completed.

For more information about Avalon-MM interfaces, refer to the Avalon Interface
Specifications.

6.2.4 Operation

The MDIO core has bidirectional external signals to transfer data between the external
PHY and the core.

6.2.4.1 Write Operation

Follow the steps below to perform a write operation.

1. Issue a write to the device register at address offset 0x21 to configure the device,
port, and register addresses of the PHY.

2. Issue a write to the MDIO_ACCESS register at address offset 0x20 to generate an
MDIO frame and write the data to the selected PHY device’s register.

6.2.4.2 Read Operation

Follow the steps below to perform a read operation.

1. Issue a write to the device register at address offset 0x21 to configure the device,
port, and register addresses of the PHY.

2. Issue a read to the MDIO_ACCESS register at address offset 0x20 to read the
selected PHY device’s register.

6.3 Parameter

Table 26. Configurable Parameter

Parameter Legal Values Default Value Description

MDC_DIVISOR 8-64 32 The host clock divisor provides the division factor for the clock
on the Avalon-MM interface to generate the preferred MDIO
clock (MDC). The division factor must be defined such that the
MDC frequency does not exceed 2.5 MHz.
Formula:
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Parameter Legal Values Default Value Description

For example, if the Avalon-MM interface clock source is
100 MHz and the desired MDC frequency is 2.5 MHz, specify a
value of 40 for the MDC_DIVISOR.

6.4 Configuration Registers

An Avalon-MM master peripheral, such as a CPU, controls and communicates with the
MDIO core via 32-bit registers, shown in the Register Map table.

Table 27. Register Map

Address
Offset

Bit(s) Name Access
Mode

Description

0x00-0x1F 31:0 Reserved RW Reserved for future use.

0x20 (1) 31:0 MDIO_ACCESS RW Performs a read or write of 32-bit data to the external
PHY device. The addresses of the external PHY device’s
register, device, and port are specified in address offset
0x21.

0x21 (2) 4:0 MDIO_DEVAD RW Contains the device address of the PHY.

7:5 Reserved RW Unused.

12:8 MDIO_PRTAD RW Contains the port address of the PHY.

15:13 Reserved RW Unused.

31:16 MDIO_REGAD RW Contains the register address of the PHY.

Note :
1. The byte address for this register is 0x80.
2. The byte address for this register is 0x84.

6.5 Document Revision History

Table 28. MDIO Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Revised the register map address offset.

July 2010 v10.0.0 Initial release.
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7 Intel FPGA 16550 Compatible UART Core

7.1 Core Overview

The Intel FPGA 16550 UART (Universal Asynchronous Receiver/Transmitter) soft IP
core with Avalon interface is designed to be register space compatible with the de-
facto standard 16550 found in the PC industry. The core provides RS-232 Signaling
interface, False start detection, Modem control signal and registers, Receiver error
detection and Break character generation/detection. The core also has an Avalon
Memory-Mapped (Avalon-MM) slave interface that allows Avalon-MM master
peripherals (such as a Nios II processor) to communicate with the core simply by
reading and writing control and data registers.

The 16550 UART supports all memory types depending on the device family.

Note: You must acquire license to use this core..

Table 29. Product Information

Core Product ID

Intel FPGA 16550 UART (Universal Asynchronous Receiver/
Transmitter) soft IP core

6af7 010c

7.2 Feature Description

The 16550 Soft-UART has the following features:

• RS-232 signaling interface

• Avalon-MM slave

• Single clock

• False start detection

• Modem control signal and registers

• Receiver error detection

• Break character generation/detection

• Supports full duplex mode by default

Table 30. UART Features and Configurability

Features Run Time Configurable Generate Time Configurable

FIFO/FIFO-less mode Yes Yes

FIFO Depth - Yes

5-9 bit character length Yes -
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Features Run Time Configurable Generate Time Configurable

1, 1.5, 2 character stop bit Yes -

Parity enable Yes -

Even/Odd parity Yes -

Baud rate selection Yes -

Memory Block Type - Yes

Priority based interrupt with
configurable enable

Yes -

Hardware Auto Flow Control (cts_n/
rts_n signals)

Yes Yes

DMA Extra (configurable support for
extra DMA sideband signal)

Yes Yes

Stick parity/Force parity Yes -

Note: When a feature is both Generate time and Run time configurable, the feature must be
enabled during Generate time before Run time configuration can be used. Therefore,
turning ON a feature during Generate time is a prerequisite to enabling/disabling it
during run time.

7.2.1 Unsupported Features

Unsupported Features vs PC16550D:

• Separate receive clock

• Baud clock reference output

7.2.2 Interface

The Soft UART will have the following signal interface, exposed using _hw.tcl
through Platform Designer software.

Table 31. Clock and Reset Signal Interface

Pin Name Direction Description

clk Input Avalon clock sink

rst_n Input Avalon reset sink
Asynchronous assert, Synchronous
deassert active low reset.
Interconnect fabric expected to
perform synchronization – UART and
interconnect is expected to be placed
in the same reset domain to simplify
system design

Table 32. Avalon-MM Slave

Pin Name Width Direction Description

addr 9 Input Avalon-MM Address bus
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Pin Name Width Direction Description

Highest addressable byte
address is 0x118 so a 9-bit
width is required

read Input Avalon-MM Read indication

readdata 32 Output Avalon-MM Read Data
Response from the slave

write Input Avalon-MM Write indication

writedata 32 Input Avalon-MM Write Data

Table 33. Interrupt Interface

Pin Name Direction Description

intr Output Interrupt signal

Table 34. Flow Control

Pin Name Direction Description

sin Input Serial Input from external link.

sout Output Serial Output to external link.

sout_oe Output Output enable for Serial Output to external link.
sout_oe signal will be high when the UART is transmitting
and low when the UART is IDLE.

Table 35. Modem Control and Status

Pin Name Direction Description

cts_n Input Clear to Send

rts_n Output Request to Send

dsr_n Input Data Set Ready

dcd_n Input Data Carrier Detect

ri_n Input Ring Indicator

dtr_n Output Data Terminal Ready

out1_n Output User Designated Output1

out2_n Output User Designated Output2

Table 36. DMA Sideband Signals

Pin Name Direction Description

dma_tx_ack_n Input TX DMA acknowledge

dma_rx_ack_n Input RX DMA acknowledge

dma_tx_req_n Output TX DMA request

dma_rx_req_n Output RX DMA request

dma_tx_single_n Output TX DMA single request

dma_rx_single_n Output RX DMA single request
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7.2.3 General Architecture

Figure 17. Soft-UART High Level Architecture
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The figure above shows the high level architecture of the UART IP. Both Transmit and
Receive logic have their own dedicated control & data path. An interrupt block and
clock generator block is also present to service both transmit and receive logic.

7.2.4 16550 UART General Programming Flow Chart

The 16550 UART general programming flow chart is the recommended flow for setting
up the UART for error free operation.

Note: You are free to change this flow to fit your own usage model but the changes might
cause undefined results.
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Figure 18. 16550 UART Configuration Flow
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For more information on the register descriptions used in the flow chart, refer to the
"Address Map and Register Descriptions" section.

Related Links

Address Map and Register Descriptions on page 70
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7.2.5 Configuration Parameters

The table below shows all the parameters that can be used to configure the UART.
(_hw.tcl) is the mechanism used to enforce and validate correct parameter settings.

Table 37. Configuration Parameters

Parameter Name Description Default

MEM_BLOCK_TYPE Set memory block type of FIFO.
Available memory block depend on
device family used. FIFO_MODE must
be 1

AUTO

FIFO_MODE 1 = FIFO mode enabled
0 = FIFO mode disabled

1

FIFO_DEPTH Set depth of FIFO
Values limited to 32, 64 and 128
FIFO_MODE must be 1

128

FIFO_HWFC 1 = Enabled hardware flow control
0 = Disabled hardware flow control
Mutually exclusive with FIFO_SWFC
FIFO_MODE must be 1

1

DMA_EXTRA 1 = Additional DMA interface enabled
0 = Additional DMA interface disabled

0

7.2.6 DMA Support

The DMA interface (DMA_EXTRA) is disabled by default. It must be enabled in the IP
to have the additional DMA_Handshaking_tx and DMA_Handshaking_rx interfaces.
DMA support is only available when used with the HPS DMA controller. The HPS DMA
controller has the required handshake signals to control DMA data transfers with the
IP through the DMA_Handshaking_tx and DMA_Handshaking_rx interfaces. The
DMA handshaking interfaces are connected to the HPS through the f2h DMA request
lines.

Figure 19. Intel FPGA 16550 UART's DMA Handshaking Interfaces Connection to Arria
V/Cyclone V HPS in Platform Designer

For more information about the HPS DMA Controller handshake signals, refer to the
DMA Controller chapter in the Cyclone V Device Handbook, Volume 3.
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Related Links

DMA Controller

7.2.7 FPGA Resource Usage

In order to optimize resource usage, in terms of register counts, the UART IP design
specifically targets MLABs to be used as FIFO storage element. The following table lists
the FPGA resources required for one UART with 128 Byte Tx and Rx FIFO.

Table 38. UART Resource Usage

Resource Number

ALMS needed 362

Total LABs 54

Combinational ALUT usage for logic 436

Combinational ALUT usage for route-throughs 17

Dedicated logic registers 311

Design implementation registers 294

Routing optimization registers 17

Global Signals 2

M10k blocks 0

Total MLAB memory bits 2432

7.2.8 Timing and Fmax

Figure 20. Maximum Delays on UART

External PinUART IP Core

D Q

Avalon Master

D Q D Q
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COMBI COMBI COMBI

The diagram above shows worst case combinatorial delays throughout the UART IP
Core. These estimates are provided by Timing Analyzer under the following condition:

• Device Family: Series V and above

• Avalon Master connected to Avalon Slave port of the UART with outputs from the
Avalon Master registered

• RS-232 Serial Interface is exported to FPGA Pin

• Clocks for entire system set at 125 MHz

Based on the conditions above the UART IP has an Fmax value of 125 MHz, with the
worst delay being internal register-to-register paths.
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The UART has combinatorial logic on both the Input and Output side, with system level
implications on the Input side.

The Input side combinatorial logic (with 7ns delay) goes through the Avalon address
decode logic, to the Read data output registers. It is therefore recommended that
Masters connected to the UART IP register their output signals.

The Output side combinatorial logic (with 2ns delay) goes through the RS-232 Serial
Output. There should not be any concern on the output side delays though – as it is
not a single cycle path. Using the highest clock divider value of 1, the serial output
only toggles once every 16 clocks. This naturally gives a 16 clock multi-cycle path on
the output side. Furthermore, divider of 1 is an unlikely system, if the UART is clocked
at 125 MHz, the resulting baud rate would be 7.81 Mbps.

7.2.9 Avalon-MM Slave

The Avalon-MM Slave has the following configuration:

Table 39. Avalon-MM Slave Configuration

Feature Configuration

Bus Width 32-bit

Burst Support No burst support. Interconnect is expected to handle burst
conversion

Fixed read and write wait time 0 cycles

Fixed read latency 1 cycle

Fixed write latency 0 cycles

Lock support No

Note: The Avalon-MM interface is intended to be a thin, low latency layer on top of the
registers.

7.2.9.1 Read behavior

Figure 21. Reading UART over Avalon-MM

addr1 addrF addrF addrF

data1 data2 data3 data4

addr

read
readdata

Polling Status Reading from
RX FIFO

0 1 2 3 4 5 6 7 8 9

Reads are expected to have 2 types of behavior:

• When status registers are being polled, Reads are expected to be done in singles

• When data needs to be read out from the Rx FIFO, Reads are expected as back-to-
back cycles to the same address (these back-to-back reads are likely generated as
Fixed Bursts in AXI – but translated into INCR with length of 1 by FPGA
interconnect)
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7.2.9.2 Write behavior

Figure 22. Writing to UART over Avalon-MM
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Writes to the UART are expected as singles during setup phase of any transaction and
as back-to-back writes to the same address when the Tx FIFO needs to be filled.

7.2.10 Overrun/Underrun Conditions

Consistent with UART implementation in PC16550D, the soft UART will not implement
overrun or underrun prevention on the Avalon-MM interface.

Preventing overruns and underruns on the Avalon-MM interface by back-pressuring a
pending transaction may cause more harm than good as the interconnect can be held
up by the far slower UART.

7.2.10.1 Overrun

On receive path, interrupts can be triggered (when enabled) when overrun occurs. In
FIFO-less mode, overrun happens when an existing character in the receive buffer is
overwritten by a new character before it can be read. In FIFO mode, overrun happens
when the FIFO is full and a complete character arrives at the receive buffer.

On transmit path, software driver is expected to know the Tx FIFO depth and not
overrun the UART.

7.2.10.2 Receive Overrun Behavior

When receive overrun does happen, the Soft-UART handles it differently depending on
FIFO mode. With FIFO enabled, the newly receive data at the shift register is lost.
With FIFO disabled, the newly received data from the shift register is written onto the
Receive Buffer. The existing data in the Receive Buffer is overwritten. This is consistent
with published PC16550D UART behavior.

7.2.10.3 Transmit Overrun Behavior

When the host CPU forcefully triggers a transmit Overrun, the Soft-UART handles it
differently depending on FIFO mode. With FIFO enabled, the newly written data is lost.
With FIFO disabled, the newly written data will overwrite the existing data in the
Transmit Holding Register.

7.2.10.4 Underrun

No mechanisms exist to detect or prevent underrun.
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On transmit path, an interrupts, when enabled, can be generated when the transmit
holding register is empty or when the transmit FIFO is below a programmed level.

On receive path, the software driver is expected to read from the UART receive buffer
(FIFO-less) or the (Rx FIFO) based on interrupts, when enabled, or status registers
indicating presence of receive data (Data Ready bit, LSR[0]). If reads to Receive
Buffer Register is triggered with data ready register being zero, undefined read data is
returned.

7.2.11 Hardware Auto Flow-Control

Hardware based auto flow-control uses 2 signals (cts_n & rts_n) from the Modem
Control/Status group. With Hardware auto flow-control disabled, these signals will
directly drive the Modem Status register (cts_n) or be driven by the Modem Control
register (rts_n).

With auto flow-control enabled, these signals perform flow-control duty with another
UART at the other end.

The cts_n input is, when active (low state), will allow the Tx FIFO to send data to
the transmit buffer. When cts_n is inactive (high state), the Tx FIFO stops sending
data to the transmit buffer. cts_n is expected to be connected to the rts_n output
of the other UART.

The rts_n output will go active (low state), when the Rx FIFO is empty, signaling to
the opposite UART that it is ready for data. The rts_n output goes inactive (high
state) when the Rx FIFO level is reached, signaling to the opposite UART that the FIFO
is about to go full and it should stop transmitting.

Due to the delays within the UART logic, one additional character may be transmitted
after cts_n is sampled active low. For the same reason, the Rx FIFO will
accommodate up to 1 additional character after asserting rts_n (this is allowed
because Rx FIFO trigger level is at worst, two entries from being truly full). Both are
observed to prevent overflow/underflow between UARTs.

Figure 23. Hardware Auto Flow-Control Between two UARTs

TX
FIFO

Transmit Buffer

Flow Control

RX
FIFO

Receive Buffer

Flow Control

RX
FIFO

Receive Buffer

Flow Control

TX
FIFO

Transmit Buffer

Flow Control

sout

cts_n

sin

rts_n

sin

rts_n

sout

cts_n

UART 1 UART 2

7 Intel FPGA 16550 Compatible UART Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
60



7.2.12 Clock and Baud Rate Selection

The Soft-UART supports only one clock. The same clock is used on the Avalon-MM
interface and will be used to generate the baud clock that drives the serial UART
interface.

The baud rate on the serial UART interface is set using the following equation:

Baud Rate = Clock/(16 x Divisor)

The table below shows how several typical baud rates can be achieved by
programming the divisor values in Divisor Latch High and Divisor Latch Low register.

Table 40. UART Clock Frequency, Divider value and Baud Rate Relationship

18.432 MHz 24 MHz 50 MHz

Baud Rate Divisor for 16x
clock

% Error (baud) Divisor for 16x
clock

% Error (baud) Divisor for 16x
clock

% Error (baud)

9,600 120 0.00% 156 0.16% 326 -0.15%

38,400 30 0.00% 39 0.16% 81 0.47%

115,200 10 0.00% 13 0.16% 27 0.47%

7.3 Software Programming Model

7.3.1 Overview

The following describes the programming model for the Intel FPGA compatible 16550
Soft-UART.

7.3.2 Supported Features

For the following features, the 16550 Soft-UART HAL driver can be configurable in run
time or generate time. For run-time configuration, users can use
“altera_16550_uart_config” API . Generate time is during Platform Designer
generation, that is to say once FIFO Depth is selected the depth for the FIFO can’t be
change anymore.

Table 41. Supported Features

Features Run Time Generate Time

FIFO/ FIFO-less mode Yes Yes

FIFO Depth - Yes

Programmable Tx/Rx FIFO Threshold Yes -

5-9 bit character length Yes -

1, 1.5, 2 character stop bit Yes -

Parity enable Yes -

Even/Odd parity Yes -
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Features Run Time Generate Time

Stick parity Yes -

Baud rate selection Yes -

Priority based interrupt with
configurable enable

Yes -

Hardware Auto Flow Control Yes Yes

7.3.3 Unsupported Features

The 16550 UART driver does not support Software flow control.

7.3.4 Configuration

The figure below shows the Platform Designer setup on the 16550 Soft-UART's FIFO
Depth

Figure 24. Platform Designer Setting to Configure FIFO Depth

7.3.5 16550 UART API

7.3.5.1 Public APIs

Table 42. altera_16550_uart_open

Prototype: altera_16550_uart_dev * altera_16550_uart_open(const
char* name);

Include: <altera_16550_uart.h>

Parameters: name—the 16550 UART device name to open.

Returns: Pointer to 16550 UART or NULL if fail to open

Description Open 16550 UART device.

Table 43. altera_16550_uart_close

Prototype: void alt_16550_uart_close (const char* name)

Include: <altera_16550_uart.h>
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Parameters: name—the 16550 UART device name to close.

Returns: None

Description: Closes 16550 UART device.

Table 44. alt_16550_uart_read

Prototype: alt_u32 altera_16550_uart_read(altera_16550_uart_dev*
dev, const char * ptr, alt_u16 len, alt_u16 flags);

Include: <altera_16550_uart.h>

Parameters: dev - The UART device
ptr – destination address
len – maximum length of the data
flags – for indicating blocking/non-blocking access for single/
multi threaded

Returns: Number of bytes read

Description: Read data to the UART receiver buffer. UART required to be in
a known settings prior executing this function

Table 45. alt_16550_uart_write

Prototype: alt_u32 alt_16550_uart_write(altera_16550_uart_dev* dev,
const char * ptr, alt_u16 flags, int len);

Include: <altera_16550_uart.h>

Parameters: dev - The UART device
ptr – source address
len – maximum length of the data
flags – for indicating blocking/non-blocking access for single/
multi threaded

Returns: Number of bytes written

Description: Writes data to the UART transmitter buffer. UART required to
be in a known settings prior executing this function

Table 46. alt_16550_uart_config

Prototype: alt_u32 alt_16550_uart_config(altera_16550_uart_dev* dev,
UartConfig *config);

Include: dev - The UART device

Parameters: config – UART configuration structure to configure UART
(refer to UART device structure

Returns: Return 0 for success otherwise fail

Description: Configure UART per user input before initiating read or Write

7.3.5.2 Private APIs

Table 47. alt_16550_irq

Prototype: static void altera_16550_uart_irq (void* context)

Include: <altera_16550_uart.h>
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Parameters: context – device of the UART

Returns: none

Description: Interrupt handler to process UART interrupts to process
receiver/transmit interrupts.

Table 48. alt_16550_uart_rxirq

Prototype: static void altera_16550_uart_rxirq
(altera_16550_uart_dev* dev, alt_u32

Include: <altera_16550_uart.h>

Parameters: context – device of the UART

Returns: none

Description: Process a receive interrupt. It transfers the incoming
character into the receiver circular buffer, and sets the
appropriate flags to indicate that there is data ready to be
processed.

Table 49. alt_16550_uart_txirq

Prototype: static void altera_16550_uart_txirq
(altera_16550_uart_dev* dev, alt_u32 status

Include: <altera_16550_uart.h>

Parameters: context – device of the UART

Returns: none

Description: Process a transmit interrupt. It transfers data from the
transmit buffer to the device, and sets the appropriate flags
to indicate that there is data ready to be processed.

7.3.5.3 UART Device Structure

Example 1. UART Device Structure 1

typedef enum stopbit { STOPB_1 = 0,STOPB_2 } StopBit;
typedef enum paritybit { ODD_PARITY = 0, EVEN_PARITY, MARK_PARITY, 
SPACE_PARITY, NO_PARITY } ParityBit;
typedef enum databit { CS_5 = 0, CS_6, CS_7, CS_8, CS_9 = 256} DataBit;
typedef enum baud
{
BR9600 = B9600,
BR19200 = B19200,
BR38400 = B38400,
BR57600 = B57600,
BR115200 = B115200
} Baud;
typedef enum rx_fifo_level_e { RXONECHAR = 0, RXQUARTER, RXHALF, RXFULL } 
Rx_FifoLvl;
typedef enum tx_fifo_level_e { TXEMPTY = 0, TXTWOCHAR, TXQUARTER, TXHALF } 
Tx_FifoLvl;
typedef struct uart_config_s
{
StopBit stop_bit;
ParityBit parity_bit;
DataBit data_bit;
Baud baudrate;
alt_u32 fifo_mode;
Rx_FifoLvl rx_fifo_level;
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Tx_FifoLvl tx_fifo_level;
alt_u32 hwfc;
} UartConfig;

Example 2. UART Device Structure 2

typedef struct altera_16550_uart_state_s
{ 
alt_dev dev; 
void* base; /* The base address of the device */ 
alt_u32 clock; 
alt_u32 hwfifomode; 
alt_u32 ctrl; /* Shadow value of the LSR register */ 
volatile alt_u32 rx_start; /* Start of the pending receive data */ 
volatile alt_u32 rx_end; /* End of the pending receive data */ 
volatile alt_u32 tx_start; /* Start of the pending transmit data */ 
volatile alt_u32 tx_end; /* End of the pending transmit data */ 
alt_u32 freq; /* Current clock freq rate */ 
UartConfig config; /* Uart setting */ 
#ifdef ALTERA_16550_UART_USE_IOCTL 
struct termios termios; 
#endif 
alt_u32 flags; /* Configuration flags */ 
ALT_FLAG_GRP (events) /* Event flags used for 
* foreground/background in mult-threaded 
* mode */ 
ALT_SEM (read_lock) /* Semaphore used to control access to the 
* read buffer in multi-threaded mode */ 
ALT_SEM (write_lock) /* Semaphore used to control access to the 
* write buffer in multi-threaded mode */ 
volatile wchar_t rx_buf[ALT_16550_UART_BUF_LEN]; /* The receive buffer */ 
volatile wchar_t tx_buf[ALT_16550_UART_BUF_LEN]; /* The transmit buffer */ 
line_status_reg line_status; /* line register status for the current read 
byte data of RBR or data at the top of FIFO*/ 
alt_u8 error_ignore; /* received data will be discarded 
for the current read byte data of RBR or data at the top of FIFO if pe, fe 
and bi errors detected after error_ignore is set to '0' */ 
} altera_16550_uart_state;
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7.3.6 Driver Examples

Below is a simple test program to verify that the Intel FPGA 16550 UART driver
support is functional.

The test reads, validates, and writes a modified baud rate, data bits, stop bits, parity
bits to the UART before attempting to write a character stream to it from UART0 to
UART1 and vice verse (ping pong test). This also tests the FIFO and FIFO-less mode
as well as the HW flow control to ensure the IP is functioning for FIFO and HWFC.

Prerequisites needed before running test:

• An instance of UART named "uart0" and another instance UART named "uart1".

• Both UARTs need to be connected in loopback in Intel Quartus Prime.

Additional coverage:

• Non-blocking UART support

• UART HAL driver

• HAL open/write support

The test will print "PASS: . . ." from the UART to indicate success.

Example 3. Verifying Intel FPGA 16550 UART Driver Support functionality

#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/termios.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "system.h"
#include "altera_16550_uart.h"
#include "altera_16550_uart_regs.h"

#define ERROR -1
#define SUCCESS 0
#define MOCK_UART
#define BUFSIZE 512
char TXMessage[BUFSIZE] = "Hello World";
char RXMessage[BUFSIZE] = "";

int UARTDefaultConfig(UartConfig *Config)
{
  Config->stop_bit     = STOPB_1;
  Config->parity_bit   = NO_PARITY;
  Config->data_bit     = CS_8;
  Config->baudrate     = BR115200;
  Config->fifo_mode    = 0;
  Config->hwfc         = 0;
  Config->rx_fifo_level= RXFULL;
  Config->tx_fifo_level= TXEMPTY;
  return 0;
}

int UARTBaudRateTest()
{
  UartConfig *UART0_Config = malloc(1*sizeof(UartConfig));
  UartConfig *UART1_Config = malloc(1*sizeof(UartConfig));

  int i=0, j=0, direction=0, Match=0;
  const int nBaud = 5;
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  int BaudRateCoverage[]= {BR9600, BR19200, BR38400, BR57600, BR115200};
  altera_16550_uart_state* uart_0;
  altera_16550_uart_state* uart_1;

  printf("================================ UART Baud Rate Test Starts Here 
=======================================\n");
  uart_0 = altera_16550_uart_open ("/dev/a_16550_uart_0");
  uart_1 = altera_16550_uart_open ("/dev/a_16550_uart_1");

  for (direction=0; direction<2; direction++)
  {
      for (i=0; i<nBaud; i++)
          {
              UARTDefaultConfig(UART0_Config);
            UARTDefaultConfig(UART1_Config);
            UART0_Config->baudrate=BaudRateCoverage[i];
            UART1_Config->baudrate=BaudRateCoverage[i];
            printf("Testing Baud Rate: %d\n", UART0_Config->baudrate);
            if(ERROR == alt_16550_uart_config (uart_0, UART0_Config)) return 
ERROR;
            if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return 
ERROR;

            switch(direction)
            {
             case 0:
                printf("Ping Pong Baud Rate Test: UART#0 to UART#1\n");
                for(j=0; j<strlen(TXMessage); j++)
                {
                    altera_16550_uart_write(uart_0, &TXMessage[j], 1, 0);
                    usleep(1000);
                    if(ERROR== altera_16550_uart_read(uart_1,  RXMessage, 1, 
0)) return ERROR;
                    if(TXMessage[j]==RXMessage[0]) Match=1; else return ERROR;
                    printf("Sent:'%c', Received:'%c', Match:%d\n", 
TXMessage[j], RXMessage[0], Match);
                }
                break;
             case 1:
                printf("Ping Pong Baud Rate Test: UART#1 to UART#0\n");
                for(j=0; j<strlen(TXMessage); j++)
                {
                    altera_16550_uart_write(uart_1, &TXMessage[j], 1, 0);
                    usleep(1000);
                    if(ERROR== altera_16550_uart_read(uart_0,  RXMessage, 1, 
0)) return ERROR;
                    if(TXMessage[j]==RXMessage[0]) Match=1; else return ERROR;
                    printf("Sent:'%c', Received:'%c', Match:%d\n", 
TXMessage[j], RXMessage[0], Match);
                }
                break;
             default:
                 break;
            }
            usleep(1000);
          }
  }
  free(UART0_Config);
  free(UART1_Config);
  return SUCCESS;
}

int UARTLineControlTest()
{
  UartConfig *UART0_Config = malloc(1*sizeof(UartConfig));
  UartConfig *UART1_Config = malloc(1*sizeof(UartConfig));

  int x=0, y=0, z=0, Match=0;
  const int nDataBit = 2, nParityBit=3, nStopBit=2;
  int DataBitCoverage[]= { /*CS_5, CS_6,*/ CS_7, CS_8};
  int ParityBitCoverage[]= {ODD_PARITY, EVEN_PARITY, NO_PARITY};
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  int StopBitCoverage[]= {STOPB_1, STOPB_2};
  altera_16550_uart_state* uart_0;
  altera_16550_uart_state* uart_1;

  printf("================================ UART Line Control Test Starts Here 
=======================================\n");
  uart_0 = altera_16550_uart_open ("/dev/a_16550_uart_0");
  uart_1 = altera_16550_uart_open ("/dev/a_16550_uart_1");

  for(x=0; x<nStopBit; x++)
  {
      for (y=0; y<nParityBit; y++)
      {
          for (z=0; z<nDataBit; z++)
              {
                  UARTDefaultConfig(UART0_Config);
                UARTDefaultConfig(UART1_Config);
                UART0_Config->stop_bit=StopBitCoverage[x];
                UART1_Config->stop_bit=StopBitCoverage[x];
                UART0_Config->parity_bit=ParityBitCoverage[y];
                UART1_Config->parity_bit=ParityBitCoverage[y];
                UART0_Config->data_bit=DataBitCoverage[z];
                UART1_Config->data_bit=DataBitCoverage[z];

                printf("Testing : Stop Bit=%d, Data Bit=%d, Parity Bit=%d\n", 
UART0_Config->stop_bit, UART0_Config->data_bit, UART0_Config->parity_bit);
                if(ERROR == alt_16550_uart_config (uart_0, UART0_Config)) 
return ERROR;
                if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) 
return ERROR;
                altera_16550_uart_write(uart_0, &TXMessage[0], 1, 0);
                usleep(1000);
                if(ERROR== altera_16550_uart_read(uart_1,  RXMessage, 1, 0)) 
return ERROR;
                if(TXMessage[0]==RXMessage[0]) Match=1; else
                    {
                    printf("Sent:'%c', Received:'%c', Match:%d\n", 
TXMessage[0], RXMessage[0], Match);
                    return ERROR;
                    }
                printf("Sent:'%c', Received:'%c', Match:%d\n", TXMessage[0], 
RXMessage[0], Match);
              }
      }
  }
  free(UART0_Config);
  free(UART1_Config);
  return SUCCESS;
}

int UARTFIFOModeTest()
{

  UartConfig *UART0_Config = malloc(1*sizeof(UartConfig));
  UartConfig *UART1_Config = malloc(1*sizeof(UartConfig));

  int i=0, direction=0, CharCounter=0, Match=0;
  const int nBaud = 2;
  int BaudRateCoverage[]= {BR115200, /*BR19200, BR38400, BR57600,*/ BR9600};
  altera_16550_uart_state* uart_0;
  altera_16550_uart_state* uart_1;

  printf("================================ UART FIFO Mode Test Starts Here 
=======================================\n");
  uart_0 = altera_16550_uart_open ("/dev/a_16550_uart_0");
  uart_1 = altera_16550_uart_open ("/dev/a_16550_uart_1");

  for (direction=0; direction<2; direction++)
  {
      for (i=0; i<nBaud; i++)
          {
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              UARTDefaultConfig(UART0_Config);
            UARTDefaultConfig(UART1_Config);
            UART0_Config->baudrate=BaudRateCoverage[i];
            UART1_Config->baudrate=BaudRateCoverage[i];
            UART0_Config->fifo_mode = 1;
            UART1_Config->fifo_mode = 1;
              UART0_Config->hwfc = 0;
              UART1_Config->hwfc = 0;
            if(ERROR == alt_16550_uart_config (uart_0, UART0_Config)) return 
ERROR;
            if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return 
ERROR;
            printf("Testing Baud Rate: %d\n", UART0_Config->baudrate);

            switch(direction)
            {
             case 0:
                printf("Ping Pong FIFO Test: UART#0 to UART#1\n");
                CharCounter=altera_16550_uart_write(uart_0, &TXMessage, 
strlen(TXMessage), 0);
                //usleep(50000);
                if(ERROR== altera_16550_uart_read(uart_1,  RXMessage, 
strlen(TXMessage), 0)) return ERROR;
                if(strcmp(TXMessage, RXMessage)==0) Match=1; else Match=0;
                printf("Sent:'%s' CharCount:%d, Received:'%s' CharCount:%d, 
Match:%d\n", TXMessage, CharCounter, RXMessage, strlen(RXMessage), Match);
                if(Match==0) return ERROR;
                break;
             case 1:
                printf("Ping Pong FIFO Test: UART#1 to UART#0\n");
                CharCounter=altera_16550_uart_write(uart_1, &TXMessage, 
strlen(TXMessage), 0);
                //usleep(50000);
                if(ERROR== altera_16550_uart_read(uart_0,  RXMessage, 
strlen(TXMessage), 0)) return ERROR;
                if(strcmp(TXMessage, RXMessage)==0) Match=1; else Match=0;
                printf("Sent:'%s' CharCount:%d, Received:'%s' CharCount:%d, 
Match:%d\n", TXMessage, CharCounter, RXMessage, strlen(RXMessage), Match);
                if(Match==0) return ERROR;
                break;
             default:
                 break;
            }
            //usleep(100000);
          }
  }
  free(UART0_Config);
  free(UART1_Config);
  return SUCCESS;
}

int main()
{
  int result=0;

  result = UARTBaudRateTest();
  if(result==ERROR)
  {
   printf("UARTBaudRateTest FAILED\n");
   return ERROR;
  }

  result = UARTLineControlTest();
  if(result==ERROR)
  {
   printf("UARTLineControlTest FAILED\n");
   return ERROR;
  }

  result = UARTFIFOModeTest();
  if(result==ERROR)
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  {
    printf("UARTFIFOModeTest FAILED\n");
    return ERROR;
  }
  printf("\n\nALL TESTS PASS\n\n");
  return 0;
}

7.4 Address Map and Register Descriptions

Table 50. altr_uart_csr Address Map

Register Offset Width Access Reset Value Description

rbr_thr_dll 0x0 32 RW 0x00000000 Rx Buffer, Tx Holding, and Divisor
Latch Low

ier_dlh 0x4 32 RW 0x00000000 Interrupt Enable and Divisor Latch
High

iir 0x8 32 R 0x00000001 Interrupt Identity Register (when
read)

fcr 0x8 32 W 0x00000000 FIFO Control (when written)

lcr 0xC 32 RW 0x00000000 Line Control Register

mcr 0x10 32 RW 0x00000000 Modem Control Register

lsr 0x14 32 R 0x00000060 Line Status Register

msr 0x18 32 R 0x00000000 Modem Status Register

scr 0x1C 32 RW 0x00000000 Scratchpad Register

afr 0x100 32 RW 0x00000000 Additional Features Register

tx_low 0x104 32 RW 0x00000000 Transmit FIFO Low Watermark
Register

Note: RC-Read to Clear
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7.4.1 rbr_thr_dll

Identifier Title Offset Access Reset
Value

Description

rbr_thr_dll Rx Buffer, Tx
Holding, and
Divisor Latch
Low

0x0 RW 0x00000
00

This is a multi-function register. This register
holds receives and transmit data and controls
the least-signficant 8 bits of the baud rate
divisor.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rbr_thr_dll

Table 51. rbr_thr_dll Fields

Bit Name/Identifier Description Access Reset

[31:8] - Reserved R 0x0

[7:0] rbr_thr_dll • Receive Buffer Register:
This register contains the data byte received on the
serial input port (sin). The data in this register is valid
only if the Data Ready (LSR[0] is set to 1). If FIFOs
are disabled (FCR[0] is cleared to 0) the data in the
RBR must be read before the next data arrives,
otherwise it will be overwritten, resulting in an overrun
error. If FIFOs are enabled (FCR[0] set to 1) this
register accesses the head of the receive FIFO. If the
receive FIFO is full, and this register is not read before
the next data character arrives, then the data already
in the FIFO will be preserved but any incoming data
will be lost. An overrun error will also occur.

• Transmit Holding Register:
This register contains data to be transmitted on the
serial output port (sout). Data should only be written
to the THR when the THR Empty bit (LSR[5] is set to
1). If FIFOs are disabled (FCR[0] is set to 0) and THRE
is set to 1, writing a single character to the THR clears
the THRE. Any additional writes to the THR before the
THRE is set again causes the THR data to be
overwritten. If FIFO's are enabled (FCR[0] is set to 1)
and THRE is set, the FIFO can be filled up to a pre-
configured depth (FIFO_DEPTH). Any attempt to write
data when the FIFO is full results in the write data
being lost.

• Divisor Latch Low:
This register makes up the lower 8-bits of a 16-bit,
Read/write, Divisor Latch register that contains the
baud rate divisor for the UART. This register may only
be accessed when the DLAB bit (LCR[7] is set to 1).
The output baud rate is equal to the system clock (clk)
frequency divided by sixteen times the value of the
baud rate divisor, as follows:
baud rate = (system clock freq) / (16 * divisor)
Note: With the Divisor Latch Registers (DLL and DLH)

set to zero, the baud clock is disabled and no
serial communications will occur. Also, once the
DLL is set, at least 8 system clock cycles should
be allowed to pass before transmitting or
receiving data.

RW 0x00
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7.4.2 ier_dlh

Identifier Title Offset Access Reset
Value

Description

ier_dlh Interrupt
Enable and
Divisor Latch
High

0x4 RW 0x00000
000

The ier_dlh (Interrupt Enable Register) may
only be accessed when the DLAB bit [7] of
the LCR Register is set to 0. Allows control of
the Interrupt Enables for transmit and receive
functions.This is a multi-function register. This
register enables/disables receive and transmit
interrupts and also controls the most-
significant 8-bits of the baud rate divisor.
The Divisor Latch High Register is accessed
when the DLAB bit (LCR[7] is set to 1).
Bits[7:0] contain the high order 8-bits of the
baud rate divisor. The output baud rate is
equal to the system clock (clk) frequency
divided by sixteen times the value of the baud
rate divisor, as follows:
baud rate = (system clock freq) / (16 *
divisor)
Note: With the Divisor Latch Registers (DLL

and DLH) set to zero, the baud clock is
disabled and no serial communications
will occur. Also, once the DLL is set, at
least 8 system clock cycles should be
allowed to pass before transmitting or
receiving data.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- dlh7_4 edssi
_dhl3

elsi_d
hl2

etbei
_dlh1

erbfi_
dlh0

Table 52. ier_dlh Fields

Bit Name/Identifier Description Access Reset

[31:8] - Reserved R 0x0

[7:4] DLH[7:4] (dlh7_4) • Divisor Latch High Register:
Bit 4, 5, 6 and 7 of DLH value.

RW 0x0

[3] DLH[3] and Enable Modem
Status Interrupt
(edssi_dhl3)

• Divisor Latch High Register:
Bit 3 of DLH value.

• Interrupt Enable Register:
This is used to enable/disable the generation of
Modem Status Interrupts. This is the fourth highest
priority interrupt.

RW 0x0
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Bit Name/Identifier Description Access Reset

[2] DLH[2] and Enable Receiver
Line Status (elsi_dhl2)

• Divisor Latch High Register:
Bit 2 of DLH value.

• Interrupt Enable Register:
This is used to enable/disable the generation of
Receiver Line Status Interrupt. This is the highest
priority interrupt

RW 0x0

[1] DLH[1] and Transmit Data
Interrupt Control
(etbei_dlh1)

• Divisor Latch High Register:
Bit 1 of DLH value.

• Interrupt Enable Register:
Enable Transmit Holding Register Empty Interrupt. This
is used to enable/disable the generation of Transmitter
Holding Register Empty Interrupt. This is the third
highest priority interrupt.

RW 0x0

[0] DLH[0] and Receive Data
Interrupt Enable
(erbfi_dlh0)

• Divisor Latch High Register:
Bit 0 of DLH value.

• Interrupt Enable Register:
This is used to enable/disable the generation of the
Receive Data Available Interrupt and the Character
Timeout Interrupt (if FIFO's enabled). These are the
second highest priority interrupts.

RW 0x0
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7.4.3 iir

Identifier Title Offset Access Reset
Value

Description

iir Interrupt
Identity
Register

0x8 R 0x00000
001

Returns interrupt identification and FIFO
enable/disable when read.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- fifose - id

Table 53. iir Fields

Bit Name/Identifier Description Access Reset

[31:8] - Reserved R 0x0

[7:6] FIFOs Enabled (fifose) The FIFOs Enabled is used to indicate whether the FIFO's
are enabled or disabled.

R 0x0

[5:4] - Reserved R 0x0

[3:0] Interrupt ID (id) The Interrupt ID indicates the highest priority pending
interrupt. Refer to the Table 54 on page 74 table below
for more details.

R 0x1

Table 54. Interrupt Priority

IIR ID Interrupt Priority

4'b0000 Modem status 5th

4'b0001 No interrupt pending 6th

4'b0010 THR empty (reflect TX_Low empty
threshold if ARF[0] is '1)

4th

4'b0100 Received data available 2nd

4'b0110 Reciever line status 1st

4'b1100 Character timeout 3rd
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7.4.4 fcr

Identifier Title Offset Access Reset
Value

Description

fcr FIFO Control 0x8 W 0x00000
000

Controls FIFO operation when written.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rt - dma
m

xfifor rfifor fifoe

Table 55. fcr Fields

Bit Name/Identifier Description Access Reset

[31:8] - Reserved R 0x0

[7:6] Rx Trigger Level (rt) This register is configured to implement FIFOs RxTrigger
(or RT). This is used to select the trigger level in the
receiver FIFO at which the Received Data Available
Interrupt will be generated. In auto flow control mode it is
used to determine when the rts_n signal will be de-
asserted
The following trigger levels are supported:
• 00 - One character in FIFO
• 01 - FIFO 1/4 full
• 10 - FIFO 1/2 ful
• 11 - FIFO two less than full

W 0x0

[5:4] - Reserved R 0x0

[3] DMA Mode (dmam) This determines the DMA signalling mode used for the
uart_dma_tx_req_n and uart_dma_rx_req_n output
signals when additional DMA handshaking signals are not
selected. DMA mode 0 supports single DMA data transfers
at a time. In mode 0, the uart_dma_tx_req_n signal
goes active low under the following conditions:
• When the Transmitter Holding Register is empty in

non-FIFO mode.
• When the transmitter FIFO is empty in FIFO mode.
It goes inactive under the following conditions:
• When a single character has been written into the

Transmitter Holding Register or transmitter FIFO.
• When the transmitter FIFO is above the threshold.
DMA mode 1 supports multi-DMA data transfers, where
multiple transfers are made continuously until the receiver
FIFO has been emptied or the transmit FIFO has been
filled. In mode 1 the uart_dma_tx_req_n signal is
asserted under the following condition:
• When the transmitter FIFO is empty.

W 0x0

continued...   
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Bit Name/Identifier Description Access Reset

[2] Tx FIFO Reset (xfifor) This bit resets the control portion of the transmit FIFO and
treats the FIFO as empty. Note that this bit is 'self-
clearing' and it is not necessary to clear this bit. Please
allow for 8 clock cycles to pass after changing this register
bit before reading from RBR or writing to THR.

W 0x0

[1] Rx FIFO Reset (rfifor) Resets the control portion of the receive FIFO and treats
the FIFO as empty. Note that this bit is self-clearing' and it
is not necessary to clear this bit. Allow for 8 clock cycles
to pass after changing this register bit before reading
from RBR or writing to THR.

W 0x0

[0] FIFO Enable (fifoe) This bit enables/disables the transmit (Tx) and receive
(Rx ) FIFO's. Whenever the value of this bit is changed
both the Tx and Rx controller portion of FIFO's will be
reset.
Any existing data in both Tx and Rx FIFO will be lost when
this bit is changed. Please allow for 8 clock cycles to pass
after changing this register bit before reading from RBR or
writing to THR.

W 0x0
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7.4.5 lcr

Identifier Title Offset Access Reset
Value

Description

lcr Line Control
Register

0xC RW 0x00000
000

Formats serial data.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- dls9 dlab break sp eps pen stop dls

Table 56. lcr Fields Description

Bit Name/Identifier Description Access Reset

[31:9] - Reserved R 0x0

[8] Data Length Select (dls9) Issue 1'b1 to LCR[8] and 2'b00 to LCR[1:0] to turn on 9
data bits per character that the peripheral will transmit
and receive.

RW 0x0

[7] Divisor Latch Access Bit
(dlab)

This is used to enable reading and writing of the Divisor
Latch register (DLL and DLH) to set the baud rate of the
UART. This bit must be cleared after initial baud rate setup
in order to access other registers.

RW 0x0

[6] Break Control Bit (break) This is used to cause a break condition to be transmitted
to the receiving device. If set to one the serial output is
forced to the spacing (logic 0) state until the Break bit is
cleared.

RW 0x0

[5] Stick Parity (sp) The SP bit works in conjunction with the EPS and PEN
bits. When odd parity is selected (EPS = 0), the PARITY
bit is transmitted and checked as set. When even parity is
selected (EPS = 1), the PARITY bit is transmitted and
checked as cleared.

RW 0x0

[4] Even Parity Select (eps) This is used to select between even and odd parity, when
parity is enabled (PEN set to one). If set to one, an even
number of logic '1's is transmitted or checked. If set to
zero, an odd number of logic '1's is transmitted or
checked.

RW 0x0

[3] Parity Enable (pen) This bit is used to enable and disable parity generation
and detection in a transmitted and received data
character.

RW 0x0

[2] Stop Bits (stop) Number of stop bits. This is used to select the number of
stop bits per character that the peripheral will transmit
and receive. Note that regardless of the number of stop
bits selected the receiver will only check the first stop bit.

RW 0x0

[1:0] Data Length Select (dls) Selects the number of data bits per character that the
peripheral will transmit and receive.
• 0-5 data bits per character
• 1-6 data bits per character
• 2-7 data bits per character
• 3-8 data bits per character

RW 0x0
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7.4.6 mcr

Identifier Title Offset Access Reset
Value

Description

mcr Modem
Control
Register

0x10 RW 0x00000
000

Reports various operations of the modem
signals.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- afce loopb
ack

out2 out1 rts dtr

Table 57. mcr Fields Descriptions

Bit Name/Identifier Description Access Reset

[31:6] - Reserved R 0x0

[5] Hardware Auto Flow Control
Enable ( afce)

When FIFOs are enabled (FCR[0]), the Auto Flow Control
enable bits are active. This enabled UART to dynamically
assert and deassert rts_n based on Receive FIFO trigger
level

RW 0x0

[4] LoopBack Bit (loopback) This is used to put the UART into a diagnostic mode for
test purposes. If UART mode is NOT active, bit [6] of the
modem control register MCR is set to zero, data on the
sout line is held high, while serial data output is looped
back to the sin line, internally. In this mode all the
interrupts are fully functional. Also, in loopback mode, the
modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are
disconnected and the modem control outputs (dtr_n,
rts_n, out1_n, out2_n) are loopedback to the inputs,
internally.

RW 0x0

[3] Out2 (out2) This is used to directly control the user-designated
out2_n output. The value written to this location is
inverted and driven out on out2_n

RW 0x0

[2] Out1 (out1) This is used to directly control the user-designated
out1_n output. The value written to this location is
inverted and driven out on out1_n pin.

RW 0x0

[1] Request to Send (rts) This is used to directly control the Request to Send
(rts_n) output. The Request to Send (rts_n) output is
used to inform the modem or data set that the UART is
ready to exchange data. When Auto RTS Flow Control is
not enabled (MCR[5] set to zero), the rts_n signal is set
low by programming this register to a high. If Auto Flow
Control is active (MCR[5] set to 1) and FIFO's enable
(FCR[0] set to 1), the rts_n output is controlled in the
same way, but is also gated with the receiver FIFO
threshold trigger (rts_n is inactive high when above the
threshold). The rts_n signal will be de-asserted when
this register is set low.

RW 0x0

[0] Data Terminal Ready (dtr) This is used to directly control the Data Terminal Ready
output. The value written to this location is inverted and
driven out on uart_dtr_n. The Data Terminal Ready
output is used to inform the modem or data set that the
UART is ready to establish communications.

RW 0x0
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7.4.7 lsr

Identifier Title Offset Access Reset
Value

Description

lsr Line Status
Register

0x14 R 0x00000
060

Reports status of transmit and receive.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rfe temt thre bi fe pe oe dr

Table 58. lsr Fields

Bit Name/ Identifier Description Access Reset

[31:8] - Reserved R 0x0

[7] Receiver FIFO Error bit
(rfe)

This bit is only relevant when FIFO's are enabled (FCR[0]
set to one). This is used to indicate if there is at least one
parity error, framing error, or break indication in the FIFO.
This bit is cleared when the LSR is read and the character
with the error is at the top of the receiver FIFO and there
are no subsequent errors in the FIFO.

R 0x0

[6] Transmitter Empty bit
(temt)

If in FIFO mode and FIFO's enabled (FCR[0] set to one),
this bit is set whenever the Transmitter Shift Register and
the FIFO are both empty. If FIFO's are disabled, this bit is
set whenever the Transmitter Holding Register and the
Transmitter Shift Register are both empty. Indicator is
cleared when new data is written into the THR or Transmit
FIFO.

R 0x1

[5] Transmit Holding Register
Empty bit (thre)

This bit indicates that the THR or Tx FIFO is empty. This
bit is set when data is transferred from the THR or Tx
FIFO to the transmitter shift register and no new data has
been written to the THR or Tx FIFO. This also causes a
THRE Interrupt to execute, if the THRE Interrupt is
enabled.

R 0x1

[4] Break Interrupt (bi) This is used to indicate the detection of a break sequence
on the serial input data. Set whenever the serial input,
sin, is held in a logic 0 state for longer than the sum of
start time + data bits + parity + stop bits. A break
condition on serial input causes one and only one
character, consisting of all zeros, to be received by the
UART. The character associated with the break condition is
carried through the FIFO and is revealed when the
character is at the top of the FIFO. This bit always stays in
sync with the associated character in RBR. If the current
associated character is read through RBR, this bit will be
updated to be in sync with the next character in RBR.
Reading the LSR clears the BI bit.

RC 0x0

[3] Framing Error (fe) This is used to indicate the occurrence of a framing error
in the receiver. A framing error occurs when the receiver
does not detect a valid STOP bit in the received data. In
the FIFO mode, since the framing error is associated with
a character received, it is revealed when the character
with the framing error is at the top of the FIFO. When a
framing error occurs the UART will try to resynchronize. It
does this by assuming that the error was due to the start
bit of the next character and then continues receiving the

RC 0x0

continued...   
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Bit Name/ Identifier Description Access Reset

other bit data, and/or parity and stop. It should be noted
that the Framing Error (FE) bit(LSR[3]) will be set if a
break interrupt has occurred, as indicated by a Break
Interrupt BIT bit (LSR[4]). This bit always stays in sync
with the associated character in RBR. If the current
associated character is read through RBR, this bit will be
updated to be in sync with the next character in RBR.
Reading the LSR clears the FE bit.

[2] Parity Error (pe) This is used to indicate the occurrence of a parity error in
the receiver if the Parity Enable (PEN) bit (LCR[3]) is set.
Since the parity error is associated with a character
received, it is revealed when the character with the parity
error arrives at the top of the FIFO. It should be noted
that the Parity Error (PE) bit (LSR[2]) will be set if a break
interrupt has occurred, as indicated by Break Interrupt
(BI) bit (LSR[4]). In this situation, the Parity Error bit is
set depending on the combination of EPS (LCR[4]) and
DLS (LCR[1:0]). This bit always stays in sync with the
associated character in RBR. If the current associated
character is read through RBR, this bit will be updated to
be in sync with the next character in RBR. Reading the
LSR clears the PE bit.

RC 0x0

[1] Overrun error bit (oe) This is used to indicate the occurrence of an overrun error.
This occurs if a new data character was received before
the previous data was read. In the non-FIFO mode, the
OE bit is set when a new character arrives in the receiver
before the previous character was read from the RBR.
When this happens, the data in the RBR is overwritten. In
the FIFO mode, an overrun error occurs when the FIFO is
full and new character arrives at the receiver. The data in
the FIFO is retained and the data in the receive shift
register is lost.Reading the LSR clears the OE bit.

RC 0x0

[0] Data Ready bit (dr) This is used to indicate that the receiver contains at least
one character in the RBR or the receiver FIFO. This bit is
cleared when the RBR is read in the non-FIFO mode, or
when the receiver FIFO is empty, in the FIFO mode.

R 0x0
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7.4.8 msr

Identifier Title Offset Access Reset
Value

Description

msr Modem
Status
Register

0x18 R 0x00000
000

It should be noted that whenever bits 0, 1, 2
or 3 are set to logic one, to indicate a change
on the modem control inputs, a modem
status interrupt will be generated if enabled
via the IER regardless of when the change
occurred. Since the delta bits (bits 0, 1, 3)
can get set after a reset if their respective
modem signals are active (see individual bits
for details), a read of the MSR after reset can
be performed to prevent unwanted interrupts.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- dcd ri dsr cts ddcd teri ddsr dcts

Table 59. msr Fields

Bit Name/Identifier Description Access Res
et

[31:8] - Reserved R 0x0

[7] Data Carrier Detect
(dcd)

This bit is the complement of the modem control
line (dcd_n). This bit is used to indicate the
current state of dcd_n. When the Data Carrier
Detect input (dcd_n) is asserted it is an indication
that the carrier has been detected by the modem
or data set.

R 0x0

[6] Ring Indicator (ri) This bit is the complement of modem control line
(ri_n). This bit is used to indicate the current
state of ri_n. When the Ring Indicator input
(ri_n) is asserted it is an indication that a
telephone ringing signal has been received by the
modem or data set.

R 0x0

[5] Data Set Ready (dsr) This bit is the complement of modem control line
dsr_n. This bit is used to indicate the current
state of dsr_n. When the Data Set Ready input
(dsr_n) is asserted it is an indication that the
modem or data set is ready to establish
communications with the uart.

R 0x0

[4] Clear to Send (cts) This bit is the complement of modem control line
cts_n. This bit is used to indicate the current
state of cts_n. When the Clear to Send input
(cts_n) is asserted it is an indication that the
modem or data set is ready to exchange data with
the uart.

R 0x0

[3] Delta Data Carrier
Detect (ddcd)

This is used to indicate that the modem control
line dcd_n has changed since the last time the
MSR was read. Reading the MSR clears the DDCD
bit.

RC 0x0
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Bit Name/Identifier Description Access Res
et

Note: If the DDCD bit is not set and the dcd_n
signal is asserted (low) and a reset occurs
(software or otherwise), then the DDCD bit
will get set when the reset is removed if
the dcd_n signal remains asserted.

[2] Trailing Edge of Ring
Indicator (teri)

This is used to indicate that a change on the input
ri_n (from an active low, to an inactive high
state) has occurred since the last time the MSR
was read. Reading the MSR clears the TERI bit.

RC 0x0

[1] Delta Data Set Ready
(ddsr)

This is used to indicate that the modem control
line dsr_n has changed since the last time the
MSR was read. Reading the MSR clears the DDSR
bit.
Note: If the DDSR bit is not set and the dsr_n

signal is asserted (low) and a reset occurs
(software or otherwise), then the DDSR bit
will get set when the reset is removed if
the dsr_n signal remains asserted.

RC 0x0

[0] Delta Clear to Send
(dcts)

This is used to indicate that the modem control
line cts_n has changed since the last time the
MSR was read. Reading the MSR clears the DCTS
bit.
Note: If the DCTS bit is not set and the cts_n

signal is asserted (low) and a reset occurs
(software or otherwise), then the DCTS bit
will get set when the reset is removed if
the cts_n signal remains asserted.

RC 0x0
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7.4.9 scr

Identifier Title Offset Access Reset
Value

Description

scr Scratchpad
Register

0x1C RW 0x00000
00

Scratchpad Register

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- scr

Table 60. scr Fields

Bit Name Description Access Reset

[31:8] - Reserved R 0x0

[7:0] Scratchpad Register (scr) This register is for programmers to use as a temporary
storage space.

RW 0x0
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7.4.10 afr

Identifier Title Offset Access Reset
Value

Description

afr Additional
Features
Register

0x100 RW 0x00000
000

These registers enable additional features in
the soft UART controller. These features are
specific to Intel FPGA.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- tx_lo
w_en

Table 61. rbr_thr_dll Fields

Bit Name/Identifier Description Access Reset

[31:1] - Reserved R 0x0

[0] Transmit FIFO Low
Watermark Enable Register
(tx_low_en)

This bit controls the Tx FIFO Low Watermark feature. This
feature requires FIFO to be enabled (FCR[0]). When
enabled, the UART will send a Transmit Holding Register
Empty status interrupt when the Transmit FIFO level is at
or below the value stored in tx_low. Legal values for
tx_low can range from zero up to depth of FIFO minus
two. UART behavior is undefined when tx_low is set to
illegal values.
• 1 - Transmit FIFO Low Watermark is set by tx_low
• 0 - Transmit FIFO Low Watermark is unset
This value must only be changed when the Transmit FIFO
is empty or before FIFO is enabled (FCR[0]). This register
is meant to be changed during UART initialization before
active traffic is sent. The Transmit FIFO should be reset
using FCR[2] after any changes to this value.

RW 0x0
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7.4.11 tx_low

Identifier Title Offset Access Reset
Value

Description

tx_low Transmit
FIFO Low
Watermark
Register

ox104 RW 0x00000
000

This register is used to set the value of the
Transmit FIFO Low Watermark.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- value

Table 62. rbr_thr_dll Fields

Bit Name/Identifier Description Access Reset

[31:9] - Reserved R 0x0

[8:0] Transmit FIFO Low
Watermark (value)

Set the Transmit FIFO Low Watermark Value.
The lowest legal value is zero
The highest legal value is two less than the FIFO Depth
This value must only be changed when the Transmit FIFO
is empty or before FIFO is enabled (FCR[0]).

RW 0x00

7.5 Document Revision History

Table 63. 16550 UART Core Revision History

Date Version Changes

November 2017 2017.11.06 Removed the minimum clock requirement in the Table: Clock and Reset
Signal Interface.

October 2016 2016.10.28 Two new registers:
• afr on page 84
• tx_low on page 85
Updated:
• lsr on page 79 Bit [5]
• fcr on page 75 Bit [7:6]
• New table added to iir on page 74 section

December 2015 2015.12.16 Product ID changed in "16550 UART Release Information" section.

November 2015 2015.11.06 Updated the following topics:
• Core Overview on page 51
• Feature Description

— Table 30 on page 51
• General Architecture

— Figure 17 on page 54
• Configuration Parameters

— Table 37 on page 56
• DMA Support on page 56
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Date Version Changes

• Supported Features
— Table 41 on page 61

• Configuration
— Figure 24 on page 62

• UART Device Structure on page 64
— Example 1 and 2

• Address Map and Register Descriptions on page 70

June 2015 2015.06.12 • Added "16550 UART General Programming Flow Chart" section
• Added "16550 UART Release Information" section
• Added "Address Map and Register Descriptions" section
• Added Stick parity/Force parity feature into the "UART Features and

Configurability" table in the "Feature Description" section
• Updated "Interface" section with sout_oe signal details in the "Flow

Control" table
• Updated "Underrun" section

July 2014 2014.07.24 Initial Release.
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8 UART Core

8.1 Core Overview

The UART core with Avalon interface implements a method to communicate serial
character streams between an embedded system on an Intel FPGA and an external
device. The core implements the RS-232 protocol timing, and provides adjustable
baud rate, parity, stop, and data bits. The feature set is configurable, allowing
designers to implement just the necessary functionality for a given system.

The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that allows
Avalon-MM master peripherals (such as a Nios II processor) to communicate with the
core simply by reading and writing control and data registers.

8.2 Functional Description

Figure 25. Block Diagram of the UART Core in a Typical System
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The core has two user-visible parts:

• The register file, which is accessed via the Avalon-MM slave port

• The RS-232 signals, RXD, TXD, CTS, and RTS

8.2.1 Avalon-MM Slave Interface and Registers

The UART core provides an Avalon-MM slave interface to the internal register file. The
user interface to the UART core consists of six, 16-bit registers: control, status,
rxdata, txdata, divisor, and endofpacket. A master peripheral, such as a Nios
II processor, accesses the registers to control the core and transfer data over the
serial connection.
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The UART core provides an active-high interrupt request (IRQ) output that can request
an interrupt when new data has been received, or when the core is ready to transmit
another character. For further details, refer to the Interrupt Behavior section.

For more information, refer to Interval Timer Core section.

For details about the Avalon-MM interface, refer to the Avalon Interface Specifications.

8.2.2 RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive logic. The
UART core sends and receives serial data via the TXD and RXD ports. The I/O buffers
on most Intel FPGA families do not comply with RS-232 voltage levels, and may be
damaged if driven directly by signals from an RS-232 connector. To comply with
RS-232 voltage signaling specifications, an external level-shifting buffer is required
(for example, Maxim MAX3237) between the FPGA I/O pins and the external RS-232
connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter inside the
FPGA can be used to reverse the polarity of any of the RS-232 signals, if necessary.

8.2.3 Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register and a
corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM master peripherals
write the txdata holding register via the Avalon-MM slave port. The transmit shift
register is loaded from the txdata register automatically when a serial transmit shift
operation is not currently in progress. The transmit shift register directly feeds the
TXD output. Data is shifted out to TXD LSB first.

These two registers provide double buffering. A master peripheral can write a new
value into the txdata register while the previously written character is being shifted
out. The master peripheral can monitor the transmitter's status by reading the
status register's transmitter ready (TRDY), transmitter shift register empty (tmt),
and transmitter overrun error (TOE) bits.

The transmitter logic automatically inserts the correct number of start, stop, and
parity bits in the serial TXD data stream as required by the RS-232 specification.

8.2.4 Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and a
corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM master peripherals
read the rxdata holding register via the Avalon-MM slave port. The rxdata holding
register is loaded from the receiver shift register automatically every time a new
character is fully received.

These two registers provide double buffering. The rxdata register can hold a
previously received character while the subsequent character is being shifted into the
receiver shift register.

A master peripheral can monitor the receiver's status by reading the status
register's read-ready (RRDY), receiver-overrun error (ROE), break detect (BRK), parity
error (PE), and framing error (FE) bits. The receiver logic automatically detects the
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correct number of start, stop, and parity bits in the serial RXD stream as required by
the RS-232 specification. The receiver logic checks for four exceptional conditions,
frame error, parity error, receive overrun error, and break, in the received data and
sets corresponding status register bits.

8.2.5 Baud Rate Generation

The UART core's internal baud clock is derived from the Avalon-MM clock input. The
internal baud clock is generated by a clock divider. The divisor value can come from
one of the following sources:

• A constant value specified at system generation time

• The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at system
generation time, the divisor value is fixed and the baud rate cannot be altered.

8.3 Instantiating the Core

Instantiating the UART in hardware creates at least two I/O ports for each UART core:
An RXD input, and a TXD output. The following sections describe the available options.

8.3.1 Configuration Settings

This section describes the configuration settings.

8.3.1.1 Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232 connections.
The baud rate can be configured in one of two ways:

• Fixed rate—The baud rate is fixed at system generation time and cannot be
changed via the Avalon-MM slave port.

• Variable rate—The baud rate can vary, based on a clock divisor value held in the
divisor register. A master peripheral changes the baud rate by writing new
values to the divisor register.

The baud rate is calculated based on the clock frequency provided by the Avalon-
MM interface. Changing the system clock frequency in hardware without
regenerating the UART core hardware results in incorrect signaling.

The baud rate is calculated based on the clock frequency provided by the Avalon-MM
interface. Changing the system clock frequency in hardware without regenerating the
UART core hardware results in incorrect signaling.

8.3.1.2 Baud Rate (bps) Setting

The Baud Rate setting determines the default baud rate after reset. The Baud Rate
option offers standard preset values.
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The baud rate value is used to calculate an appropriate clock divisor value to
implement the desired baud rate. Baud rate and divisor values are related as shown in
the follow two equations:

Divisor Formula:

divisor int clock frequency
baud  rate

----------------------------------------- 0.5 +(= )

Baud rate Formula:

baud  rate clock frequency
divisor 1+

-----------------------------------------=

8.3.1.3 Baud Rate Can Be Changed By Software Setting

When this setting is on, the hardware includes a 16-bit divisor register at address
offset 4. The divisor register is writable, so the baud rate can be changed by writing
a new value to this register.

When this setting is off, the UART hardware does not include a divisor register. The
UART hardware implements a constant baud divisor, and the value cannot be changed
after system generation. In this case, writing to address offset 4 has no effect, and
reading from address offset 4 produces an undefined result.

8.3.1.4 Data Bits, Stop Bits, Parity

The UART core's parity, data bits and stop bits are configurable. These settings are
fixed at system generation time; they cannot be altered via the register file.

Table 64. Data Bits Settings

Setting Legal Values Description

Data Bits 7, 8, 9 This setting determines the widths of
the txdata, rxdata, and
endofpacket registers.

Stop Bits 1, 2 This setting determines whether the
core transmits 1 or 2 stop bits with
every character. The core always
terminates a receive transaction at the
first stop bit, and ignores all
subsequent stop bits, regardless of this
setting.

Parity None, Even, Odd This setting determines whether the
UART core transmits characters with
parity checking, and whether it expects
received characters to have parity
checking.
When Parity is set to None, the
transmit logic sends data without
including a parity bit, and the receive
logic presumes the incoming data does
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Setting Legal Values Description

not include a parity bit. The PE bit in
the status register is not
implemented; it always reads 0.
When Parity is set to Odd or Even,
the transmit logic computes and inserts
the required parity bit into the
outgoing TXD bitstream, and the
receive logic checks the parity bit in
the incoming RXD bitstream. If the
receiver finds data with incorrect
parity, the PE bit in the status
register is set to 1. When Parity is
Even, the parity bit is 0 if the
character has an even number of 1
bits; otherwise the parity bit is 1.
Similarly, when parity is Odd, the
parity bit is 0 if the character has an
odd number of 1 bits.

8.3.1.5 Synchronizer Stages

The option Synchronizer Stages allows you to specify the length of synchronization
register chains. These register chains are used when a metastable event is likely to
occur and the length specified determines the meantime before failure. The register
chain length, however, affects the latency of the core.

For more information on metastability in Intel FPGA devices, refer to Understanding
Metastability in FPGAs.

For more information on metastability analysis and synchronization register chains,
refer to the Area and Timing Optimization chapter in volume 2 of the Intel Quartus
Prime Handbook.

8.3.1.6 Streaming Data (DMA) Control

The UART core can also optionally include the end-of-packet register.

8.3.1.6.1 Include End-of-Packet Register

When this setting is on, the UART core includes:

• A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data width is
determined by the Data Bits setting.

• EOP bit in the status register.

• IEOP bit in the control register.

• endofpacket signal.

EOP detection can be used with a DMA controller, for example, to implement a UART
that automatically writes received characters to memory until a specified character is
encountered in the incoming RXD stream. The terminating (EOP) character's value is
determined by the endofpacket register.

When the EOP register is disabled, the UART core does not include the EOP resources.
Writing to the endofpacket register has no effect, and reading produces an
undefined value.
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8.3.2 Simulation Settings

When the UART core's logic is generated, a simulation model is also created. The
simulation model offers features to simplify and accelerate simulation of systems that
use the UART core. Changes to the simulation settings do not affect the behavior of
the UART core in hardware; the settings affect only functional simulation.

Note: For simulation, the UART core will not respond to data received on the rxdata
register.

For examples of how to use the following settings to simulate Nios II systems, refer to 
AN 351: Simulating Nios II Embedded Processor Designs.

8.3.2.1 Simulated RXD-Input Character Stream

You can enter a character stream that is simulated entering the RXD port upon
simulated system reset. The UART core's MegaWizard™ interface accepts an arbitrary
character string, which is later incorporated into the UART simulation model. After
reset in reset, the string is input into the RXD port character-by-character as the core
is able to accept new data.

8.3.2.2 Prepare Interactive Windows

At system generation time, the UART core generator can create ModelSim macros that
facilitate interaction with the UART model during simulation. You can turn on the
following options:

• Create ModelSim alias to open streaming output window to create a
ModelSim macro that opens a window to display all output from the TXD port.

• Create ModelSim alias to open interactive stimulus window to create a
ModelSim macro that opens a window to accept stimulus for the RXD port. The
window sends any characters typed in the window to the RXD port.

8.3.2.3 Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the system, and
it is seldom useful to simulate the functional model at the true baud rate. For
example, at 115,200 bps, it typically takes thousands of clock cycles to transfer a
single character. The UART simulation model has the ability to run with a constant
clock divisor of 2, allowing the simulated UART to transfer bits at half the system clock
speed, or roughly one character per 20 clock cycles. You can choose one of the
following options for the simulated transmitter baud rate:

• Accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in
simulation.

• Actual (use true baud divisor)—TXD transmits at the actual baud rate, as
determined by the divisor register.

8.4 Simulation Considerations

The simulation features were created for easy simulation of Nios II processor systems
when using the ModelSim simulator. The documentation for the processor documents
the suggested usage of these features. Other usages may be possible, but will require
additional user effort to create a custom simulation process.
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The simulation model is implemented in the UART core's top-level HDL file; the
synthesizable HDL and the simulation HDL are implemented in the same file. The
simulation features are implemented using translate on and translate off
synthesis directives that make certain sections of HDL code visible only to the
synthesis tool.

Do not edit the simulation directives if you are using Intel FPGA recommended
simulation procedures. If you do change the simulation directives for your custom
simulation flow, be aware that Platform Designer overwrites existing files during
system generation. Take precaution so that your changes are not overwritten.

For details about simulating the UART core in Nios II processor systems, refer to 
AN 351: Simulating Nios II Processor Designs.

8.5 Software Programming Model

The following sections describe the software programming model for the UART core,
including the register map and software declarations to access the hardware. For Nios
II processor users, Intel provides hardware abstraction layer (HAL) system library
drivers that enable you to access the UART core using the ANSI C standard library
functions, such as printf() and getchar().

8.5.1 HAL System Library Support

The Intel-provided driver implements a HAL character-mode device driver that
integrates into the HAL system library for Nios II systems. HAL users should access
the UART via the familiar HAL API and the ANSI C standard library, rather than
accessing the UART registers. ioctl() requests are defined that allow HAL users to
control the hardware-dependent aspects of the UART.

Note: If your program uses the HAL device driver to access the UART hardware, accessing
the device registers directly interferes with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to
the UART core's features. Nios II programs treat the UART core as a character mode
device, and send and receive data using the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled in Platform
Designer. Refer to Driver Options: Fast Versus Small Implementations section.

The following code demonstrates the simplest possible usage, printing a message to
stdout using printf(). In this example, the system contains a UART core, and the
HAL system library has been configured to use this device for stdout.

Example 4. Example: Printing Characters to a UART Core as stdout

#include <stdio.h>
int main ()
{
printf("Hello world.\n");
return 0;
}
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The following code demonstrates reading characters from and sending messages to a
UART device using the C standard library. In this example, the system contains a
UART core named uart1 that is not necessarily configured as the stdout device. In
this case, the program treats the device like any other node in the HAL file system.

For more information about the HAL system library, refer to the Nios II Classic
Software Developer's Handbook.

Example 5. Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
 char* msg = "Detected the character 't'.\n";
 FILE* fp;
 char prompt = 0;
 fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
 if (fp)
 {
 while (prompt != 'v')
 { // Loop until we receive a 'v'.
 prompt = getc(fp); // Get a character from the UART.
 if (prompt == 't')
 { // Print a message if character is 't'.
 fwrite (msg, strlen (msg), 1, fp);
 }
 }
 fprintf(fp, "Closing the UART file.\n"); 
 fclose (fp);
 }
 return 0;
}

8.5.1.1 Driver Options: Fast vs Small Implementations

To accommodate the requirements of different types of systems, the UART driver
provides two variants: a fast version and a small version. The fast version is the
default. Both fast and small drivers fully support the C standard library functions and
the HAL API.

The fast driver is an interrupt-driven implementation, which allows the processor to
perform other tasks when the device is not ready to send or receive data. Because the
UART data rate is slow compared to the processor, the fast driver can provide a large
performance benefit for systems that could be performing other tasks in the interim.

The small driver is a polled implementation that waits for the UART hardware before
sending and receiving each character. There are two ways to enable the small footprint
driver:

• Enable the small footprint setting for the HAL system library project. This option
affects device drivers for all devices in the system as well.

• Specify the preprocessor option -DALTERA_AVALON_UART_SMALL. You can use
this option if you want the small, polled implementation of the UART driver, but do
not want to affect the drivers for other devices.

Refer to the help system in the Nios II IDE for details about how to set HAL properties
and preprocessor options.
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8.5.1.2 ioct() Operations

The UART driver supports the ioctl() function to allow HAL-based programs to
request device-specific operations. The table below defines operation requests that the
UART driver supports.

Table 65. UART ioctl() Operations

Request Description

TIOCEXCL Locks the device for exclusive access. Further calls to open() for this device will fail until either
this file descriptor is closed, or the lock is released using the TIOCNXCL ioctl request. For this
request to succeed there can be no other existing file descriptors for this device. The parameter
arg is ignored.

TIOCNXCL Releases a previous exclusive access lock. The parameter arg is ignored.

Additional operation requests are also optionally available for the fast driver only, as
shown in Optional UART ioctl() Operations for the Fast Driver Only Table. To
enable these operations in your program, you must set the preprocessor option -
DALTERA_AVALON_UART_USE_IOCTL.

Table 66. Optional UART ioctl() Operations for the Fast Driver Only

Request Description

TIOCMGET Returns the current configuration of the device by filling in the contents of the input termios structure. 
A pointer to this structure is supplied as the value of the parameter opt.

TIOCMSET Sets the configuration of the device according to the values contained in the input termios structure. 
A pointer to this structure is supplied as the value of the parameter arg.

Note: The termios structure is defined by the Newlib C standard library. You can find the
definition in the file <Nios II EDS install path>/components/
altera_hal/HAL/inc/sys/termios.h.

For details about the ioctl() function, refer to the Nios II Classic Software
Developer's Handbook.

8.5.1.3 Limitations

The HAL driver for the UART core does not support the endofpacket register. Refer to
the Register map section for details.

8.5.2 Software Files

The UART core is accompanied by the following software files. These files define the
low-level interface to the hardware, and provide the HAL drivers. Application
developers should not modify these files.

• altera_avalon_uart_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware. The symbols in this
file are used only by device driver functions.

• altera_avalon_uart.h, altera_avalon_uart.c—These files implement the
UART core device driver for the HAL system library.
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8.5.3 Register Map

Programmers using the HAL API never access the UART core directly via its registers.
In general, the register map is only useful to programmers writing a device driver for
the core.

The Intel-provided HAL device driver accesses the device registers directly. If you are
writing a device driver and the HAL driver is active for the same device, your driver
will conflict and fail to operate.

The UART Core Register map table below shows the register map for the UART core.
Device drivers control and communicate with the core through the memory-mapped
registers.

Table 67. UART Core Register Map

Offset Register
Name

R/W Description/Register Bits

15:13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO Reserved (5) (5) Receive Data

1 txdata WO Reserved (5) (5) Transmit Data

2 status (4) RW Reserve
d

eo
p

cts dct
s

e rrd
y

trd
y

tm
t

toe ro
e

br
k

fe pe

3 control RW Reserve
d

ieo
p

rts idc
ts

trb
k

ie irr
dy

itr
dy

it
mt

ito
e

iro
e

ibr
k

ife ipe

4 divisor (6) RW Baud Rate Divisor

5 endof-
packet (6)

RW Reserved (5) (5) End-of-Packet Value

Some registers and bits are optional. These registers and bits exists in hardware only
if it was enabled at system generation time. Optional registers and bits are noted in
the following sections.

8.5.3.1 rxdata Register

The rxdata register holds data received via the RXD input. When a new character is
fully received via the RXD input, it is transferred into the rxdata register, and the
status register's rrdy bit is set to 1. The status register's rrdy bit is set to 0
when the rxdata register is read. If a character is transferred into the rxdata
register while the rrdy bit is already set (in other words, the previous character was
not retrieved), a receiver-overrun error occurs and the status register's roe bit is

(4) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.

(5) These bits may or may not exist, depending on the Data Width hardware option. If they do
not exist, they read zero, and writing has no effect.

(6) This register may or may not exist, depending on hardware configuration options. If it does not
exist, reading returns an undefined value and writing has no effect.
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set to 1. New characters are always transferred into the rxdata register, regardless of
whether the previous character was read. Writing data to the rxdata register has no
effect.

8.5.3.2 txdata Register

Avalon-MM master peripherals write characters to be transmitted into the txdata
register. Characters should not be written to txdata until the transmitter is ready for
a new character, as indicated by the TRDY bit in the status register. The TRDY bit is
set to 0 when a character is written into the txdata register. The TRDY bit is set to 1
when the character is transferred from the txdata register into the transmitter shift
register. If a character is written to the txdata register when TRDY is 0, the result is
undefined. Reading the txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM master peripheral
writes a first character into the txdata register. The TRDY bit is set to 0, then set to 1
when the character is transferred into the transmitter shift register. The master can
then write a second character into the txdata register, and the TRDY bit is set to 0
again. However, this time the shift register is still busy shifting out the first character
to the TXD output. The TRDY bit is not set to 1 until the first character is fully shifted
out and the second character is automatically transferred into the transmitter shift
register.

8.5.3.3 status Register

The status register consists of individual bits that indicate particular conditions inside
the UART core. Each status bit is associated with a corresponding interrupt-enable bit
in the control register. The status register can be read at any time. Reading does
not change the value of any of the bits. Writing zero to the status register clears the
DCTS, E, TOE, ROE, BRK, FE, and PE bits.

Table 68. status Register Bits

Bit Name Access Description

0 (7) PE RC Parity error. A parity error occurs when the received parity bit has an
unexpected (incorrect) logic level. The PE bit is set to 1 when the core
receives a character with an incorrect parity bit. The PE bit stays set to 1
until it is explicitly cleared by a write to the status register. When the PE
bit is set, reading from the rxdata register produces an undefined value.
If the Parity hardware option is not enabled, no parity checking is
performed and the PE bit always reads 0. Refer to Data Bits, Stop, Bits,
Parity section.

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a
correct stop bit. The FE bit is set to 1 when the core receives a character
with an incorrect stop bit. The FE bit stays set to 1 until it is explicitly
cleared by a write to the status register. When the FE bit is set, reading
from the rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held low
(logic 0) continuously for longer than a full-character time (data bits, plus
start, stop, and parity bits). When a break is detected, the BRK bit is set to
1. The BRK bit stays set to 1 until it is explicitly cleared by a write to the
status register.

continued...   
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Bit Name Access Description

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly received
character is transferred into the rxdata holding register before the previous
character is read (in other words, while the RRDY bit is 1). In this case, the
ROE bit is set to 1, and the previous contents of rxdata are overwritten with
the new character. The ROE bit stays set to 1 until it is explicitly cleared by a
write to the status register.

4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new
character is written to the txdata holding register before the previous
character is transferred into the shift register (in other words, while the
TRDY bit is 0). In this case the TOE bit is set to 1. The TOE bit stays set to 1
until it is explicitly cleared by a write to the status register.

5 TMT R Transmit empty. The TMT bit indicates the transmitter shift register’s current
state. When the shift register is in the process of shifting a character out the
TXD pin, TMT is set to 0. When the shift register is idle (in other words, a
character is not being transmitted) the TMT bit is 1. An Avalon-MM master
peripheral can determine if a transmission is completed (and received at the
other end of a serial link) by checking the TMT bit.

6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s current
state. When the txdata register is empty, it is ready for a new character,
and TRDY is 1. When the txdata register is full, TRDY is 0. An Avalon-MM
master peripheral must wait for TRDY to be 1 before writing new data to
txdata.

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding
register’s current state. When the rxdata register is empty, it is not ready
to be read and RRDY is 0. When a newly received value is transferred into
the rxdata register, RRDY is set to 1. Reading the rxdata register clears
the RRDY bit to 0. An Avalon-MM master peripheral must wait for RRDY to
equal 1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The E bit
is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The E bit and its
corresponding interrupt-enable bit (IE) bit in the control register provide a
convenient method to enable/disable IRQs for all error conditions.
The E bit is set to 0 by a write operation to the status register.

10 (7) DCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a
logic-level transition is detected on the CTS_N input port (sampled
synchronously to the Avalon-MM clock). This bit is set by both falling and
rising transitions on CTS_N. The DCTS bit stays set to 1 until it is explicitly
cleared by a write to the status register.

11 (7) CTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s
instantaneous state (sampled synchronously to the Avalon-MM clock).
The CTS_N input has no effect on the transmit or receive processes. The only
visible effect of the CTS_N input is the state of the CTS and DCTS bits, and
an IRQ that can be generated when the control register’s idcts bit is enabled.

12 (7) EOP R(7) End of packet encountered. The EOP bit is set to 1 by one of the following
events:
An EOP character is written to txdata
An EOP character is read from rxdata
The EOP character is determined by the contents of the endofpacket
register. The EOP bit stays set to 1 until it is explicitly cleared by a write to
the status register.
If the Include End-of-Packet Register hardware option is not enabled, the
EOP bit always reads 0. Refer to Streaming Data (DMA) Control Section.
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8.5.3.4 control Register

The control register consists of individual bits, each controlling an aspect of the
UART core's operation. The value in the control register can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit in the
status register. When both a status bit and its corresponding interrupt-enable bit
are 1, the core generates an IRQ.

Table 69. control Register Bits

Bit Name Access Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW Transmit break. The TRBK bit allows an Avalon-MM master peripheral to
transmit a break character over the TXD output. The TXD signal is forced to 0
when the TRBK bit is set to 1. The TRBK bit overrides any logic level that the
transmitter logic would otherwise drive on the TXD output. The TRBK bit
interferes with any transmission in process. The Avalon-MM master peripheral
must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11(8) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output.
An Avalon-MM master peripheral can write the RTS bit at any time. The value
of the RTS bit only affects the RTS_N output; it has no effect on the
transmitter or receiver logic. Because the RTS_N output is logic negative,
when the RTS bit is 1, a low logic-level (0) is driven on the RTS_N output.

12 IEOP RW Enable interrupt for end-of-packet condition.

8.5.3.5 divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock. The
effective baud rate is determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

(7) This bit is optional and may not exist in hardware.

(8) This bit is optional and may not exist in hardware.
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The divisor register is an optional hardware feature. If the Baud Rate Can Be
Changed By Software hardware option is not enabled, the divisor register does
not exist. In this case, writing divisor has no effect, and reading divisor returns
an undefined value. For more information, refer to the Baud Rate Options section.

8.5.3.6 endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet character for
variable-length DMA transactions. After reset, the default value is zero, which is the
ASCII null character (\0). For more information, refer to status Register bits for the
description for the EOP bit.

The endofpacket register is an optional hardware feature. If the Include end-of-
packet register hardware option is not enabled, the endofpacket register does not
exist. In this case, writing endofpacket has no effect, and reading returns an
undefined value.

8.5.4 Interrupt Behavior

The UART core outputs a single IRQ signal to the Avalon-MM interface, which can
connect to any master peripheral in the system, such as a Nios II processor. The
master peripheral must read the status register to determine the cause of the
interrupt.

Every interrupt condition has an associated bit in the status register and an
interrupt-enable bit in the control register. When any of the interrupt conditions
occur, the associated status bit is set to 1 and remains set until it is explicitly
acknowledged. The IRQ output is asserted when any of the status bits are set while
the corresponding interrupt-enable bit is 1. A master peripheral can acknowledge the
IRQ by clearing the status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot assert an
IRQ until a master peripheral sets one or more of the interrupt-enable bits to 1.

All possible interrupt conditions are listed with their associated status and control
(interrupt-enable) bits. Details of each interrupt condition are provided in the status
bit descriptions.

8.6 Document Revision History

Table 70. UART Core Revision History

Date and Document
Version

Version Changes

June 2016 2016.06.17 Removed content regarding Avalon-MM flow control.

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.
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Date and Document
Version

Version Changes

March 2009 v9.0.0 Added description of a new parameter, Synchronizer stages.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.
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9 Intel FPGA Avalon Mailbox Core

9.1 Core Overview

In a multiprocessor design, each processor may be dedicated to perform a specific
task. Communication between processors becomes crucial if the tasks of each
individual processor are interdependent. Communication between processors may
involve data passing or task control coordination to accomplish certain functions.

The Intel FPGA Avalon Mailbox component provides the medium of communication
between processors. It provides a “message” passing location between the sending
processor and receiving processor. The receiving processor is notified upon a message
arrival. The notification can be in the form of an interrupt issuing to the receiving
processor or it can continue pooling for new messages by the receiving processor.

If more than two processors require “message” passing, multiple Mailboxes can be
instantiated between the two processors. Each Intel FPGA Avalon Mailbox corresponds
to one direction message passing.

9.2 Functional Description

Intel FPGA Avalon Mailbox provides two 32-bit registers for message passing between
processors, Command register (0x0) and Pointer register (0x1). The message sender
processor and message receiver processor have individual Avalon Memory Mapped
(Avalon-MM) interfaces to a Mailbox component. A write to the command register by
the sender processor indicates a pending message in the Mailbox and an interrupt will
be issued to the receiver processor. Upon retrieval of the message by the receiver
processor via a read transaction, the message is consumed, Mailbox is empty. The
status register (0x2) is used to indicate if the Mailbox is full or empty.

The Mailbox Avalon-MM interface which receives messages, or identified as sender
interface, will back pressure the sender if there is message pending in the Mailbox.
This will ensure every single message passed into the Mailbox is not overwritten. Upon
message arrival, the receiving processor will then receive a level interrupt by the
Mailbox. The interrupt will hold high until the single message is retrieved from the
Mailbox via the Avalon-MM interface of receiving processor.

In addition, the Interrupt Masking Register (0x3) is writable by the Avalon-MM
interface to mask its dedicated interrupt output. For example, receiver interface will be
able to set the mask bit to mask off the message pending interrupt generated by
Mailbox. Meanwhile, sender interface will be able to set the mask bit to mask off the
message space interrupt output.
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Figure 26. Intel FPGA Avalon Mailbox (simple) Block Diagram
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The Mailbox is clocked with single source. Both of the Avalon-MM Slave interfaces have
its individual function to set and clear the Full bit and Message Pending bit. The
Avalon-MM Slave of the sender processor will only set the status bits, while the
Avalon-MM Slave of the receiver processor only clears the status bit.

An interrupt is derived from the Status register bits. It will remain high until the
message in the Mailbox is read.

9.2.1 Message Sending and Retrieval Process

The following are steps needed to send and receive messages through the Intel FPGA
Avalon Mailbox (simple) component:

1. A process or master that intends to send a message will write to the Mailbox’s
Pointer register at address offset 0x1, then only to the Command register at
address offset 0x0. Writing to the Command register indicates the completion of a
message passing into the Mailbox.

2. When there is a message pending in the Mailbox, a level interrupt signal is issued
to the processor that should receive the message. Optionally, the receiver
processor may choose to poll the Status register at address offset 0x2 to
determine if any message has arrived, if the interrupt signal is not used.

3. The process or master that needs to receive the message reads the Mailbox’s
Pointer register and then the Command register through the connected Avalon-MM
interface. Upon reading of Command register, the message is considered
delivered, and the Mailbox is empty.

9.2.2 Registers of Component

The following table illustrates the Mailbox registers map that is observed by each
processor from its Avalon-MM interfaces.
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Table 71. Mailbox Register Map

Word Address Offset Register/ Queue Name Attribute

0x0 Command register R/W for sender, RO for receiver

0x1 Pointer register R/W for sender, RO for receiver

0x2 Status register RO

0x3 Interrupt Masking register Read (R) for both sender and receiver.
Sender can only write to Message
Space Interrupt Mask bit, Receiver can
only write to Message Pending
Interrupt bit.

9.2.2.1 Command Register

The Command register is a 32-bit register which contains a user defined command to
be passed between processors. This register is read-writeable via Avalon-MM Slave
(sender). However it is only readable by the Avalon-MM Slave (receiver) interface.

9.2.2.2 Pointer Register

Instead of passing huge data via the Mailbox, a Pointer register is introduced. The
Pointer register contains the 32-bit address to the payload of the message. A payload
could be the raw data to be passed to the receiving processor for further processing.
However, a message could contain zero payload or data for processing. A write to the
Pointer may not be necessary for a message passing.

This register is read-writeable via Avalon-MM Slave (sender). However it is only
readable by Avalon-MM Slave (receiver) interface.

9.2.2.3 Status Register

The Status register presents the full or empty status of the Mailbox. As the Mailbox
can only contain one message at a time, the full bit status also indicates if there is
message pending in the Mailbox. This register is read only by both Avalon-MM Slave
interfaces.

Table 72. status Register Field

Bit Fields

31 ... ... ... ... ... 2 1 0

Reserved Mailbox full Message
pending

Table 73. Mailbox status Register Descriptions

Filed Name Description Reset Value

Message pending Value ‘0’ indicates the Mailbox has no
message. Value ‘1’ indicates the
Mailbox has message pending for
retrieval.

0

Mailbox full Value ‘1’ indicates the Mailbox is full.
Value ‘0’ indicates Mailbox has space
for incoming message.

0

Reserved - 0
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9.2.2.4 Interrupt Masking Register

The Interrupt Masking Register provides a masking bit to the Message Pending
Interrupt and Message Space Interrupt. This register is accessible by both the sender
and receiver of the Avalon-MM Slave interface. However, the editable bit is only
applicable for its conresponded interrupt. This means the sender Avalon-MM Slave can
only modify the masking bit of Message Space Interrupt, whereas receiver Avalon-MM
Slave can only modify the masking bit of Message Pending Interrupt. Read access of
the whole register is available to both Avalon-MM Slave Interfaces.

Table 74. Interrupt Masking Register Field

Bit Fields

31 ... ... ... ... ... 2 1 0

Reserved Message
space mask

Message
pending mask

Table 75. Interrupt Masking Register Descriptions

Filed Name Description Reset Value

Message pending mask Value ‘0’ to mask off the Message
Pending Interrupt output. Value ‘1’
enable Message Pending Interrupt
upon triggered.

0

Mailbox space mask Value ‘0’ to mask off the Message
Space Interrupt output. Value ‘1’
enable Message Space Interrupt upon
triggered.

0

Reserved - 0

9.3 Interface

9.3.1 Component Interface

Intel FPGA Avalon Mailbox (simple) component consists of two Avalon-MM Slave
interfaces, one dedicated for each processor. The Mailbox also provides active high
level interrupt output, which is served as message arrival notification to the receiving
processor. Optionally, a secondary IRQ is created as notification to the message
sender indicating if Mailbox is available for incoming message.

Intel FPGA Avalon Mailbox (simple) has only one clock domain with one associated
reset interface. Requirement of different clock domains between two processors is
handled through the Platform Designer fabric. The following table describes the
interfaces behavior of the component.

Table 76. Component Interface Behavior

Interface Port Description Details

Avalon MM Slave (sender) Avalon-MM Slave interface for
processor of message sender.

This interface apply wait request signal
for back pressuring the Avalon-MM
Master if Mailbox is already full.

Avalon MM Slave (receiver) Avalon-MM Slave interface for
processor of message receiver.

This interface only has read capability
with readWaitTime=1.

continued...   
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Interface Port Description Details

Clock Clock input of component. It supports maximum frequency up to
400MHz on CycloneIV and 600MHz in
StratixIV devices.

Reset_n Active LOW reset input/s. Support asynchronous reset assertion.
De-assertion of reset has to be
synchronized to the input clock.

IRQ_msg Message Pending Interrupt output to
processor of message receiver upon
message arrival. The signal will remain
high until the message is retrieved.

Interrupt assertion and deassertion is
synchronized to input clock.

IRQ_space Message Space Interrupt output
processor of message sender whenever
Mailbox has space for incoming
message. The signal will assert high as
long as the Mailbox is yet full.

Interrupt assertion and deassertion is
synchronized to input clock. The
connection of this interrupt port to the
top level is depends on configuration
parameter of MSG_SPACE_NOTIFY.

9.3.2 Component Parameterization

Table 77. Intel FPGA Avalon Mailbox (simple) TCL Component Configuration
Parameters

Parameter Name Description Default Value Allowable Range

MSG_SPACE_NOTIFY Boolean ‘true’ will enable interrupt
output to message sending processor
for indicating available space for
incoming message

0 0, 1

MSG_ARRIVAL_NOTIFY Boolean ‘true’ will enable interrupt
output to message receiver processor
for indicating a message is pending
for retrieval.

1 0, 1
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9.4 HAL Driver

This section describes the HAL driver for Intel FPGA Avalon Mailbox (simple) soft IP
core. Intel FPGA Avalon Mailbox (simple) component provides a medium of
communication between processors. It provides a message passing path between the
sending processor and receiving processor. The receiver processor is notified through
an interrupt upon message arrival or the driver will poll the status register if in polling
mode. Intel FPGA Avalon Mailbox (simple) provides three 32-bit registers for message
passing between processors, Command (0x0), Pointer (0x4), and Status register
(0x8).

The driver code is located at:

/acds/main/ip/altera_avalon_mailbox/hal/src/
altera_avalon_mailbox_simple.c

/acds/main/ip/altera_avalon_mailbox/hal/inc/
altera_avalon_mailbox_simple.h

/acds/main/ip/altera_avalon_mailbox/inc/
altera_avalon_mailbox_simple_regs.h

/acds/main/ip/altera_avalon_mailbox/
altera_avalon_mailbox_simple_sw.tcl

9.4.1 Feature Description

The Mailbox driver message delivery depends on how the Platform Designer design of
the sender processor, receiver processor and Mailbox are interconnected. The Mailbox
driver provides the features to send message to target processor and retrieve
message for the receiver processor. The driver include an interrupt service routine
when interrupt mode is used.

9.4.1.1 Configuration

9.4.1.1.1 Interrupt Mode

The figure below is an example of a design using the Intel FPGA Avalon Mailbox
(simple) in interrupt mode. The sender CPU(1) will initiate a transfer of the message
to the receiver CPU(2) by writing the command data to the Command register through
Mailbox 1. The Command register will send a message pending interrupt to the
receiver. The message pending interrupt is connected to the receiver CPU(2)'s IRQ to
notify that a message has arrived. Once the Command register in Mailbox 1 is read,
the message pending interrupt is cleared and the message is processed. On the
sender CPU(1) side, once the message is read, a message sender interrupt will be
flagged signaling that Maibox 1 is free to transmit another message.
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Figure 27. Example of a Bi-Directional Intel FPGA Avalon Mailbox System Using
Interrupt Mode
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9.4.1.1.2 Polling Mode

In the case of polling mode, you will always check on the Mailbox Status register if a
message has arrived or free to send. Driver API functions include a timeout parameter,
which allows you to specify whether a read or send operation must be completed
within a certain period of time.

9.4.1.2 Driver Implementation

An opened Mailbox instance will register a sender/receiver interrupt service routine
(ISR), if interrupts are supported with sender/receiver callbacks. When a Mailbox
interrupt is disabled, an ISR will not register and polling mode will need to be used.
You must close the Mailbox driver when it is unused.

Table 78. Mailbox APIs

Function Name Description

altera_avalon_mailbox_send Send message to Mailbox

altera_avalon_mailbox_status Query current state of Mailbox

altera_avalon_mailbox_retrieve_poll Read from Mailbox pointer register to retrieve messages

altera_avalon_mailbox_open Claims a handle to a Mailbox, enabling all the other
functions to access the Mailbox core

altera_avalon_mailbox_close Close the handle to a Mailbox

Table 79. altera_avalon_mailbox_open

Prototype: altera_avalon_mailbox_dev* altera_avalon_mailbox_open (const char* name, altera_mailbox_tx_cb
tx_callback, altera_mailbox_rx_cb rx_callback)

Include: <altera_avalon_mailbox_simple.h>

Parameters: Name — The Mailbox device name to open.
tx_callback – User to provide callback function to notify when a sending message is completed.
rx_callback – User to provide callback function to notify when a receive a message.

Returns: Pointer to mailbox

Description: altera_avalon_mailbox_open() find and register the Mailbox device pointer. This function also
registers the interrupt handler and user callback function for a interrupt enabled Mailbox.
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Table 80. altera_avalon_mailbox_close

Prototype: void altera_avalon_mailbox_close (altera_avalon_mailbox_dev* dev);

Include: <altera_avalon_mailbox_simple.h>

Parameters: dev—The Mailbox to close.

Returns: Null

Description: alt_avalon_mailbox_close() closes the mailbox de-registering interrupt handler and callback
functions and masking Mailbox interrupt.

Table 81. altera_avalon_mailbox_send

Prototype: int altera_avalon_mailbox_send (altera_avalon_mailbox_dev* dev, void* message, int timeout,
EventType event)

Include: <altera_avalon_mailbox_simple.h>

Parameters: *message – Pointer to message command and pointer structure.
Timeout – Specifies number of loops before sending a message. Give a ‘0’ value to wait until the
message is transferred.
EventType – set ‘POLL’ or ‘ISR’.

Returns: Return 0 on success and 1 for fail.

Description: altera_avalon_mailbox_send () sends a message to the mailbox. This is a blocking function when the
sender interrupt is disabled.
This function is in non-blocking when interrupt is enabled.

Table 82. altera_avalon_mailbox_retrieve_poll

Prototype: int altera_avalon_mailbox_retrieve_poll (altera_avalon_mailbox_dev* dev,alt_u32* msg_ptr, alt_u32
timeout)

Include: <altera_avalon_mailbox_simple.h>

Parameters: dev - The Mailbox device to read message from.
timeout – Specifies number loops before sending a message. Give a ‘0’ value to wait until a message
is retrieved.
msg_ptr – A pointer to an array of two Dwords which are for the command and message pointer.
This pointer will be populated with a receive message if successful or NULL if error.

Returns: Return pointer to message and command. Return ‘NULL’ in messages if timeout. This is a blocking
function.

Description: altera_avalon_mailbox_retrieve_poll () reads a message pointer and command to Mailbox structure
from the Mailbox and notifies through callback.

Table 83. altera_avalon_mailbox_status

Prototype: alt_u32 altera_avalon_mailbox_status (altera_avalon_mailbox_dev* dev)

Include: <altera_avalon_mailbox_simple.h>

Parameters: dev -The Mailbox device to read status from

Returns: For a receiving Mailbox:
- 0 for no message pending
- 1 for message pending
For a sending Mailbox:
- 0 for Mailbox empty (ready to send)
- 1 for Mailbox full (not ready to send)

Description: Indicates to sender Mailbox it is full or empty for transfer.
Indicates to receiver Mailbox has a message pending or not.
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Example 6. Device structure

// Callback routine type definition
typedef void(*altera_mailbox_rx_cb)(void *message);
typedefvoid (*altera_mailbox_tx_cb)(void *message,int status);

typedef enum mbox_type { MBOX_TX = 0,MBOX_RX } MboxType;
typedef enum event_type { ISR = 0, POLL } EventType;

typedef struct altera_avalon_mailbox_dev
{    
    alt_dev                 dev;                  
    /* Device linke-list entry */
    
    alt_u32                 base;                 
    /* Base address of Mailbox */
    
    alt_u32                 mailbox_irq;          
    /* Mailbox IRQ */
    
    alt_u32                 mailbox_intr_ctrl_id; 
    /* Mailbox IRQ ID */  
  
    altera_mailbox_tx_cb    tx_cb;                
    /* Callback routine pointer */ 
   
    altera_mailbox_rx_cb    rx_cb;                
    /* Callback routine pointer */   
 
    MboxType                mbox_type;            
    /* Mailbox direction */  
  
    alt_u32*                mbox_msg;             
    /* a pointer to message array to be received or sent */
    
    alt_u8                  lock;                 
    /* Token to indicate mbox_msg already taken */ 
   
    ALT_SEM                 (write_lock)          
    /* Semaphore used to control access to the write in multi-threaded mode */
} 
altera_avalon_mailbox_dev;

9.4.1.3 Driver Examples

The figure below demonstrates writing to a Mailbox. For this example, assume that the
hardware system has two processors communicating via Mailboxes. The system
includes two Mailbox cores, which provides two-way communication between the
processors.

Example 7. Sender Processor Using Mailbox to Send a Message.

#include <stdio.h>
#include "altera_avalon_mailbox_simple.h"
#include "altera_avalon_mailbox_simple_regs.h"
#include "system.h"

/* example callback function from users*/
void tx_cb (void* report, int status) {  
    if (!status) {    
       printf (“Transfer done”);  
    } else {    
       printf (“error in transfer”);  
    }

int main_sender()
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{
alt_u32 message[2] = {0x00001111, 0xaa55aa55};
int timeout     = 50000;
alt_u32 status;
alt_avalon_mailbox_simple_dev* mailbox_sender; 

/* Open mailbox on sender processor */
mailbox_sender = alt_avalon_mailbox_open("/dev/mailbox_simple_0", tx_cb, 
NULL);   

    if (!mailbox_sender){        
        printf ("FAIL: Unable to open mailbox_simple");         
        return 1;    
        } 

    /* Send a message to the other processor using interrupt */
    altera_avalon_mailbox_send (mailbox_sender, message, 0, ISR);

    /* Using polling method to send a message, with infinite timeout */  
        timeout = 0;  
        status = altera_avalon_mailbox_send (mailbox_sender, message, 
timeout, POLL);

        if (status) {    
            printf (“error in transfer”);  
        } else {    
            printf (“Transfer done”);  
        }

    /* Closing mailbox device and de-registering interrupt handler and 
callback */  
    altera_avalon_mailbox_close (mailbox_sender);  
    return 0;
    }

Example 8. Receiver Processor Waiting for Message.

#include <stdio.h>
#include "altera_avalon_mailbox_simple.h"
#include "altera_avalon_mailbox_simple_regs.h"
#include "system.h"

void rx_cb (void* message) {  
    /* Get message read from mailbox */  
    alt_u32* data = alt_u32* message;  
    if (message!= NULL) {    
        printf (“Message received”);  
    } else {    
      printf (“Incomplete receive”);  
    }

int main_receiver()
{
alt_u32* message[2];
int timeout     = 50000;
alt_avalon_mailbox_simple_dev* mailbox_rcv;

    /* This example is running on receiver processor */  
    mailbox_rcv = alt_avalon_mailbox_open("/dev/mailbox_simple_1", NULL, 
rx_cb);  
    if (!mailbox_rcv){    
        printf ("FAIL: Unable to open mailbox_simple");    
        return 1;  
    } 

    /* For interrupt disable system */  
    altera_avalon_mailbox_retrieve_poll (mailbox_rcv,message, timeout)  
    
    if (message == NULL)
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    printf (“Receive Error”); 
    else 
    printf (“Message received with Command 0x%x and Message 0x%x\n”, 
message[0], message[1]);  
    

altera_avalon_mailbox_close (mailbox_rcv);
return 0;
}

9.5 Document Revision History

Table 84. Altera Avalon Mailbox (simple) Core Revision History

Date Version Changes

November 2015 2015.11.06 Added HAL Driver section.

June 2015 2015.06.12 Initial release.
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10 Intel FPGA Avalon Mutex Core

10.1 Core Overview

Multiprocessor environments can use the mutex core with Avalon interface to
coordinate accesses to a shared resource. The mutex core provides a protocol to
ensure mutually exclusive ownership of a shared resource.

The mutex core provides a hardware-based atomic test-and-set operation, allowing
software in a multiprocessor environment to determine which processor owns the
mutex. The mutex core can be used in conjunction with shared memory to implement
additional interprocessor coordination features, such as mailboxes and software
mutexes.

The mutex core is designed for use in Avalon-based processor systems, such as a Nios
II processor system. Intel provides device drivers for the Nios II processor to enable
use of the hardware mutex.

10.2 Functional Description

The mutex core has a simple Avalon Memory-Mapped (Avalon-MM) slave interface that
provides access to two memory-mapped, 32-bit registers.

Table 85. Mutex Core Register Map

Offset Register Name R/W Bit Description

31 16 15 1 0

0 mutex RW OWNER VALUE

1 reset RW Reserved RESET
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The mutex core has the following basic behavior. This description assumes there are
multiple processors accessing a single mutex core, and each processor has a unique
identifier (ID).

• When the VALUE field is 0x0000, the mutex is unlocked and available. Otherwise,
the mutex is locked and unavailable.

• The mutex register is always readable. Avalon-MM master peripherals, such as a
processor, can read the mutex register to determine its current state.

• The mutex register is writable only under specific conditions. A write operation
changes the mutex register only if one or both of the following conditions are
true:

— The VALUE field of the mutex register is zero.

— The OWNER field of the mutex register matches the OWNER field in the data to
be written.

• A processor attempts to acquire the mutex by writing its ID to the OWNER field,
and writing a non-zero value to the VALUE field. The processor then checks if the
acquisition succeeded by verifying the OWNER field.

• After system reset, the RESET bit in the reset register is high. Writing a one to
this bit clears it.

10.3 Configuration

The MegaWizard™ Interface provides the following options:

• Initial Value—the initial contents of the VALUE field after reset. If the Initial
Value setting is non-zero, you must also specify Initial Owner.

• Initial Owner—the initial contents of the OWNER field after reset. When Initial
Owner is specified, this owner must release the mutex before it can be acquired
by another owner.

10.4 Software Programming Model

The following sections describe the software programming model for the mutex core.
For Nios II processor users, Intel provides routines to access the mutex core
hardware. These functions are specific to the mutex core and directly manipulate low-
level hardware. The mutex core cannot be accessed via the HAL API or the ANSI C
standard library. In Nios II processor systems, a processor locks the mutex by writing
the value of its cpuid control register to the OWNER field of the mutex register.

10.4.1 Software Files

Intel provides the following software files accompanying the mutex core:

• altera_avalon_mutex_regs.h—Defines the core's register map, providing
symbolic constants to access the low-level hardware.

• altera_avalon_mutex.h—Defines data structures and functions to access the
mutex core hardware.

• altera_avalon_mutex.c—Contains the implementations of the functions to
access the mutex core
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10.4.2 Hardware Access Routines

This section describes the low-level software constructs for manipulating the mutex
core. The file altera_avalon_mutex.h declares a structure alt_mutex_dev that
represents an instance of a mutex device. It also declares routines for accessing the
mutex hardware structure, listed in the table below.

Table 86. Hardware Access Routines

Function Name Description

altera_avalon_mutex_open() Claims a handle to a mutex, enabling all the other functions
to access the mutex core.

altera_avalon_mutex_trylock() Tries to lock the mutex. Returns immediately if it fails to
lock the mutex.

altera_avalon_mutex_lock() Locks the mutex. Will not return until it has successfully
claimed the mutex.

altera_avalon_mutex_unlock() Unlocks the mutex.

altera_avalon_mutex_is_mine() Determines if this CPU owns the mutex.

altera_avalon_mutex_first_lock() Tests whether the mutex has been released since reset.

These routines coordinate access to the software mutex structure using a hardware
mutex core. For a complete description of each function, see section the Mutex API
section.

The code shown in below demonstrates opening a mutex device handle and locking a
mutex.

#include <altera_avalon_mutex.h>

/* get the mutex device handle */
alt_mutex_dev* mutex = altera_avalon_mutex_open( “/dev/mutex” );

/* acquire the mutex, setting the value to one */
altera_avalon_mutex_lock( mutex, 1 );

/*
 * Access a shared resource here.
 */

/* release the lock */

altera_avalon_mutex_unlock( mutex );

10.5 Mutex API

This section describes the application programming interface (API) for the mutex core.

10.5.1 altera_avalon_mutex_is_mine()

Prototype: int altera_avalon_mutex_is_mine(alt_mutex_dev* dev)

Thread-safe: Yes.

continued...   
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Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon_mutex_is_mine() determines if this CPU owns the mutex.

10.5.2 altera_avalon_mutex_first_lock()

Prototype: int altera_avalon_mutex_first_lock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.

Description: altera_avalon_mutex_first_lock() determines whether this mutex has been released since
reset.

10.5.3 altera_avalon_mutex_lock()

Prototype: void altera_avalon_mutex_lock(alt_mutex_dev* dev, alt_u32 value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to acquire.
value—the new value to write to the mutex.

Returns: —

Description: altera_avalon_mutex_lock() is a blocking routine that acquires a hardware mutex, and at the
same time, loads the mutex with the value parameter.

10.5.4 altera_avalon_mutex_open()

Prototype: alt_mutex_dev* alt_hardware_mutex_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: name—the name of the mutex device to open.

Returns: A pointer to the mutex device structure associated with the supplied name, or NULL if no
corresponding mutex device structure was found.

Description: altera_avalon_mutex_open() retrieves a pointer to a hardware mutex device structure.
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10.5.5 altera_avalon_mutex_trylock()

Prototype: int altera_avalon_mutex_trylock(alt_mutex_dev* dev, alt_u32 value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to lock.
value—the new value to write to the mutex.

Returns: 0 = The mutex was successfully locked.
Others = The mutex was not locked.

Description: altera_avalon_mutex_trylock() tries once to lock the hardware mutex, and returns immediately.

10.5.6 altera_avalon_mutex_unlock()

Prototype: void altera_avalon_mutex_unlock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to unlock.

Returns: Null.

Description: altera_avalon_mutex_unlock() releases a hardware mutex device. Upon release, the value
stored in the mutex is set to zero. If the caller does not hold the mutex, the behavior of this function is
undefined.

10.6 Document Revision History

Table 87. Mutex Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.
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11 Intel FPGA Avalon I2C (Master) Core

11.1 Core Overview

The Intel FPGA Avalon I2C (Master) core (altera_avalon_i2c ) is an IP which
implements the I2C protocol. It supports only master mode with a bit rate (fast mode)
of 400 kbits/s and it can also operate in a multi-master system. It has an Avalon
Memory-Mapped (Avalon-MM) slave interface for a host processor to access its control,
status, command and data FIFO. Configure the command and data FIFO to be
accessed by either the Avalon-MM or the Avalon Streaming (Avalon-ST). On the serial
interface side, it provides two data and clock lines to communicate to remote I2C
devices.

11.2 Feature Description

11.2.1 Supported Features

• Supports I2C master mode

• Supports I2C standard mode (100 kbits/s) and fast mode (400 kbits/s)

• Supports multi-master operation

• Supports 7 bit or 10 bit addressing

• Supports START, repeated START and STOP generation

• Run time programmable SCL low and high period

• Interrupt or polled-mode of operation

• Avalon-MM slave interface for CSR registers access

• Avalon-MM or Avalon-ST for command and receive data FIFO access

11.2.2 Unsupported Features

I2C slave mode is not supported at the moment. Refer to Intel FPGA I2C Slave to
Avalon MM Master Bridge IP for an I2C slave solution.

Related Links

Intel FPGA I2C Slave to Avalon-MM Master Bridge Core on page 133

11.3 Configuration Parameters

Configure the following parameters through Platform Designer.
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Table 88. Platform Designer Parameters

Parameter Legal Values Default
Values

Description

Interface for transfer
command FIFO and receive
data FIFO accesses

0 or 1 0 0: Avalon-MM interface access command and
receive data FIFO
1: Avalon-ST interface access command and
receive data FIFO

Depth of FIFO 4, 8, 16, 32, 64, 128,
256

4 Specify the Sizes of both the transfer command
FIFO and the receive data FIFO

11.4 Interface

Figure 28. Intel FPGA Avalon I2C (Master) Core

clock/reset

Avalon-MM Slave

Avalon-ST Source

Avalon-ST Sink

Serial Interface

Interrupt

Avalon 
I2C Core

Table 89. Intel FPGA Avalon I2C (Master) Core Signals

Signal Width Direction Description

Clock/Reset

clk 1 Input System clock source

rst_n 1 Input System asynchronous reset source
Note: This signal is asynchronously asserted and synchronously

de-asserted. The synchronous de-assertion must be
provided externally to this peripheral.

Avalon-MM Slave

addr 4 Input Avalon-MM address bus.
The address bus is in the unit of word addressing. For example,
addr[2:0] = 0x0 is targeting the first word of the cores memory
map space and addr[2:0] = 0x1 is targeting the second word.

read 1 Input Avalon-MM read control

write 1 Input Avalon-MM write control

readdata 32 Output Avalon-MM read data bus

writedata 32 Input Avalon-MM write data bus

Avalon-ST Source (9)

src_data 8 Output I2C data from receive data FIFO (RX_DATA)

src_valid 1 Output Indicates src_data bus is valid

src_ready 1 Input Indication from sink port that it is ready to consume src_data

Avalon-ST Sink(9)

continued...   
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Signal Width Direction Description

snk_data 10 Input 10-bit value driven by source port to transfer command FIFO
(TFR_CMD)

snk_valid 1 Input Indication from source port that snk_data is valid

snk_ready 1 Output Indication from sink port that it is ready to consume snk_data

Serial Interface

scl_oe 1 Output Output enable for open drain buffer that drives SCL pin
1: SCL line pulled low
0: Open drain buffer is tri-stated and SCL line is externally pulled
high

sda_oe 1 Output Output enable for open drain buffer that drives SDA pin
1: SDA line pulled low
0: Open drain buffer is tri-stated and SDA line is externally
pulled high

scl_in 1 Input Input path of I2C’s open drain buffer

sda_in 1 Input It is from input path of I2C’s open drain buffer

Interrupt

intr 1 Output Active high level interrupt output to host processor

11.5 Registers

11.5.1 Register Memory Map

Note: Each address offset represent 1 word of memory address space.

Table 90. Register Memory Map

Name Address offset Description

TFR_CMD 0x0 Transfer command FIFO

RX_DATA 0x1 Receive data FIFO

CTRL 0x2 Control register

ISER 0x3 Interrupt status enable register

ISR 0x4 Interrupt status register

STATUS 0x5 Status register

TFR_CMD_FIFO_LVL 0x6 TFR_CMD FIFO level register

RX_DATA_FIFO_LVL 0x7 RX_DATA FIFO level register

continued...   

(9) These signals are not used if “Interface for transfer command FIFO and receive data FIFO
accesses” is set to Avalon-MM Slave. This setting can be configured through Platform Designer.
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Name Address offset Description

SCL_LOW 0x8 SCL low count register

SCL_HIGH 0x9 SCL high count register

SDA_HOLD 0xA SDA hold count register

11.5.2 Register Descriptions

11.5.2.1 Transfer Command FIFO (TFR_CMD)

Table 91. Transfer Command FIFO (TFR_CMD)

Bit Fields Access Default Value Description

31:10 Reserved N/A 0x0 Reserved

9 STA W N/A 1: Requests a repeated START
condition to be generated before
current byte transfer

8 STO W N/A 1: Requests a STOP condition to be
generated after current byte
transfer

7:1 AD W N/A When in address phase, these
fields act as address bits
When in data phase with the core
is configured as a master
transmitter, these fields represent
I2C data bit [7:1] of the data byte
to be transmitted by the core.
When in data phase and the core
acts as master receiver, this field is
not used

0 RW_D W N/A When transfer is in address phase,
this field is used to specify the
direction of I2C transfer
0: Specifies I2C write transfer
request
1: Specifies I2C read transfer
request
When transfer is in data phase wtih
core is configured as a master
transmitter, this field represents
I2C data bit 0 of the data byte to
be transmitted by the core.
When transfer is in data phase and
the core acts as master receiver,
this field is not used

11.5.2.2 Receive Data FIFO (RX_DATA)

Table 92. Receive Data FIFO (RX_DATA)

Bit Fields Access Default Value Description

31:8 Reserved N/A 0x0 Reserved

7:0 RXDATA R N/A Byte received from I2C transfer
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11.5.2.3 Control Register (CTRL)

Bit Fields Access Default Value Description

31:6 Reserved N/A 0x0 Reserved

5:4 RX_DATA_FIFO_THD R/W 0x0 Threshold level of the receive data
FIFO
Note: If the actual level is equal

or more than the threshold
level, RX_READY interrupt
status bit is asserted.

0x3: RX_DATA FIFO is full
0x2: RX_DATA FIFO is ½ full
0x1: RX_DATA FIFO is ¼ full
0x0: 1 valid entry

3:2 TFR_CMD_FIFO_THD R/W 0x0 Threshold level of the transfer
command FIFO
Note: If the actual level is equal

or less than the threshold
level, TX_READY interrupt
status bit is asserted.

0x3: TFR_CMD FIFO is not full (has
at least one empty entry)
0x2: TFR_CMD FIFO is ½ full
0x1: TFR_CMD FIFO is ¼ full
0x0: TFR_CMD FIFO is empty

1 BUS_SPEED R/W 0x0 Bus speed
1: Fast mode (up to 400 kbits/s)
0: Standard mode (up to 100
kbits/s)

0 EN R/W 0x0 The core enable bit
1: Core is enabled
0: Core is disabled

11.5.2.4 Interrupt Status Enable Register (ISER)

Table 93. Interrupt Status Enable Register (ISER)

Bit Fields Access Default Value Description

31:5 Reserved N/A 0x0 Reserved

4 RX_OVER_EN R/W 0x0 1: Enable interrupt for RX_OVER
condition

3 ARBLOST_DET_EN R/W 0x0 1: Enable interrupt for
ARBLOST_DET condition

2 NACK_DET_EN R/W 0x0 1: Enable interrupt for NACK_DET
condition

1 RX_READY_EN R/W 0x0 1: Enable interrupt for RX_READY
condition

0 TX_READY_EN R/W 0x0 1: Enable interrupt for TX_READY
condition
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11.5.2.5 Interrupt Status Register (ISR)

Table 94. Interrupt Status Register (ISR)

Bit Fields Access Default Value Description

31:5 Reserved N/A 0x0 Reserved

4 RX_OVER R/W1C 0x0 Receive overrun
1: Indicates receive data FIFO has
overrun condition, new data is lost.
Note: Writing 1 to this field clears

the content of the field to 0.

3 ARBLOST_DET R/W1C 0x0 Arbitration lost detected
1: Indicates core has lost the bus
arbitration
Note: Writing 1 to this field clears

the content of this field to
0.

2 NACK_DET R/W1C 0x0 No acknowledgement detected
1: Indicates NACK is received by
the core
Note: Writing 1 to this field clears

the content of this field to
0.

1 RX_READY R 0x0 Receive ready
1: Indicates receive data FIFO
contains data sent by the remote
I2C device. This bit is asserted
when RX_DATA FIFO level is equal
or more than RX_DATA FIFO
threshold.
Note: This field is automatically

cleared by the core's
hardware once the receive
data FIFO level is less than
RX_DATA FIFO threshold.

0 TX_READY R 0x0 Transmit ready
1: Indicates transfer command
FIFO is ready for data
transmission. This bit is asserted
when transfer command FIFO level
is equal or less than TFR_CMD FIFO
threshold.
Note: This field is automatically

cleared by the core's
hardware once transfer
command FIFO level is
more than TFR_CMD FIFO
threshold.

11.5.2.6 Status Register (STATUS)

Table 95. Status Register (STATUS)

Bit Fields Access Default Value Description

31:1 Reserved N/A 0x0 Reserved

0 CORE_STATUS R 0x0 Status of the core's state machine
1: State machine is not idle

continued...   

11 Intel FPGA Avalon I2C (Master) Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
123



Bit Fields Access Default Value Description

0: State machine is idle

11.5.2.7 TFR CMD FIFO Level (TFR CMD FIFO LVL)

Table 96. TFR CMD FIFO Level (TFR CMD FIFO LVL)

Bit Fields Access Default Value Description

31:
log2(FIFO_DEPT
H) + 1

Reserved N/A 0x0 Reserved

log2(FIFO_DEPT
H)
:0

LVL R 0x0 Current level of TFR_CMD FIFO

11.5.2.8 RX Data FIFO Level (RX Data FIFO LVL)

Table 97. RX Data FIFO Level (RX Data FIFO LVL)

Bit Fields Access Default Value Description

31:log2(FIFO_DE
PTH) + 1

Reserved N/A 0x0 Reserved

log2(FIFO_DEPT
H): 0

LVL R 0x0 Current level of RX_DATA FIFO

11.5.2.9 SCL Low Count (SCL LOW)

Table 98. SCL Low Count (SCL LOW)

Bit Fields Access Default Value Description

31:16 Reserved N/A 0x0 Reserved

15:0 COUNT_PERIOD R/W 0x1 Low period of SCL in terms of
number of clock cycles

11.5.2.10 SCL High Count (SCL HIGH)

Table 99. SCL High Count (SCL HIGH)

Bit Fields Access Default Value Description

31:16 Reserved N/A 0x0 Reserved

15:0 COUNT_PERIOD R/W 0x1 High period of SCL in term of
number of clock cycles

11.5.2.11 SDA Hold Count (SDA HOLD)

Table 100. SDA Hold Count (SDA HOLD)

Bit Fields Access Default Value Description

31:16 Reserved N/A 0x0 Reserved

15:0 COUNT_PERIOD R/W 0x1 Hold period of SDA in term of
number of clock cycles
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11.6 Reset and Clock Requirements

The core is a single clock domain design. The frequency of the single clock source
must be maintained throughout the run time period. This requirement is needed
because the implementation of SCL low, SCL high, and SDA hold period is based on
the frequency of the single clock source. If the frequency of the clock changes in the
middle of the run time, the initial configuration of SCL low, SCL high and SDA hold
period will be unable to produce the correct timing. On the next run, the system
reconfigures those options to ensure correct timing is produced.

The core has a single reset input which is used to reset the entire core. The single
reset input is required to be asynchronously asserted and synchronously de-asserted.
The de-assertion of the reset must be synchronous to the single input clock source of
the core. The reset synchronizer is should be implemented externally.

11.7 Functional Description

11.7.1 Overview

The core implements I2C master functionality. It can generate all mandatory I2C
transfer protocol through the TFR_CMD register configuration. The core supports a
joint data streaming use-cases where the DMA core can be used for bulk transfer.

Figure 29. Intel FPGA Avalon I2C Master Core without DMA
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Figure 30. Intel FPGA Avalon I2C Master Core with DMA
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11.7.2 Configuring TFT_CMD Register Examples

11.7.2.1 7-bit Addressing Mode

Note: Assume the slave has a 7-bit address of 0x51.

11.7.2.1.1 Master Transmitter Writes 2 Bytes to Slave Receiver

Write data1 = 0x55 and write data2 = 0x56.

Figure 31. Master Transmitter Writes 2 Bytes to Slave Receiver

 S Slave Address W A WDATA1 A WDATA2 A P

from master to slave

from slave to master

A = acknowledge

N = not acknowledge

S = START condition

P = STOP condition

Sr = Repeated START condition

1. Writes TFR_CMD = 0x4A2 -> (STA = 0x1 , STOP = 0x0, AD = 0x51, RW_D = 0x0)

2. Writes TFR_CMD = 0x055 -> (STA = 0x0, STOP = 0x0, AD = 0x2A, RW_D = 0x1)

3. Writes TFR_CMD = 0x156 -> (STA = 0x0, STOP = 0x1, AD = 0x2B, RW_D = 0x0

11.7.2.1.2 Master Receiver Reads 2 Bytes from Slave Transmitter

Read data1 = 0x55 and read data2 = 0x56.

Figure 32. Master Receiver Reads 2 Bytes from Slave Transmitter

 S Slave Address R A RDATA1 A RDATA2 N P

1. Writes TFR_CMD = 0x4A3 -> (STA = 0x1, STOP = 0x0, AD = 0x51, RW_D = 0x1)

2. Writes TFR_CMD = 0x000 -> (STA = 0x0, STOP = 0x0, AD = 0x00, RW_D = 0x0)

3. Writes TFR_CMD = 0x100 -> (STA = 0x0, STOP = 0x1, AD = 0x00, RW_D = 0x0)

In steps 2 on page 126 and 3 on page 126, AD and RW_D fields are (don’t care) and
programmed to 0.

11.7.2.1.3 Combine Format (Master Writes 1 Byte and Changes Direction to Read 2 Bytes)

Write data1 = 0x55, read data1 = 0x56 and read data2 = 0x57.

Figure 33. Combine Format (Master Writes 1 Byte and change direction to read 2 bytes)

 S Slave Address W A WDATA1 A Sr Slave Address R A RDATA1 A RDATA2 N P

1. Writes TFR_CMD = 0x4A2 -> (STA = 0x1 , STOP = 0x0, AD = 0x51, RW_D = 0x0)

2. Writes TFR_CMD = 0x055 -> (STA = 0x0, STOP = 0x0, AD = 0x2A, RW_D = 0x1)

3. Writes TFR_CMD = 0x2A3 -> (STA = 0x1, STOP = 0x0, AD = 0x51, RW_D = 0x1)

4. Writes TFR_CMD = 0x000 -> (STA = 0x0, STOP = 0x0, AD = 0x00, RW_D = 0x0)

5. Writes TFR_CMD = 0x100 -> (STA = 0x0, STOP = 0x1, AD = 0x00, RW_D = 0x0)
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11.7.2.2 10-bit Addressing Mode

Note: Assume slave 10-bit address = 0x351.

11.7.2.2.1 Master Transmitter Writes 2 Bytes to Slave Receiver

Write data1 = 0x55 and write data2 = 0x56.

Figure 34. Master Transmitter Writes 2 Bytes to Slave Receiver

 S Slave Address 1 st  Byte W A Slave Address 2 nd  Byte A WDATA1 WDATA2 AA P

1. Writes TFR_CMD = 0x4F6 -> (STA = 0x1, STOP = 0x0, AD = 0x7B, RW_D = 0x0)

2. Writes TFR_CMD = 0x051 -> (STA = 0x0, STOP = 0x0, AD = 0x28, RW_D = 0x1)

3. Writes TFR_CMD = 0x055 -> (STA = 0x0, STOP = 0x0, AD = 0x2A, RW_D = 0x1)

4. Writes TFR_CMD = 0x156 -> (STA = 0x0, STOP = 0x1, AD = 0x2B, RW_D = 0x0)

11.7.2.2.2 Master Receiver Reads 2 Bytes from Slave Transmitter

Read data1 = 0x55 and read data2 = 0x56.

Figure 35. Master Receiver Reads 2 Bytes from Slave Transmitter

 S Slave Address 1 st  Byte W A Slave Address 2 nd  Byte A Sr Slave Address 1 st  Byte R A RDATA1 A RDATA2 N P

1. Writes TFR_CMD = 0x4F6 -> (STA = 0x1, STOP = 0x0, AD = 0x7B, RW_D = 0x0)

2. Writes TFR_CMD = 0x051 -> (STA = 0x0, STOP = 0x0, AD = 0x28, RW_D = 0x1)

3. Writes TFR_CMD = 0x2F7 -> (STA = 0x1, STOP = 0x0, AD = 0x7B, RW_D = 0x1)

4. Writes TFR_CMD = 0x000 -> (STA = 0x0, STOP = 0x0, AD = 0x00, RW_D = 0x0)

5. Writes TFR_CMD = 0x100 -> (STA = 0x0, STOP = 0x1, AD = 0x00, RW_D = 0x0)

In steps 4 on page 127 and 5 on page 127, AD and RW_D fields are (don’t care) and
programmed to 0.

11.7.3 I2C Serial Interface Connection

The core provides four ports for I2C serial connections. For external I2C serial
connections, both sda_in and sda_oe are connected to a bidirectional open drain I2C
data line buffer. Both scl_in and scl_oe are connected to another bidirectional open
drain I2C clock line buffer. It is recommended to use the I/O IP core to generate the
bidirectional open drain buffer. You can then instantiates the generated buffer
primitives from the IP core into their system top level design file.
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Figure 36. I2C Serial Interface Connection
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Sample Code for I2C Serial Interface Connection

Verilog: 

assign i2c_serial_scl_in = arduino_adc_scl;
assign arduino_adc_scl = i2c_serial_scl_oe ? 1'b0 : 1'bz;

assign i2c_serial_sda_in = arduino_adc_sda;
assign arduino_adc_sda = i2c_serial_sda_oe ? 1'b0 : 1'bz;

VHDL:

i2c_scl_in <= arduino_adc_scl; 
arduino_adc_scl  <= '0' when i2c_scl_oe = '1' else 'Z';
i2c_sda_in <= arduino_adc_sda; 
arduino_adc_sda  <= '0' when i2c_sda_oe = '1' else 'Z';

11.7.4 Avalon-MM Slave Interface

The Avalon-MM slave interface is configured as follows:

• Bus width: 32-bit

• Burst support: No

• Fixed read & write wait time: 0 cycles

• Fixed read latency: 2 cycles

• Lock support: No

11 Intel FPGA Avalon I2C (Master) Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
128



Figure 37. Write and Read Timing of Avalon-MM Slave Interface
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11.7.5 Avalon-ST Interface

Both ST data source and ST data sink interfaces support a ready latency of zero.

11.7.6 Programming Model

The following flowchart illustrates the recommended programming flow for the core.

Figure 38. Programming Model Flowchart
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Note: When either ARBLOST_DET or NACK_DET occur, you need to clear its respective
interrupt status register bits in their error handling procedure before continuing with a
new I2C transfer. A new I2C transfer can be initiated with or without disabling the core.

Illustration: How to use the API

int main() 
{
  ALT_AVALON_I2C_DEV_t *i2c_dev;  //pointer to instance structure
  alt_u8 txbuffer[0x200];
  alt_u8 rxbuffer[0x200];  
  int i;
  ALT_AVALON_I2C_STATUS_CODE status;
  
  //get a pointer to the avalon i2c instance
  i2c_dev = alt_avalon_i2c_open("/dev/i2c_0");
  if (NULL==i2c_dev)
  {
      printf("Error: Cannot find /dev/i2c_0\n");
      return 1;
  }
  
  //set the address of the device using 
  
  alt_avalon_i2c_master_target_set(i2c_dev,0x51)    

  //write data to an eeprom at address 0x0200
  
  txbuffer[0]=2; txbuffer[1]=0;  
  
  //The eeprom address which will be sent as first two bytes of data
  
  for (i=0;i<0x10;i++) txbuffer[i+2]=i;   //some data to write
  status=alt_avalon_i2c_master_tx(i2c_dev,txbuffer, 0x10+2, 
ALT_AVALON_I2C_NO_INTERRUPTS);
  if (status!=ALT_AVALON_I2C_SUCCESS) return 1; //FAIL

  //read back the data into rxbuffer
  //This command sends the 2 byte eeprom data address required by the eeprom
  //Then does a restart and receives the data.
  status=alt_avalon_i2c_master_tx_rx(i2c_dev, txbuffer, 2, rxbuffer, 0x10, 
ALT_AVALON_I2C_NO_INTERRUPTS);
  if (status!=ALT_AVALON_I2C_SUCCESS) return 1; //FAIL
  return 0;
}

//Using the optional irq callback:

int main() 
{
  ALT_AVALON_I2C_DEV_t *i2c_dev;  //pointer to instance structure
  alt_u8 txbuffer[0x210];
  alt_u8 rxbuffer[0x200];  
  int i;
  ALT_AVALON_I2C_STATUS_CODE status;

  //storage for the optional provided interrupt handler structure 
  IRQ_DATA_t irq_data;
  
  //get a pointer to the avalon i2c instance
  i2c_dev = alt_avalon_i2c_open("/dev/i2c_0");
  if (NULL==i2c_dev)
  {
      printf("Error: Cannot find /dev/i2c_0\n");
      return 1;
  }
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  //register the optional interrupt callback.  
  alt_avalon_i2c_register_optional_irq_handler(i2c_dev,&irq_data);

  //set the address of the device we will be using
  alt_avalon_i2c_master_target_set(i2c_dev,0x51);     

  //assume an eeprom at address 0x51

  //write data to an eeprom at address (within the eeprom) 0x0200
  txbuffer[0]=2; 
  txbuffer[1]=0;  
  
  //The eeprom data address which will be sent as first two bytes of data

  for (i=0;i<0x10;i++) txbuffer[i+2]=i;   //some data to write

  while (1) {  //for function retry
     status=alt_avalon_i2c_master_tx(i2c_dev, txbuffer, 0x10+2, 
ALT_AVALON_I2C_USE_INTERRUPTS);
     
     
     if (status!=ALT_AVALON_I2C_SUCCESS) return 1; //FAIL

     //Completion should be checked by using the 
alt_avalon_i2c_interrupt_transaction_status function.
     //Note: Interrupt and non-interrupt transactions can be mixed in any 
sequence, so if desired this short address setup transaction can use 
ALT_AVALON_I2C_NO_INTERRUPTS.
     
     
     while (alt_avalon_i2c_interrupt_transaction_status(i2c_dev) == 
ALT_AVALON_I2C_BUSY) {  }
    
     //Did the transaction complete OK? If yes then break out of this retry 
loop, otherwise, have to do the transaction again
     //You may want to have a retry limit instead of 
     
     while (1)
     if (alt_avalon_i2c_interrupt_transaction_status(i2c_dev) == 
ALT_AVALON_I2C_SUCCESS) break;
  }
  while (1) { 
      
     //for function retry, read back the data into rxbuffer
     
     
     status=alt_avalon_i2c_master_tx_rx(i2c_dev, txbuffer, 2, rxbuffer, 0x10, 
ALT_AVALON_I2C_USE_INTERRUPTS);
     
     
     if (status!=ALT_AVALON_I2C_SUCCESS) return 1; //FAIL
  
     //For this example we will just waste the time in a loop.
     
     
     while (alt_avalon_i2c_interrupt_transaction_status(i2c_dev) == 
ALT_AVALON_I2C_BUSY) {  }
    
     //Did the transaction complete OK
     
     if (alt_avalon_i2c_interrupt_transaction_status(i2c_dev) == 
ALT_AVALON_I2C_SUCCESS) break;
  }
  
  return 0;
}
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11.8 Document Revision History

Table 101. Intel FPGA Avalon I2C (Master) Core Revision History

Date Version Changes

November 2017 2017.11.06 • Added the sample verilog code for I2C Serial Interface Connection.
• Added the illustration for using API in Programming Model.

October 2016 2016.10.28 Initial release
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12 Intel FPGA I2C Slave to Avalon-MM Master Bridge Core

12.1 Core Overview

The Intel FPGA I2C Slave to Avalon-MM Master Bridge soft IP core is a solution to
connect an I2C interface with a User Flash Memory (UFM) device. This IP translates an
I2C transaction into an Avalon Memory Mapped (Avalon-MM) transaction.

12.2 Functional Description

The I2C Slave to Avalon-MM Master Bridge core has the following features:

• Up to 4-byte addressing mode

• 3-bit address stealing

• 7-bit address I2C slave

12.2.1 Block Diagram

Figure 39. Intel FPGA I2C to Avalon-MM Master Bridge Block Diagram
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12.2.2 N-byte Addressing

This IP supports up to a 4 bytes addressing mode. You can select which byte
addressing mode you want to use in Platform Designer.

The Avalon Address width present at the Avalon master interface is fixed at 32 bits. If
you select other than a 4 bytes addressing mode, zeros are added to the most
significant bit(s) (MSB) of the Avalon Address width. For example in 2 bytes
addressing mode, only the lower 16 bits of the address width are used while the upper
16 bits are zero.
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• When byte addressing mode = 1, address width in use = 8 + address stealing bit

• When byte addressing mode = 2, address width in use = 16 + address stealing bit

• When byte addressing mode = 3, address width in use = 24 + address stealing bit

• When byte addressing mode = 4, address width in use = 32

There is an address counter inside the I2C to Avalon master interface translator block.
The counter rolls over at the maximum upper address bound according to the byte
addressing mode plus one address stealing bit. It does not continue incrementing up
the full address range of the Avalon address size. For example, the address counter
rolls over at 128 K memory size in 2 bytes addressing mode plus one address stealing
bit.

12.2.3 N-byte Addressing with N-bit Address Stealing

This IP supports up to 3-bit address stealing. In Platform Designer, you can configure
which address stealing mode to use. The address stealing bits (A0, A1, A2) are added
into the second, third, and forth bits of the control byte to expand the contiguous
address space. If no address stealing bits are used, then the second, third, and forth
bits of the control byte are used as slave address bits.

Note: When in 3-bit address stealing mode, you must make sure the three least significant
bits (LSB) of the slave address are zero.

The maximum upper bound of the internal address counter is:

BYTEADDRWIDTH + address stealing bit(s)

Figure 40. 8-bit Control Byte Example
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12.2.4 Read Operation

The Avalon read data width is 32 bits wide. A 32-bit width limits the bridge to only
issue word align Avalon addresses. It also allows the upstream I2C master to read any
sequence of bytes on any address alignment. The conversion logic which sits between
the Avalon interface and I2C interface, translates the address alignment and returns
the correct 8-bit data to the I2C master from the 32-bit Avalon read data.

Read Operation conversion logic flow:

• Checks the address alignment issued by the I2C master (first byte, second byte,
third byte or forth byte).

• Issues a word align Avalon address according to the address sent by the I2C
master with the two LSBs zero.

• Returns read data to the I2C master according to the address alignment.

This IP supports three types of read operations:

• Random address read

• Current address read

• Sequential read

Upon receiving of the slave address with the R/W bit set to one, the bridge issues an
acknowledge to the I2C master. The bridge keeps the Avalon read signal high for one
clock cycle with the Avalon wait request signal low, then receives an 8-bit Avalon read
data word and upstreams the read data to the I2C master.

12.2.4.1 Random Address Read

Random read operations allow the upstream I2C master to access any memory
location in a random manner. To perform this type of read operation, you must first
set the byte address. The I2C master issues a byte address to the bridge as part of a
write operation then followed by a read command. After the read command is issued,
the internal address counter points to the address location following the one that was
just read. The upper address bits are transferred first, followed by the LSB(s).

Figure 41. Random Address Read

12.2.4.2 Sequential Address Read

Sequential reads are initiated in the same way as a random read except after the
bridge has received the first data byte, the upstream I2C master issues an
acknowledge as opposed to a Stop condition. This directs the bridge to keep the
Avalon read signal high for the next sequential address. The internal address counter
increments by one at the completion of each read operation and allows the entire
memory contents to be serially read during one operation.

12 Intel FPGA I2C Slave to Avalon-MM Master Bridge Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
135



Figure 42. Sequential Address Read

12.2.4.3 Current Address Read

This IP contains an internal address counter that maintains the address of the last
word accessed incremented by one. Therefore, if the previous access was to address
n, the next current address read operation would access data from address n + 1.

Figure 43. Current Address Read

12.2.5 Write Operation

The Avalon write data width interface is 32 bits wide. A 32-bit width limits the bridge
to only issue word align Avalon addresses. It also allows the upstream I2C master to
write to any sequence of bytes on any address alignment. There is a conversion logic
which sits between the Avalon interface and the I2C interface.

Write operation conversion logic flow:

• Checks the address alignment issued by the I2C master.

• Enables data by setting byteenable high to indicate which byte address the I2C
master wants to write into.

Note: If the address issued by I2C master is 0x03h, the byteenable is 4’b1000.

• Combines multiple bytes of data into a 32-bit packet if their addresses are
sequential.

Note: If the first write is to address 0x04 and the second write is to address
0x05, then byteenable is 4’b0011.
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Legal byteenable combinations are 4’b0001, 4’b0010, 4’b0100, 4’b1000, 4’b0011,
4’b1100 and 4’b1111.

• If the write request issued by the I2C master ends up with an illegal byteenable
combination such as, 4’b0110, 4’b0111, or 4’b1110, then the bridge generates
multiple Avalon byte writes.

Note: If the sequential write request from the I2C master starts from 0x0 and
ends at 0x02 (illegal byteenable, b’0111), then the bridge will generate
three Avalon write requests with legal byteenable 4’b0001, 4’b0010 and
4’b0100.

• Issues a word align Avalon address according to the address sent by the I2C
master with the two LSB set to zero.

Upon receiving of the slave address with the R/W bit set to zero, the bridge issues an
acknowledge to the I2C master. The next byte transmitted by the master is the byte
address. The byte address is written into the address counter inside the bridge. The
bridge acknowledges the I2C master again and the master transmits the data byte to
be written into the addressed memory location. The master keeps sending data bytes
to the bridge and terminates the operation with a Stop condition at the end.

Figure 44. Write Operation

12 Intel FPGA I2C Slave to Avalon-MM Master Bridge Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
137



12.2.6 Interacting with Multi-Master

This IP core is able to integrate multiple I2C masters provided the I2C masters support
the arbitration feature. The masters which support arbitration always compares the
data value it drives into the bus with the actual value observed on the bus. If both
sets of data do not match, then the master loses arbitration. The I2C slave core in the
bridge does not observe the bus.

For example, let’s say Master 1 is writing to the bridge while Master 2 is performing a
read. Master 1 will win the arbitration during the R/W bit because Master 1 is pulling
down the bus, while Master 2 is driving high to the bus. The effective value of the bus
during the R/W bit cycle is zero. In this case, Master 2 knows it loses the arbitration
because it observes a different value on the bus than what is being driven.

If both masters are performing a write, then the arbitration process checks the
different data value driven by both masters to determine which one wins the
arbitration.

If both masters are performing a read, then no one loses the arbitration since the
single slave is driving the bus to both masters (no collision).
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12.3 Platform Designer Parameters

Figure 45. Intel FPGA I2C Slave to Avalon MM Master Bridge Qys Interface

Table 102. Platform Designer Parameters

Parameter Legal Values Default
Values

Description

I2C Slave Address 0:127 127 This parameter represents the target address of the I2C
slave which sits in the bridge.

Byte Addressing mode 1, 2, 3, 4 2 This parameter allows you to select the number of address
bytes you want to configure according to the flash capacity
used.
• 1=8 address bit
• 2=16 address bit
• 3=24 address bit
• 4=32 address bit

Number of Address Stealing
bit

0, 1, 2, 3 0 This parameter allows you to select the number of address
stealing bits to expand the contiguous address space.

Enable Read only mode ON, OFF OFF Enables read only support where the write operation is
removed to improve resource count.

12.4 Signals

Table 103. Intel FPGA I2C Slave to Avalon-MM Master Bridge Signals

Signal Width Direction Description

Avalon-MM interface

clk 1 Input Clock signal

rst_n 1 Input Reset signal

continued...   
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Signal Width Direction Description

address 32 Output Avalon-MM address bus. The address bus is in word
addressing.

byteenable 4 Output Avalon-MM byteenable signal.

read 1 Output Avalon-MM read request signal.

readdata 32 Input Avalon-MM read data bus.

readdatavalid 1 Input Avalon-MM read data valid signal.

waitrequest 1 Input Avalon-MM wait request signal

write 1 Output Avalon-MM write request signal.

writedata 32 Output Avalon-MM write data bus.

Serial conduit interface for I2C

i2c_data_in 1 Input I2C slave conduit data input signal.

i2c_clk_in 1 Input I2C slave conduit clock input signal.

i2c_data_oe 1 Output I2C slave conduit data output signal.

i2c_clk_oe 1 Output I2C slave conduit clock output signal.
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12.5 How to Translate the Bridge's I2C Data and I2C I/O Ports to an
I2C Interface

In order to translate the bridges I2C data and I2C I/O ports to an I2C interface refer to
the figure below. You need to connect a tri-state buffer to the cores I2C data and clock
related ports to form SDA and SCL.

Figure 46.
On chip     Off chip

SDA

SCL

Vcc

Vcc

I/O
PAD

I/O
PAD

ic_data_oe

ic_clk_oe

1’b0

1’b0

ic_data_in_a

ic_clk_in_a

Example 9. Translating the Bridge's I2C Data and I2C I/O Ports to an I2C Interface

module top (    
    inout  tri1         fx2_scl,    
    inout  tri1         fx2_sda 

); 

wire fx2_sda_in;
wire fx2_scl_in;
wire fx2_sda_oe;
wire fx2_scl_oe; 

assign fx2_scl_in = fx2_scl;
assign fx2_sda_in = fx2_sda;
assign fx2_scl = fx2_scl_oe ? 1'b0 : 1'bz;
assign fx2_sda = fx2_sda_oe ? 1'b0 : 1'bz; 

proj_1 u0 (           
        .i2cslave_to_avlmm_bridge_0_conduit_end_conduit_data_in 
(fx2_sda_in), // i2c_bridge.conduit_data_in           
        .i2cslave_to_avlmm_bridge_0_conduit_end_conduit_clk_in  
(fx2_scl_in), //           .conduit_clk_in           
        .i2cslave_to_avlmm_bridge_0_conduit_end_conduit_data_oe 
(fx2_sda_oe), //           .conduit_data_oe           
        .i2cslave_to_avlmm_bridge_0_conduit_end_conduit_clk_oe  
(fx2_scl_oe)  //           .conduit_clk_oe     
    ); 

endmodule
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12.6 Document Revision History

Table 104. Altera I2C Slave to Avalon-MM Master Bridge Core Revision History

Date Version Changes

Ocotober 2016 2016.10.28 Updates:
• Table 103 on page 139

— address direction updated
— waitrequest added

June 2016 2016.06.17 New topic:
• How to Translate the Bridge's I2C Data and I2C I/O Ports to an I2C

Interface on page 141

May 2016 2016.05.03 Initial release.
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13 Compact Flash Core

13.1 Core Overview

The CompactFlash core allows you to connect systems built on Osys to CompactFlash
storage cards in true IDE mode by providing an Avalon Memory-Mapped (Avalon-MM)
interface to the registers on the storage cards. The core supports PIO mode 0.

The CompactFlash core also provides an Avalon-MM slave interface which can be used
by Avalon-MM master peripherals such as a Nios II processor to communicate with the
CompactFlash core and manage its operations.

13.2 Functional Description

Figure 47. System With a CompactFlash Core
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As shown in the block diagram, the CompactFlash core provides two Avalon-MM slave
interfaces: the ide slave port for accessing the registers on the CompactFlash device
and the ctl slave port for accessing the core's internal registers. These registers can
be used by Avalon-MM master peripherals such as a Nios II processor to control the
operations of the CompactFlash core and to transfer data to and from the
CompactFlash device.

You can set the CompactFlash core to generate two active-high interrupt requests
(IRQs): one signals the insertion and removal of a CompactFlash device and the other
passes interrupt signals from the CompactFlash device.
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The CompactFlash core maps the Avalon-MM bus signals to the CompactFlash device
with proper timing, thus allowing Avalon-MM master peripherals to directly access the
registers on the CompactFlash device.

For more information, refer to the CF+ and CompactFlash specifications available at
www.compact-flash.org.

13.3 Required Connections

The table below lists the required connections between the CompactFlash core and the
CompactFlash device.

Table 105. Core to Device Required Connections

CompactFlash Interface Signal
Name

Pin Type CompactFlash Pin Number

addr[0] Output 20

addr[1] Output 19

addr[2] Output 18

addr[3] Output 17

addr[4] Output 16

addr[5] Output 15

addr[6] Output 14

addr[7] Output 12

addr[8] Output 11

addr[9] Output 10

addr[10] Output 8

atasel_n Output 9

cs_n[0] Output 7

cs_n[1] Output 32

data[0] Input/Output 21

data[1] Input/Output 22

data[2] Input/Output 23

data[3] Input/Output 2

data[4] Input/Output 3

data[5] Input/Output 4

data[6] Input/Output 5

data[7] Input/Output 6

data[8] Input/Output 47

data[9] Input/Output 48

data[10] Input/Output 49

continued...   
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CompactFlash Interface Signal
Name

Pin Type CompactFlash Pin Number

data[11] Input/Output 27

data[12] Input/Output 28

data[13] Input/Output 29

data[14] Input/Output 30

data[15] Input/Output 31

detect Input 25 or 26

intrq Input 37

iord_n Output 34

iordy Input 42

iowr_n Output 35

power Output CompactFlash power controller, if
present

reset_n Output 41

rfu Output 44

we_n Output 46

13.4 Software Programming Model

This section describes the software programming model for the CompactFlash core.

13.4.1 HAL System Library Support

The Intel-provided HAL API functions include a device driver that you can use to
initialize the CompactFlash core. To perform other operations, use the low-level
macros provided.

For more information on the macros, refer to the "Software Files" section.

Related Links

Software Files on page 145

13.4.2 Software Files

The CompactFlash core provides the following software files. These files define the
low-level access to the hardware. Application developers should not modify these files.

• altera_avalon_cf_regs.h—The header file that defines the core's register
maps.

• altera_avalon_cf.h, altera_avalon_cf.c—The header and source code
for the functions and variables required to integrate the driver into the HAL system
library.
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13.4.3 Register Maps

This section describes the register maps for the Avalon-MM slave interfaces.

13.4.3.1 Ide Registers

The ide port in the CompactFlash core allows you to access the IDE registers on a
CompactFlash device.

Table 106. Ide Register Map

Offset Register Names

Read Operation Write Operation

0 RD Data WR Data

1 Error Features

2 Sector Count Sector Count

3 Sector No Sector No

4 Cylinder Low Cylinder Low

5 Cylinder High Cylinder High

6 Select Card/Head Select Card/Head

7 Status Command

14 Alt Status Device Control

13.4.3.2 Ctl Registers

The ctl port in the CompactFlash core provides access to the registers which control
the core’s operation and interface.

Table 107. Ctl Register Map

Offset Register Fields

31:4 3 2 1 0

0 cfctl Reserved IDET RST PWR DET

1 idectl Reserved IIDE

2 Reserved Reserved

3 Reserved Reserved

13.4.3.3 Cfctl Register

The cfctl register controls the operations of the CompactFlash core. Reading the cfctl
register clears the interrupt.
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Table 108. cfctl Register Bits

Bit Number Bit Name Read/Write Description

0 DET RO Detect. This bit is set to 1 when the core detects a CompactFlash
device.

1 PWR RW Power. When this bit is set to 1, power is being supplied to the
CompactFlash device.

2 RST RW Reset. When this bit is set to 1, the CompactFlash device is held in a
reset state. Setting this bit to 0 returns the device to its active state.

3 IDET RW Detect Interrupt Enable. When this bit is set to 1, the CompactFlash
core generates an interrupt each time the value of the det bit
changes.

13.4.3.4 idectl Register

The idectl register controls the interface to the CompactFlash device.

Table 109. idectl Register

Bit Number Bit Name Read/Write Description

0 IIDE RW IDE Interrupt Enable. When this bit is set to 1, the CompactFlash core
generates an interrupt following an interrupt generated by the
CompactFlash device. Setting this bit to 0 disables the IDE interrupt.

13.5 Document Revision History

Table 110. Compact Flash Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Added the mode supported by the CompactFlash core.

For previous versions of this chapter, refer to the Intel Quartus Prime Handbook
Archive.

13 Compact Flash Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
147

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp


14 EPCS Serial Flash Controller Core

14.1 Core Overview

The EPCS serial flash controller core with Avalon interface allows Nios II systems to
access an Intel EPCS serial configuration device. Intel provides drivers that integrate
into the Nios II hardware abstraction layer (HAL) system library, allowing you to read
and write the EPCS device using the familiar HAL application program interface (API)
for flash devices.

Using the EPCS serial flash controller core, Nios II systems can:

• Store program code in the EPCS device. The EPCS serial flash controller core
provides a boot-loader feature that allows Nios II systems to store the main
program code in an EPCS device.

• Store non-volatile program data, such as a serial number, a NIC number, and
other persistent data.

• Manage the device configuration data. For example, a network-enabled embedded
system can receive new FPGA configuration data over a network, and use the core
to program the new data into an EPCS serial configuration device.

The EPCS serial flash controller core is Platform Designer-ready and integrates
easily into any Platform Designer-generated system. The flash programmer utility
in the Nios II IDE allows you to manage and program data contents into the EPCS
device.

For information about the EPCS serial configuration device family, refer to the
Serial Configuration Devices Data Sheet.

For details about using the Nios II HAL API to read and write flash memory, refer
to the Nios II Software Developer's Handbook.

For details about managing and programming the EPCS memory contents, refer to
the Nios II Flash Programmer User Guide.

For Nios II processor users, the EPCS serial flash controller core supersedes the
Active Serial Memory Interface (ASMI) device. New designs should use the EPCS
serial flash controller core instead of the ASMI core.

Related Links

• Serial Configuration Devices (EPCS1, EPCS4, EPCS16, EPCS64 and EPCS128) Data
Sheet

• Nios II Classic Software Developer's Handbook

• Nios II Flash Programmer User Guide
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14.2 Functional Description

As shown below, the EPCS device's memory can be thought of as two separate
regions:

• FPGA configuration memory—FPGA configuration data is stored in this region.

• General-purpose memory—If the FPGA configuration data does not fill up the
entire EPCS device, any left-over space can be used for general-purpose data and
system startup code.

Figure 48. Nios II System Integrating an EPCS Serial Flash Controller Core
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• By virtue of the HAL generic device model for flash devices, accessing the EPCS
device using the HAL API is the same as accessing any flash memory. The EPCS
device has a special-purpose hardware interface, so Nios II programs must read
and write the EPCS memory using the provided HAL flash drivers.

The EPCS serial flash controller core contains an on-chip memory for storing a boot-
loader program. When used in conjunction with Cyclone and Cyclone II devices, the
core requires 512 bytes of boot-loader ROM. For Cyclone III, Cyclone IV, Intel Cyclone
10 LP, Stratix II, and newer device families in the Stratix series, the core requires
1 KByte of boot-loader ROM. The Nios II processor can be configured to boot from the
EPCS serial flash controller core. To do so, set the Nios II reset address to the base
address of the EPCS serial flash controller core. In this case, after reset the CPU first
executes code from the boot-loader ROM, which copies data from the EPCS general-
purpose memory region into a RAM. Then, program control transfers to the RAM. The
Nios II IDE provides facilities to compile a program for storage in the EPCS device, and
create a programming file to program into the EPCS device.

For more information, refer to the Nios II Flash Programmer User Guide.
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If you program the EPCS device using the Intel Quartus Prime Programmer, all
previous content is erased. To program the EPCS device with a combination of FPGA
configuration data and Nios II program data, use the Nios II IDE flash programmer
utility.

The Intel EPCS configuration device connects to the FPGA through dedicated pins on
the FPGA, not through general-purpose I/O pins. In all Intel device families except
Cyclone III, Cyclone IV, and Intel Cyclone 10 LP the EPCS serial flash controller core
does not create any I/O ports on the top-level Platform Designer system module. If
the EPCS device and the FPGA are wired together on a board for configuration using
the EPCS device (in other words, active serial configuration mode), no further
connection is necessary between the EPCS serial flash controller core and the EPCS
device. When you compile the Platform Designer system in the Intel Quartus Prime
software, the EPCS serial flash controller core signals are routed automatically to the
device pins for the EPCS device.

You, however, have the option not to use the dedicated pins on the FPGA (active serial
configuration mode) by turning off the respective parameters in the MegaWizard
interface. When this option is turned off or when the target device is a Cyclone III,
Cyclone IV device, or Intel Cyclone 10 LP you have the flexibility to connect the output
pins, which are exported to the top-level design, to any EPCS devices. Perform the
following tasks in the Intel Quartus Prime software to make the necessary pin
assignments:

• On the Dual-purpose pins page (Assignments > Devices > Device and Pin
Options), ensure that the following pins are assigned to the respective values:

— Data[0] = Use as regular I/O

— Data[1] = Use as regularr I/O

— DCLK = Use as regular I/O

— FLASH_nCE/nCS0 = Use as regular I/O

• Using the Pin Planner (Assignments > Pins), ensure that the following pins are
assigned to the respective configuration functions on the device:

— data0_to_the_epcs_controller = DATA0

— sdo_from the_epcs_controller = DATA1,ASDO

— dclk_from_epcs_controller = DCLK

— sce_from_the_epcs_controller = FLASH_nCE

For more information about the configuration pins in Intel devices, refer to the Pin-Out
Files for Intel Devices page.

Related Links

• Nios II Flash Programmer User Guide

• Pin-Out Files for Intel FPGA devices

14.2.1 Avalon-MM Slave Interface and Registers

The EPCS serial flash controller core has a single Avalon-MM slave interface that
provides access to both boot-loader code and registers that control the core. As shown
in below, the first segment is dedicated to the boot-loader code, and the next seven
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words are control and data registers. A Nios II CPU can read the instruction words,
starting from the core's base address as flat memory space, which enables the CPU to
reset the core's address space.

The EPCS serial flash controller core includes an interrupt signal that can be used to
interrupt the CPU when a transfer has completed.

Table 111. EPCS Serial Flash Controller Core Register Map

Offset
(32-bit Word Address)

Register Name R/W Bit Description

31:0

0x00 .. 0xFF Boot ROM Memory R Boot Loader Code

0x100 Read Data R

0x101 Write Data W

0x102 Status R/W

0x103 Control R/W

0x104 Reserved —

0x105 Slave Enable R/W

0x106 End of Packet R/W

Note: Intel does not publish the usage of the control and data registers. To access the EPCS
device, you must use the HAL drivers provided by Intel.

14.3 Configuration

The core must be connected to a Nios II processor. The core provides drivers for HAL-
based Nios II systems, and the precompiled boot loader code compatible with the Nios
II processor.

In device families other than Cyclone III, Cyclone IV, and Intel Cyclone 10 LP, you can
use the MegaWizard™ interface to configure the core to use general I/O pins instead of
dedicated pins by turning off both parameters, Automatically select dedicated
active serial interface, if supported and Use dedicated active serial interface.

Only one EPCS serial flash controller core can be instantiated in each FPGA design.

14.4 Software Programming Model

This section describes the software programming model for the EPCS serial flash
controller core. Intel provides HAL system library drivers that enable you to erase and
write the EPCS memory using the HAL API functions. Intel does not publish the usage
of the cores registers. Therefore, you must use the HAL drivers provided by Intel to
access the EPCS device.

14.4.1 HAL System Library Support

The Intel-provided driver implements a HAL flash device driver that integrates into the
HAL system library for Nios II systems. Programs call the familiar HAL API functions to
program the EPCS memory. You do not need to know the details of the underlying
drivers to use them.
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The driver for the EPCS device is excluded when the reduced device drivers option is
enabled in a BSP or system library. To force inclusion of the EPCS drivers in a BSP with
the reduced device drivers option enabled, you can define the preprocessor symbol,
ALT_USE_EPCS_FLASH, before including the header, as follows:

#define ALT_USE_EPCS_FLASH

#include <altera_avalon_epcs_flash_controller.h>

The HAL API for programming flash, including C-code examples, is described in detail
in the Nios II Classic Software Developer's Handbook.

For details about managing and programming the EPCS device contents, refer to the 
Nios II Flash Programmer User Guide.

14.4.2 Software Files

The EPCS serial flash controller core provides the following software files. These files
provide low-level access to the hardware and drivers that integrate into the Nios II
HAL system library. Application developers should not modify these files.

• altera_avalon_epcs_flash_controller.h,
altera_avalon_epcs_flash_controller.c—Header and source files that
define the drivers required for integration into the HAL system library.

• epcs_commands.h, epcs_commands.c—Header and source files that directly
control the EPCS device hardware to read and write the device. These files also
rely on theIntel FPGA SPI core drivers.

14.5 Document Revision History

Table 112. EPCS Serial Flash Controller Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2013 v13.1.0 Removed Cyclone and Cyclone II device information in the "EPCS Serial
Flash Controller Core Register Map" table.

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Revised descriptions of register fields and bits.
Updated the section on HAL System Library Support.

March 2009 v9.0.0 Updated the boot ROM memory offset for other device familes in the EPCS
Serial Flash Controller Core Register Map" table.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Updated the boot rom size.
Added additional steps to perform to connect output pins in Cyclone III
devices.

For previous versions of this chapter, refer to the Intel Quartus Prime Handbook
Archive.
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15 Intel FPGA Serial Flash Controller and Controller II
Core

15.1 Parameters

Figure 49. Platform Designer Parameters

15.1.1 Configuration Device Types

The following device types can be selected through the configuration device type drop
down menu. Here you can specify the EPCQ or Micron flash type you want to use.

• EPCS16

• EPCS64

• EPCS128

• EPCQ16

• EPCQ32

• EPCQ64

• EPCQ128

• EPCQ256

• EPCQ512

• EPCQL256

• EPCQL512

• EPCQL1024

• EPCQ4A

• EPCQ16A

• EPCQ32A

• EPCQ64A

• EPCQ128A
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While using EPCS, EPCQ, or EPCQL devices for Intel FPGA Serial Flash Controller, you
must set MSEL pins for AS or ASx4 configuration scheme.

15.1.2 I/O Mode

From the parameters menu you can select either standard (AS configuration) or Quad
(ASx4 configuration) I/O mode.

15.1.3 Chip Selects

For Intel Arria 10 devices, you can select up to three flash chips from the parameters
menu.

15.1.4 Interface Signals

Table 113. Intel FPGA Serial Flash Controller Controller Platform Designer Interface
Signals

Signal Width Direction Description

Clock

clk 1 Input 25MHz maximum input
clock.

Reset

reset_n 1 Input Asynchronous reset used to
reset Quad SPI Controller

Avalon-MM Slave Interface for CSR (avl_csr)

avl_csr_addr 3 Input Avalon-MM address bus. The
address bus is in word
addressing.

avl_csr_read 1 Input Avalon-MM read control to
csr

avl_csr_write 1 Input Avalon-MM write control to
csr

avl_csr_waitrequest 1 Output Avalon-MM waitrequest
control from csr

avl_csr_wrdata 32 Input Avalon-MM write data bus to
csr

avl_csr_rddata 32 Output Avalon-MM read data bus
from csr

avl_csr_rddata_valid 1 Output Avalon-MM read data valid
which indicates that csr read
data is available

Interrupt Signals

irq 1 Output Interrupt signal to determine
if there is an illegal write or
illegal erase

Avalon-MM Slave Interface for Memory Access (avl_ mem)

avl_mem_addr * Input Avalon-MM address bus. The
address bus is in word
addressing. The width of the
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Signal Width Direction Description

address will depends on the
flash memory density minus
2.
If you are using Intel Arria
10, then the MSB bits will be
used for chip select
information. User is allowed
to select the number of chip
select needed in the GUI.
If user selects 1 chip select,
there will be no extra bit
added to avl_mem_addr.
If user select 2 chip selects,
there will be one extra bit
added to avl_mem_addr.
Chip 1 – b’0
Chip 2 – b’1
If user select 3 chip selects,
there will be two extra bit
added to avl_mem_addr.
Chip 1 – b’00
Chip 2 – b’01
Chip 3 – b’10

avl_mem_read 1 Input Avalon-MM read control to
memory

avl_mem_write 1 Input Avalon-MM write control to
memory

avl_mem_wrdata 32 Input Avalon-MM write data bus to
memory

avl_mem_byteenble 4 Input Avalon-MM write data enable
bit to memory. During
bursting mode, byteenable
bus bit will be all high
always, 4’b1111.

avl_mem_burstcount 7 Input Avalon-MM burst count for
memory. Value range from 1
to 64

avl_mem_waitrequest 1 Output Avalon-MM waitrequest
control from memory

avl_mem_rddata 32 Output Avalon-MM read data bus
from memory

avl_mem_rddata_valid 1 Output Avalon-MM read data valid
which indicates that memory
read data is available

Conduit Interface

flash_dataout 4 Input/Output Input/output port to feed
data from flash device

flash_dclk_out 1 Output Provides clock signal to the
flash device

flash_ncs 1/3 Output Provides the ncs signal to
the flash device

Note: When using the Intel FPGA Serial Flash Controller Core with an external EPCQ flash,
the interface mapping for control signal is not required.
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15.2 Registers

15.2.1 Register Memory Map

Each address offset in the table below represents 1 word of memory address space.

Table 114. Register Memory Map

Register Offset Width Access Description

FLASH_RD_STATUS 0x0 8 R Perform read operation on flash device
status register and store the read back
data.

FLASH_RD_SID 0x1 8 R Perform read operation to extract flash
device silicon ID and store the read back
data. Only support in EPCS16 and EPCS64
flash devices.

FLASH_RD_RDID 0x2 8 R Perform read operation to extract flash
device memory capacity and store the read
back data.

FLASH_MEM_OP 0x3 24 W To protect and erase memory

FLASH_ISR 0x4 2 RW Interrupt status register

FLASH_IMR 0x5 2 RW To mask of interrupt status register

FLASH_CHIP_SELECT 0x6 3 W Chip select values:
• B’000/b’001 -chip 1
• B'010 - chip 2
• B'100 - chip 3

15.2.2 Register Descriptions

15.2.2.1 FLASH_RD_STATUS

Table 115. FLASH_RD_STATUS

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Read_status
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Table 116. FLASH_RD_STATUS Fields

Bit Name Description Access Default
Value

31:8 Reserved Reserved - 0x0

7:0 Read_status This 8 bits data contain the information from read
status register operation. It keeps the information
from the flash status register.

R 0x0

15.2.2.2 FLASH_RD_SID

Table 117. FLASH_RD_SID

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Read_sid

Table 118. FLASH_RD_SID Fields

Bit Name Description Access Default
Value

31:8 Reserved Reserved - 0x0

7:0 Read_sid This 8 bits data contain the information from read
silicon ID operation.

R 0x0

15.2.2.3 FLASH_RD_RDID

Table 119. FLASH_RD_RDID

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Read_rdid

Table 120. FLASH_RD_RDID Fields

Bit Name Description Access Default
Value

31:8 Reserved Reserved - 0x0

7:0 Read_rdid This 8 bits data contain the information from read
memory capacity operation. It keeps the information
of the flash manufacturing ID.

R 0x0
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15.2.2.4 FLASH_MEM_OP

Table 121. FLASH_MEM_OP

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved Sector value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sector value Reserved Memory
protect/erase

operation

Table 122. FLASH_MEM_OP Fields

Bit Name Description Access Default
Value

31:24 Reserved Reserved - 0x0

23:8 Sector value Set the sector value of the flash device so that a
particular memory sector can be erasing or
protecting from erase or written. Please refer to the
"Valid Sector Combination for Sector Protect and
Sector Erase Command" section for more detail.

W 0x0

7:2 Reserved Reserved - 0x0

1:0 Memory protect/erase
operation

• 2’b11 – Sector protect:
Active-high port that executes the sector protect
operation. If asserted, the IP takes the value of
FLASH_MEM_OP[23:8] and writes to the FLASH
status register. The status register contains the
block protection bits that represent the memory
sector to be protected from write or erase.

• 2’b10 – Sector erase:
Active-high port that executes the sector erase
operation. If asserted, the IP starts erasing the
memory sector on the flash device based on
FLASH_MEM _OP[23:8] value.

• 2’b01 – Bulk erase
Active-high port that executes the bulk erase
operation. If asserted, the IP performs a full-
erase operation that sets all memory bits of the
flash device to ‘1’, which includes the general
purpose memory of the flash device. (Bulk erase
is not supported in stack-die such as EPCQ512-L
and EPCQ1024-L)

• 2’b00 – N/A

W 0x0

Related Links

Valid Sector Combination for Sector Protect and Sector Erase Command on page 160
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15.2.2.5 FLASH_ISR

Table 123. FLASH_ISR

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Illegal
write

Illegal
erase

Table 124. FLASH_ISR Fields

Bit Name Description Access Default
Value

31:2 Reserved Reserved - 0x0

1 Illegal write Indicates that a write instruction is targeting a
protected sector on the flash memory. This bit is set
to indicate that the IP has cancelled a write
instruction.

RW 1C 0x0

0 Illegal erase Indicates that an erase instruction has been set to a
protected sector on the flash memory. This bit is set
to indicate that the IP has cancelled the erase
instruction.

RW 1C 0x0

15.2.2.6 FLASH_IMR

Table 125. FLASH_IMR

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved M_ille
gal_w
rite

M_ille
gal_e
rase

Table 126. FLASH_IMR Fields

Bit Name Description Access Default
Value

31:2 Reserved Reserved - 0x0

1 M_illegal_write Mask bit for illegal write interrupt
• 0: The corresponding interrupt is disabled
• 1: The corresponding interrupt is enabled

RW 0x0

0 M_illegal_erase Mask bit for illegal erase interrupt
• 0: The corresponding interrupt is disabled
• 1: The corresponding interrupt is enabled

RW 0x0
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15.2.2.7 FLASH_CHIP_SELECT

Table 127. FLASH_CHIP_SELECT

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Chip_
select
bit 3

Chip_
select
bit 2

Chip_
select
bit 1

Table 128. FLASH_CHIP_SELECT Fields

Bit Name Description Access Default
Value

31:3 Reserved Reserved - 0x0

2 Chip_select bit 3 In order to select flash chip 3, issue 1 to this bit
while the rest of the bit to 0.

W 0x0

1 Chip_select bit 2 In order to select flash chip 2, issue 1 to this bit
while the rest of the bit to 0.

W 0x0

0 Chip_select bit 1 In order to select flash chip 1, issue 1 or 0 to this bit
while the rest of the bit to 0.

W 0x0

15.2.3 Valid Sector Combination for Sector Protect and Sector Erase
Command

15.2.3.1 Sector Protect

For the sector protect command, you are allowed to perform the operation on more
than one sector by giving the valid sector combination value to
FLASH_MEM_OP[23:8] .

There are only 5 bits needed to provide the sector combination value. Bit 13 to bit 23
are reserved and should be set to zero.

Table 129. FLASH_MEM_OP bits for Sector Value

23 ... ... 13 12 11 10 9 8

Reserved TB BP3 BP2 BP1 BP0

For more details about the sector combination values, refer to Quad-Serial
Configuration (EPCQ) Devices Datasheet

15.2.3.2 Sector Erase

For the sector erase command, you are allowed to perform the operation on one
sector at a time. Each sector contains of 65536 bytes of data, which is equivalent to
65536 address locations. You need to provide one sector value if you wish to erase to
FLASH_MEM_OP[23:8] . For example, if you want to erase sector 127 in flash 256,
you will need to assign ’b0000 0000 0111 1111 to FLASH_MEM_OP[23:8] .
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Table 130. Number of sectors for different Flash Devices

EPCQ16 EPCQ32 EPCQ64 EPCQ128 EPCQ256 EPCQ512 EPCQ1024

Valid sector
range

0 to 31 0 to 63 0 to 127 0 to 255 0 to 511 0 to 1023 0 to 2047

15.3 Nios II Tools Support

15.3.1 Booting Nios II from Flash

Booting the Nios II from an flash will use a flow similar to Compact Flash Interface
(CFI). The boot copier used will be the same one used for CFI flash.

The boot copier will be located in flash. This has a potential performance impact on
the bootcopying process, which can be mitigated by using a flash cache.

There are two main scenarios when booting from flash:

• Executing in place

In this scenario, boot copier will not be required. Nios II will directly execute
customer code which located in flash.

• Boot copying the code to volatile memory

In this scenario, boot copier is required. Nios II will run the boot copier code
where the boot copier will copy customer code to volatile memory. This is normally
used when customer concern about their code run time performance.

15.3.1.1 Flash Memory Map and Setting Nios II Reset Vector when Using a Boot
Copier

The figure below shows what the flash memory map will look like when using a boot
copier. This memory map assumes a FPGA image is stored at the start.
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Figure 50. EPCQ Flash Layout When Using Boot Copier

Customer Data (*.hex)

FPGA Image (*.sof)
0x00000000

0x0000E400

Boot Copier

Application Code

0x01E0E400

At the start of the memory map is the FPGA image, followed by the boot copier, the
application and then customer data. The size of the FPGA image is unknown and the
exact size can only be known after the Intel Quartus Prime compile. However, the Nios
II Reset Vector must be set in Platform Designer and must point to right after the
FPGA image (i.e. the start of the boot copier).

The customer will have to determine an upper bound for the size of the FPGA image
and will have to set the Nios II Reset Vector in Platform Designer to start after the
FPGA image(s).

15.3.1.2 Boot Copier File

The boot copier that will be used is the CFI boot copier, also known as memcpy-based
boot copier. We will provide the boot copier in one or more of the following formats:
Intel HEX, Quartus HEX or SREC.

15.3.1.3 When Nios II SBT will Append a Boot Copier

The Nios II SBT tools know whether to append a boot copier based on the .text linker
section location. If the .text linker section is located in a different memory than where
the reset vector points, it indicates a code copy is required. At this scenario a boot
copier is required. You can use the existing logic to generate a programming file with
or without a boot copier depending on the scenario.
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15.3.1.4 Creating HEX Programming File

The Nios II Software Build Tools (SBT) application Makefile “make mem_init_generate”
target is responsible for generating memory initialization files. This includes generating
programming files (SREC, HEX) used for flashing a flash memory and files for
initializing memory (DAT, HEX) in simulation.

In boot scenario 1 (Executing in place), “make mem_init_generate” should generate a
HEX file containing ELF loadable sections

In boot scenario 2 (Boot copying the code to volatile memory), “make
mem_init_generate” should generate a HEX file containing both the boot copier and
ELF payload. “make mem_init_generate” is callable from SBT.

15.3.1.5 Programming the Flash

Programming the flash is done by using quartus_cpf to combine a compiled FPGA
image (SOF) with an application image (HEX file generated by Nios II SBT). The result
of this combination is a (POF) which can be programmed to the flash using the Intel
Quartus Prime Programmer.

In the Intel Quartus Prime software, "Convert Programming File tool" (quartus_cpf)
can be called by selecting File >> Convert Programming Files.

15.3.1.6 Custom Boot Copiers

Custom boot copiers can be used. “make mem_init_generate” calls conversion tools
under the hood for creating programming files from compiled ELFs. These tools have a
boot option to specify a custom boot copier. A user will need to call these underlying
conversion tools to generate a programming file with a custom boot copier.

15.3.1.7 Executing in Place

Executing in place shouldn’t be any different than executing in place with an On-chip
RAM. As long as both the Nios II reset and exception vectors point to the flash
memory, execution will happen in place.

The Nios II board support package (BSP) settings are edited to enable alt_load
function to copy the writable memory section into volatile memory and keep the read
only section in the flash memory.

15.3.2 Nios II HAL Driver

A Nios II HAL driver will be developed similar to the driver’s currently available for CFI
(altera_avalon_cfi_flash) and EPCS (altera_avalon_epcs_flash_controller).

Nios II HAL supports a number of generic device model classes including one for
device flashes. Developing against these generic classes gives a consistent interface
for driver functions so that the HAL can access the driver functions uniformly.

Please refer to the Flash Device Drivers section in the Developing Device Drivers for
the Hardware Abstraction Layer for more information.

Related Links

• Nios II Processor Booting From Intel FPGA Serial Flash (EPCQ)

15 Intel FPGA Serial Flash Controller and Controller II Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
163

https://documentation.altera.com/#/00051489-AA$AA00051460


• Developing Device Drivers for the Hardware Abstraction Layer

15.4 Intel FPGA Serial Flash Controller II

The Intel FPGA Serial Flash Controller II wraps around the Intel FPGA ASMI2 Parallel
IP, and consists of some conversion logic which converts the ASMI Parallel conduit
interface to Avalon interface.

15.4.1 Register Memory Map

Each address offset in the table below represents 1 word of memory address space.

Table 131. Register Memory Map

Register Offset Width Access Description

FLASH_RD_STATUS 0x0 8 R Perform read operation on flash device
status register and store the read back
data.

FLASH_RD_RDID 0x2 8 R Perform read operation to extract flash
device memory capacity and store the read
back data.

FLASH_MEM_OP 0x3 24 W To protect and erase memory

FLASH_ISR 0x4 2 RW Interrupt status register

FLASH_IMR 0x5 2 RW To mask of interrupt status register

FLASH_CHIP_SELECT 0x6 3 W Chip select values:
• B’000/b’001 -chip 1
• B'010 - chip 2
• B'100 - chip 3

EPCQ_FLAG_STATUS 0x7 8 RW Perform write/read operation to clear/read
flag status from the device.

DEVICE_ID_DATA_0 0x8 32 R First word of device ID data

DEVICE_ID_DATA_1 0x9 32 R Second word of device ID data

DEVICE_ID_DATA_2 0x10 32 R Third word of device ID data

DEVICE_ID_DATA_3 0x11 32 R Fourth word of device ID data

DEVICE_ID_DATA_4 0x12 32 R Fifth word of device ID data

15.4.2 Configuration Device Types

The following device types can be selected through the configuration device type drop
down menu. Here you can specify the EPCQ.

• EPCQ16

• EPCQ32

• EPCQ64

• EPCQ128

• EPCQ256

• EPCQ512
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• EPCQL256

• EPCQL512

• EPCQL1024

While using EPCS, EPCQ, or EPCQL device for Intel FPGA Serial Flash Controller II, you
must set MSEL pins for AS or ASx4 configuration scheme.

15.5 Document Revision History

Table 132. Intel FPGA Serial Flash Controller and Controller II Core Revision History

Date Version Changes

November 2017 2017.11.06 Added new configuration device types.

May 2017 2017.05.08 New section added:
• Intel FPGA Serial Flash Controller II on page 164

June 2015 2015.06.12 Initial release.
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16 Intel FPGA Generic QUAD SPI Controller and Controller
II Core

16.1 Core Overview

The Generic QUAD SPI controller wraps around the Intel FPGA ASMI PARALLEL IP, and
a soft ASMI block. The flash interface is exported to the top wrapper.

16.2 Functional Description

Figure 51. Intel FPGA Generic QUAD SPI Controller Block Diagram
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16.3 Parameters

Figure 52. Platform Designer Parameters
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16.3.1 Configuration Device Types

The following device types can be selected through the configuration device type drop
down menu. Here you can specify the EPCQ or Micron flash type you want to use.

• EPCQ16

• EPCQ32

• EPCQ64

• EPCQ128

• EPCQ256

• EPCQ512

• EPCQL512

• EPCQL1024

• N25Q016A13ESF40

• N25Q032A13ESF40

• N25Q064A13ESF40

• N25Q128A13ESF40

• N25Q256A13ESF40

• N25Q256A13ESF40 (low voltage)

• MT25QL512ABA

• N25Q512A11G1240 (low voltage)

• N25Q00AA11G1240 (low voltage)

• N25Q512A83GSF40F

While using EPCQ, or EPCQL device for Intel FPGA Generic QUAD SPI Controller, you
must set MSEL pins for ASx4 configuration scheme.

16.3.2 I/O Mode

From the parameters menu you can select either standard or QUAD I/O mode.

16.3.3 Chip Selects

You can choose up to three flash chips from the parameters menu.

Note: This feature is only for Intel Arria 10 devices.

16.3.4 Interface Signals

Table 133. QUAD SPI Controller Platform Designer Interface Signals

Signal Width Direction Description

Clock

clk 1 Input 25MHz maximum input
clock.
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Signal Width Direction Description

Reset

reset_n 1 Input Asynchronous reset used to
reset QUAD SPI controller

Avalon-MM Slave Interface for CSR (avl_csr)

avl_csr_addr 3 Input Avalon-MM address bus. The
address bus is in word
addressing.

avl_csr_read 1 Input Avalon-MM read control to
csr

avl_csr_write 1 Input Avalon-MM write control to
csr

avl_csr_waitrequest 1 Output Avalon-MM waitrequest
control from csr

avl_csr_wrdata 32 Input Avalon-MM write data bus to
csr

avl_csr_rddata 32 Output Avalon-MM read data bus
from csr

avl_csr_rddata_valid 1 Output Avalon-MM read data valid
which indicates that csr read
data is available

Interrupt Signals

irq 1 Output Interrupt signal to determine
if there is an illegal write or
illegal erase

Avalon-MM Slave Interface for Memory Access (avl_ mem)

avl_mem_addr * Input Avalon-MM address bus. The
address bus is in word
addressing. The width of the
address will depends on the
flash memory density minus
2.
If you are using Intel Arria
10, then the MSB bits will be
used for chip select
information. User is allowed
to select the number of chip
select needed in the GUI.
If user selects 1 chip select,
there will be no extra bit
added to avl_mem_addr.
If user select 2 chip selects,
there will be one extra bit
added to avl_mem_addr.
Chip 1 – b’0
Chip 2 – b’1
If user select 3 chip selects,
there will be two extra bit
added to avl_mem_addr.
Chip 1 – b’00
Chip 2 – b’01
Chip 3 – b’10

avl_mem_read 1 Input Avalon-MM read control to
memory

continued...   
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Signal Width Direction Description

avl_mem_write 1 Input Avalon-MM write control to
memory

avl_mem_wrdata 32 Input Avalon-MM write data bus to
memory

avl_mem_byteenble 4 Input Avalon-MM write data enable
bit to memory. During
bursting mode, byteenable
bus bit will be all high
always, 4’b1111.

avl_mem_burstcount 7 Input Avalon-MM burst count for
memory. Value range from 1
to 64

avl_mem_waitrequest 1 Output Avalon-MM waitrequest
control from memory

avl_mem_rddata 32 Output Avalon-MM read data bus
from memory

avl_mem_rddata_valid 1 Output Avalon-MM read data valid
which indicates that memory
read data is available

Conduit Interface

flash_dataout 4 Input/Output Input/output port to feed
data from flash device

flash_dclk_out 1 Output Provides clock signal to the
flash device

flash_ncs 1/3 Output Provides the ncs signal to
the flash device

16.4 Registers

16.4.1 Register Memory Map

Each address offset in the table below represents 1 word of memory address space.

Table 134. Register Memory Map

Register Offset Width Access Description

FLASH_RD_STATUS 0x0 8 R Perform read operation on flash device
status register and store the read back
data.

FLASH_RD_SID 0x1 8 R Perform read operation to extract flash
device silicon ID and store the read back
data. Only support in EPCS16 and EPCS64
flash devices.

FLASH_RD_RDID 0x2 8 R Perform read operation to extract flash
device memory capacity and store the read
back data.

FLASH_MEM_OP 0x3 24 W To protect and erase memory

continued...   
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Register Offset Width Access Description

FLASH_ISR 0x4 2 RW Interrupt status register

FLASH_IMR 0x5 2 RW To mask of interrupt status register

FLASH_CHIP_SELECT 0x6 3 W Chip select values:
• B’000/b’001 -chip 1
• B'010 - chip 2
• B'100 - chip 3

16.4.2 Register Descriptions

16.4.2.1 FLASH_RD_STATUS

Table 135. FLASH_RD_STATUS

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Read_status

Table 136. FLASH_RD_STATUS Fields

Bit Name Description Access Default
Value

31:8 Reserved Reserved - 0x0

7:0 Read_status This 8 bits data contain the information from read
status register operation. It keeps the information
from the flash status register.

R 0x0

16.4.2.2 FLASH_RD_SID

Table 137. FLASH_RD_SID

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Read_sid

Table 138. FLASH_RD_SID Fields

Bit Name Description Access Default
Value

31:8 Reserved Reserved - 0x0

7:0 Read_sid This 8 bits data contain the information from read
silicon ID operation.

R 0x0
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16.4.2.3 FLASH_RD_RDID

Table 139. FLASH_RD_RDID

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Read_rdid

Table 140. FLASH_RD_RDID Fields

Bit Name Description Access Default
Value

31:8 Reserved Reserved - 0x0

7:0 Read_rdid This 8 bits data contain the information from read
memory capacity operation. It keeps the information
of the flash manufacturing ID.

R 0x0

16.4.2.4 FLASH_MEM_OP

Table 141. FLASH_MEM_OP

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved Sector value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sector value Reserved Memory
protect/erase

operation
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Table 142. FLASH_MEM_OP Fields

Bit Name Description Access Default
Value

31:18 Reserved Reserved - 0x0

23:8 Sector value Set the sector value of the flash device so that a
particular memory sector can be erasing or
protecting from erase or written. Please refer to the
"Valid Sector Combination for Sector Protect and
Sector Erase Command" section for more detail.

W 0x0

7:2 Reserved Reserved - 0x0

1:0 Memory protect/erase
operation

• 2’b11 – Sector protect:
Active-high port that executes the sector protect
operation. If asserted, the IP takes the value of
FLASH_MEM_OP[23:8] and writes to the FLASH
status register. The status register contains the
block protection bits that represent the memory
sector to be protected from write or erase.

• 2’b10 – Sector erase:
Active-high port that executes the sector erase
operation. If asserted, the IP starts erasing the
memory sector on the flash device based on
FLASH_MEM _OP[23:8] value.

• 2’b01 – Bulk erase
Active-high port that executes the bulk erase
operation. If asserted, the IP performs a full-
erase operation that sets all memory bits of the
flash device to ‘1’, which includes the general
purpose memory of the flash device. (Bulk erase
is not supported in stack-die such as EPCQ512-L
and EPCQ1024-L)

• 2’b00 – N/A

W 0x0

Related Links

Valid Sector Combination for Sector Protect and Sector Erase Command on page 174

16.4.2.5 FLASH_ISR

Table 143. FLASH_ISR

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Illegal
write

Illegal
erase
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Table 144. FLASH_ISR Fields

Bit Name Description Access Default
Value

31:2 Reserved Reserved - 0x0

1 Illegal write Indicates that a write instruction is targeting a
protected sector on the flash memory. This bit is set
to indicate that the IP has cancelled a write
instruction.

RW 1C 0x0

0 Illegal erase Indicates that an erase instruction has been set to a
protected sector on the flash memory. This bit is set
to indicate that the IP has cancelled the erase
instruction.

RW 1C 0x0

16.4.2.6 FLASH_IMR

Table 145. FLASH_IMR

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved M_ille
gal_w
rite

M_ille
gal_e
rase

Table 146. FLASH_IMR Fields

Bit Name Description Access Default
Value

31:2 Reserved Reserved - 0x0

1 M_illegal_write Mask bit for illegal write interrupt
• 0: The corresponding interrupt is disabled
• 1: The corresponding interrupt is enabled

RW 0x0

0 M_illegal_erase Mask bit for illegal erase interrupt
• 0: The corresponding interrupt is disabled
• 1: The corresponding interrupt is enabled

RW 0x0

16.4.2.7 FLASH_CHIP_SELECT

Table 147. FLASH_CHIP_SELECT

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Chip_
select
bit 3

Chip_
select
bit 2

Chip_
select
bit 1
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Table 148. FLASH_CHIP_SELECT Fields

Bit Name Description Access Default
Value

31:3 Reserved Reserved - 0x0

2 Chip_select bit 3 In order to select flash chip 3, issue 1 to this bit
while the rest of the bit to 0.

W 0x0

1 Chip_select bit 2 In order to select flash chip 2, issue 1 to this bit
while the rest of the bit to 0.

W 0x0

0 Chip_select bit 1 In order to select flash chip 1, issue 1 or 0 to this bit
while the rest of the bit to 0.

W 0x0

16.4.3 Valid Sector Combination for Sector Protect and Sector Erase
Command

16.4.3.1 Sector Protect

For the sector protect command, you are allowed to perform the operation on more
than one sector by giving the valid sector combination value to
FLASH_MEM_OP[23:8] .

There are only 5 bits needed to provide the sector combination value. Bit 13 to bit 23
are reserved and should be set to zero.

Table 149. FLASH_MEM_OP bits for Sector Value

23 ... ... 13 12 11 10 9 8

Reserved TB BP3 BP2 BP1 BP0

For more details about the sector combination values, refer to Quad-Serial
Configuration (EPCQ) Devices Datasheet

16.4.3.2 Sector Erase

For the sector erase command, you are allowed to perform the operation on one
sector at a time. Each sector contains of 65536 bytes of data, which is equivalent to
65536 address locations. You need to provide one sector value if you wish to erase to
FLASH_MEM_OP[23:8] . For example, if you want to erase sector 127 in flash 256,
you will need to assign ’b0000 0000 0111 1111 to FLASH_MEM_OP[23:8] .

Table 150. Number of sectors for different Flash Devices

EPCQ16 EPCQ32 EPCQ64 EPCQ128 EPCQ256 EPCQ512 EPCQ1024

Valid sector
range

0 to 31 0 to 63 0 to 127 0 to 255 0 to 511 0 to 1023 0 to 2047

16.5 Nios II Tools Support
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16.5.1 Booting Nios II from Flash

Booting the Nios II from an flash will use a flow similar to Compact Flash Interface
(CFI). The boot copier used will be the same one used for CFI flash.

The boot copier will be located in flash. This has a potential performance impact on
the bootcopying process, which can be mitigated by using a flash cache.

There are two main scenarios when booting from flash:

• Executing in place

In this scenario, boot copier will not be required. Nios II will directly execute
customer code which located in flash.

• Boot copying the code to volatile memory

In this scenario, boot copier is required. Nios II will run the boot copier code
where the boot copier will copy customer code to volatile memory. This is normally
used when customer concern about their code run time performance.

16.5.1.1 Flash Memory Map and Setting Nios II Reset Vector when Using a Boot
Copier

The figure below shows what the flash memory map will look like when using a boot
copier. This memory map assumes a FPGA image is stored at the start.

Figure 53. EPCQ Flash Layout When Using Boot Copier

Customer Data (*.hex)

FPGA Image (*.sof)
0x00000000
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At the start of the memory map is the FPGA image, followed by the boot copier, the
application and then customer data. The size of the FPGA image is unknown and the
exact size can only be known after the Intel Quartus Prime compile. However, the Nios
II Reset Vector must be set in Platform Designer and must point to right after the
FPGA image (i.e. the start of the boot copier).

The customer will have to determine an upper bound for the size of the FPGA image
and will have to set the Nios II Reset Vector in Platform Designer to start after the
FPGA image(s).

16.5.1.2 Boot Copier File

The boot copier that will be used is the CFI boot copier, also known as memcpy-based
boot copier. We will provide the boot copier in one or more of the following formats:
Intel HEX, Quartus HEX or SREC.

16.5.1.3 When Nios II SBT will Append a Boot Copier

The Nios II SBT tools know whether to append a boot copier based on the .text linker
section location. If the .text linker section is located in a different memory than where
the reset vector points, it indicates a code copy is required. At this scenario a boot
copier is required. You can use the existing logic to generate a programming file with
or without a boot copier depending on the scenario.

16.5.1.4 Creating HEX Programming File

The Nios II Software Build Tools (SBT) application Makefile “make mem_init_generate”
target is responsible for generating memory initialization files. This includes generating
programming files (SREC, HEX) used for flashing a flash memory and files for
initializing memory (DAT, HEX) in simulation.

In boot scenario 1 (Executing in place), “make mem_init_generate” should generate a
HEX file containing ELF loadable sections

In boot scenario 2 (Boot copying the code to volatile memory), “make
mem_init_generate” should generate a HEX file containing both the boot copier and
ELF payload. “make mem_init_generate” is callable from SBT.

16.5.1.5 Programming Flash

Programming the flash is done by using quartus_cpf to combine a compiled FPGA
image (SOF) with an application image (HEX file generated by Nios II SBT). The result
of this combination is a (POF) which can be programmed to the flash using the Intel
Quartus Prime Programmer.

In the Intel Quartus Prime software, "Convert Programming File tool" (quartus_cpf)
can be called by selecting File >> Convert Programming Files.

16.5.1.6 Custom Boot Copiers

Custom boot copiers can be used. “make mem_init_generate” calls conversion tools
under the hood for creating programming files from compiled ELFs. These tools have a
boot option to specify a custom boot copier. A user will need to call these underlying
conversion tools to generate a programming file with a custom boot copier.
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16.5.1.7 Executing in Place

Executing in place shouldn’t be any different than executing in place with an On-chip
RAM. As long as both the Nios II reset and exception vectors point to the flash
memory, execution will happen in place.

The Nios II board support package (BSP) settings are edited to enable alt_load
function to copy the writable memory section into volatile memory and keep the read
only section in the flash memory.

16.5.2 Nios II HAL Driver

A Nios II HAL driver will be developed similar to the driver’s currently available for CFI
(altera_avalon_cfi_flash) and EPCS (altera_avalon_epcs_flash_controller).

Nios II HAL supports a number of generic device model classes including one for
device flashes. Developing against these generic classes gives a consistent interface
for driver functions so that the HAL can access the driver functions uniformly.

Please refer to the Flash Device Drivers section in the Developing Device Drivers for
the Hardware Abstraction Layer for more information.

Related Links

Developing Device Drivers for the Hardware Abstraction Layer

16.6 Intel FPGA Generic QUAD SPI Controller II

The Generic QUAD SPI Controller II wraps around the Intel FPGA ASMI2 PARALLEL IP,
and a soft ASMI block. The flash interface is exported to the top wrapper.

16.6.1 Register Memory Map

Each address offset in the table below represents 1 word of memory address space.

Table 151. Register Memory Map

Register Offset Width Access Description

FLASH_RD_STATUS 0x0 8 R Perform read operation on flash device
status register and store the read back
data.

FLASH_RD_RDID 0x2 8 R Perform read operation to extract flash
device memory capacity and store the read
back data.

FLASH_MEM_OP 0x3 24 W To protect, erase, and write enable memory.
To perform write enable operation, set this
register with the value 3'b100.

FLASH_ISR 0x4 2 RW Interrupt status register

FLASH_IMR 0x5 2 RW To mask of interrupt status register

FLASH_CHIP_SELECT 0x6 3 W Chip select values:
• B’000/b’001 -chip 1
• B'010 - chip 2
• B'100 - chip 3

continued...   

16 Intel FPGA Generic QUAD SPI Controller and Controller II Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
177

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii52005.pdf


Register Offset Width Access Description

EPCQ_FLAG_STATUS 0x7 8 RW Perform write/read operation to clear/read
flag status from the device.

DEVICE_ID_DATA_0 0x8 32 R First word of device ID data

DEVICE_ID_DATA_1 0x9 32 R Second word of device ID data

DEVICE_ID_DATA_2 0x10 32 R Third word of device ID data

DEVICE_ID_DATA_3 0x11 32 R Fourth word of device ID data

DEVICE_ID_DATA_4 0x12 32 R Fifth word of device ID data

16.6.2 Configuration Device Types

The following device types can be selected through the configuration device type drop
down menu. Here you can specify the EPCQ or Micron flash type you want to use.

• EPCQ16

• EPCQ32

• EPCQ64

• EPCQ128

• EPCQ256

• EPCQ512

• EPCQL512

• EPCQL1024

• N25Q016A13ESF40

• N25Q032A13ESF40

• N25Q064A13ESF40

• N25Q128A13ESF40

• N25Q256A13ESF40

• N25Q256A11E1240 (low voltage)

• MT25QL512ABA

• N25Q512A11G1240 (low voltage)

• N25Q00AA11G1240 (low voltage)

• N25Q512A83GSF40F

While using EPCQ, or EPCQL device for Intel FPGA Generic QUAD SPI Controller II, you
must set MSEL pins for ASx4 configuration scheme.
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16.7 Document Revision History

Table 152. Intel FPGA Generic QUAD SPI Controller and Controller II Core Revision
History

Date Version Changes

November 2017 2017.11.06 Added information about the write enable operation in Table: Register
Memory Map for Intel FPGA Generic QUAD SPI Controller II core.

May 2017 2017.05.08 New section added:
• Intel FPGA Generic QUAD SPI Controller II on page 177

June 2015 2015.06.12 Initial release.
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17 Interval Timer Core

17.1 Core Overview

The Interval Timer core with Avalon interface is an interval timer for Avalon-based
processor systems, such as a Nios II processor system. The core provides the
following features:

• 32-bit and 64-bit counters.

• Controls to start, stop, and reset the timer.

• Two count modes: count down once and continuous count-down.

• Count-down period register.

• Option to enable or disable the interrupt request (IRQ) when timer reaches zero.

• Optional watchdog timer feature that resets the system if timer ever reaches zero.

• Optional periodic pulse generator feature that outputs a pulse when timer reaches
zero.

• Compatible with 32-bit and 16-bit processors.

Device drivers are provided in the HAL system library for the Nios II processor.

17.2 Functional Description

Figure 54. Interval Timer Core Block Diagram
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The interval timer core has two user-visible features:

• The Avalon Memory-Mapped (Avalon-MM) interface that provides access to six 16-
bit registers

• An optional pulse output that can be used as a periodic pulse generator

All registers are 16-bits wide, making the core compatible with both 16-bit and
32-bit processors. Certain registers only exist in hardware for a given
configuration. For example, if the core is configured with a fixed period, the period
registers do not exist in hardware.

The following sequence describes the basic behavior of the interval timer core:

• An Avalon-MM master peripheral, such as a Nios II processor, writes the core's
control register to perform the following tasks:

— Start and stop the timer

— Enable/disable the IRQ

— Specify count-down once or continuous count-down mode

• A processor reads the status register for information about current timer activity.

• A processor can specify the timer period by writing a value to the period registers.

• An internal counter counts down to zero, and whenever it reaches zero, it is
immediately reloaded from the period registers.

• A processor can read the current counter value by first writing to one of the snap
registers to request a coherent snapshot of the counter, and then reading the snap
registers for the full value.

• When the count reaches zero, one or more of the following events are triggered:

— If IRQs are enabled, an IRQ is generated.

— The optional pulse-generator output is asserted for one clock period.

— The optional watchdog output resets the system.

17.2.1 Avalon-MM Slave Interface

The interval timer core implements a simple Avalon-MM slave interface to provide
access to the register file. The Avalon-MM slave port uses the resetrequest signal
to implement watchdog timer behavior. This signal is a non-maskable reset signal, and
it drives the reset input of all Avalon-MM peripherals. When the resetrequest signal
is asserted, it forces any processor connected to the system to reboot. For more
information, refer to Configuring the Timer as a Watchdog Timer.

17.3 Configuration

This section describes the options available in the MegaWizard Interace.

17.3.1 Timeout Period

The Timeout Period setting determines the initial value of the period registers. When
the Writeable period option is on, a processor can change the value of the period by
writing to the period registers. When the Writeable period option is off, the period is
fixed and cannot be updated at runtime. See the Hardware Options section for
information on register options.
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The Timeout Period is an integer multiple of the Timer Frequency. The Timer
Frequency is fixed at the frequency setting of the system clock associated with the
timer. The Timeout Period setting can be specified in units of µs (microseconds), ms
(milliseconds), seconds , or clocks (number of cycles of the system clock associated
with the timer). The actual period depends on the frequency of the system clock
associated with the timer. If the period is specified in µs, ms, or seconds, the true
period will be the smallest number of clock cycles that is greater or equal to the
specified Timeout Period value. For example, if the associated system clock has a
frequency of 30 ns, and the specified Timeout Period value is 1 µs, the true timeout
period will be 1.020 microseconds.

17.3.2 Counter Size

The Counter Size setting determines the timer's width, which can be set to either 32
or 64 bits. A 32-bit timer has two 16-bit period registers, whereas a 64-bit timer has
four 16-bit period registers. This option applies to the snap registers as well.

17.3.3 Hardware Options

The following options affect the hardware structure of the interval timer core. As a
convenience, the Preset Configurations list offers several pre-defined hardware
configurations, such as:

• Simple periodic interrupt—This configuration is useful for systems that require
only a periodic IRQ generator. The period is fixed and the timer cannot be
stopped, but the IRQ can be disabled.

• Full-featured—This configuration is useful for embedded processor systems that
require a timer with variable period that can be started and stopped under
processor control.

• Watchdog—This configuration is useful for systems that require watchdog timer
to reset the system in the event that the system has stopped responding. Refer to
the Configuring the Timer as a Watchdog Timer section.

Register Options

Table 153. Register Options

Option Description

Writeable period When this option is enabled, a master peripheral can change the count-down period by writing to
the period registers. When disabled, the count-down period is fixed at the specified Timeout
Period, and the period registers do not exist in hardware.

Readable snapshot When this option is enabled, a master peripheral can read a snapshot of the current count-down.
When disabled, the status of the counter is detectable only via other indicators, such as the status
register or the IRQ signal. In this case, the snap registers do not exist in hardware, and reading
these registers produces an undefined value.

Start/Stop control
bits

When this option is enabled, a master peripheral can start and stop the timer by writing the START
and STOP bits in the control register. When disabled, the timer runs continuously. When the
System reset on timeout (watchdog) option is enabled, the START bit is also present, regardless
of the Start/Stop control bits option.
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Output Signal Options

Table 154. Output Signal Options

Option Description

Timeout pulse
(1 clock wide)

When this option is on, the core outputs a signal timeout_pulse. This signal pulses high for one
clock cycle whenever the timer reaches zero. When this option is off, the timeout_pulse signal
does not exist.

System reset on
timeout (watchdog)

When this option is on, the core’s Avalon-MM slave port includes the resetrequest signal. This
signal pulses high for one clock cycle whenever the timer reaches zero resulting in a system-wide
reset. The internal timer is stopped at reset. Explicitly writing the START bit of the control register
starts the timer.
When this option is off, the resetrequest signal does not exist.
Refer to the Configuring the Timer as a Watchdog Timer section.

17.3.4 Configuring the Timer as a Watchdog Timer

To configure the core for use as a watchdog, in the MegaWizard Interface select
Watchdog in the Preset Configurations list, or choose the following settings:

• Set the Timeout Period to the desired "watchdog" period.

• Turn off Writeable period.

• Turn off Readable snapshot.

• Turn off Start/Stop control bits.

• Turn off Timeout pulse.

• Turn on System reset on timeout (watchdog).

A watchdog timer wakes up (comes out of reset) stopped. A processor later starts
the timer by writing a 1 to the control register's START bit. Once started, the
timer can never be stopped. If the internal counter ever reaches zero, the
watchdog timer resets the system by generating a pulse on its resetrequest
output. The resetrequest pulse will last for two cycles before the incoming
reset signal deasserts the pulse. To prevent an indefinite resetrequest pulse,
you are required to connect the resetrequest signal back to the reset input of
the timer.

To prevent the system from resetting, the processor must periodically reset the
timer's count-down value by writing one of the period registers (the written value
is ignored). If the processor fails to access the timer because, for example,
software stopped executing normally, the watchdog timer resets the system and
returns the system to a defined state.

17.4 Software Programming Model

The following sections describe the software programming model for the interval timer
core, including the register map and software declarations to access the hardware. For
Nios II processor users, Intel provides hardware abstraction layer (HAL) system library
drivers that enable you to access the interval timer core using the HAL application
programming interface (API) functions.
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17.4.1 HAL System Library Support

The Intel-provided drivers integrate into the HAL system library for Nios II systems.
When possible, HAL users should access the core via the HAL API, rather than
accessing the core's registers directly.

Intel provides a driver for both the HAL timer device models: system clock timer, and
timestamp timer.

System Clock Driver

When configured as the system clock, the interval timer core runs continuously in
periodic mode, using the default period set. The system clock services are then run as
a part of the interrupt service routine for this timer. The driver is interrupt-driven, and
therefore must have its interrupt signal connected in the system hardware.

The Nios II integrated development environment (IDE) allows you to specify system
library properties that determine which timer device will be used as the system clock
timer.

Timestamp Driver

The interval timer core may be used as a timestamp device if it meets the following
conditions:

• The timer has a writeable period register, as configured in Platform Designer.

• The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that determine
which timer device will be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers, calls to
the alt_timestamp_start() API function will not reset the timestamp counter.
All other HAL API calls will perform as expected.

For more information about using the system clock and timestamp features that
use these drivers, refer to the Nios II Software Developer’s Handbook. The
Nios II Embedded Design Suite (EDS) also provides several example designs that
use the interval timer core.

Limitations

The HAL driver for the interval timer core does not support the watchdog reset feature
of the core.

17.4.2 Software Files

The interval timer core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL drivers.
Application developers should not modify these files.

• altera_avalon_timer_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware.

• altera_avalon_timer.h, altera_avalon_timer_sc.c,
altera_avalon_timer_ts.c, altera_avalon_timer_vars.c—These files
implement the timer device drivers for the HAL system library.
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17.4.3 Register Map

You do not need to access the interval timer core directly via its registers if using the
standard features provided in the HAL system library for the Nios II processor. In
general, the register map is only useful to programmers writing a device driver.

The Intel-provided HAL device driver accesses the device registers directly. If you are
writing a device driver, and the HAL driver is active for the same device, your driver
will conflict and fail to operate correctly.

The table below shows the register map for the 32-bit timer. The interval timer core
uses native address alignment. For example, to access the control register value,
use offset 0x4.

Table 155. Register Map—32-bit Timer

Offset Name R/W Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 periodl RW Timeout Period – 1 (bits [15:0])

3 periodh RW Timeout Period – 1 (bits [31:16])

4 snapl RW Counter Snapshot (bits [15:0])

5 snaph RW Counter Snapshot (bits [31:16])

Notes :
1. Reserved. Read values are undefined. Write zero.

For more information about native address alignment, refer to the System
Interconnect Fabric for Memory-Mapped Interfaces.

Table 156. Register Map—64-bit Timer

Offset Name R/W Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 period_0 RW Timeout Period – 1 (bits [15:0])

3 period_1 RW Timeout Period – 1 (bits [31:16])

4 period_2 RW Timeout Period – 1 (bits [47:32])

5 period_3 RW Timeout Period – 1 (bits [63:48])

6 snap_0 RW Counter Snapshot (bits [15:0])

7 snap_1 RW Counter Snapshot (bits [31:16])

8 snap_2 RW Counter Snapshot (bits [47:32])

9 snap_3 RW Counter Snapshot (bits [63:48])

Notes :
1. Reserved. Read values are undefined. Write zero.
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status Register

The status register has two defined bits.    

Table 157. status Register Bits

Bit Name R/W/C Description

0 TO R/WC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once set by a timeout
event, the TO bit stays set until explicitly cleared by a master peripheral. Write 0 or 1 to the
status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit reads as 0. The
RUN bit is not changed by a write operation to the status register.

control Register

The control register has four defined bits.

Table 158. control Register Bits

Bit Name R/W/C Description

0 ITO RW If the ITO bit is 1, the interval timer core generates an IRQ when the status register’s TO
bit is 1. When the ITO bit is 0, the timer does not generate IRQs.

1 CONT RW The CONT (continuous) bit determines how the internal counter behaves when it reaches zero.
If the CONT bit is 1, the counter runs continuously until it is stopped by the STOP bit. If CONT
is 0, the counter stops after it reaches zero. When the counter reaches zero, it reloads with
the value stored in the period registers, regardless of the CONT bit.

2 START (1) W Writing a 1 to the START bit starts the internal counter running (counting down). The START
bit is an event bit that enables the counter when a write operation is performed. If the timer
is stopped, writing a 1 to the START bit causes the timer to restart counting from the number
currently stored in its counter. If the timer is already running, writing a 1 to START has no
effect. Writing 0 to the START bit has no effect.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an event bit that causes
the counter to stop when a write operation is performed. If the timer is already stopped,
writing a 1 to STOP has no effect. Writing a 0 to the stop bit has no effect.
If the timer hardware is configured with Start/Stop control bits off, writing the STOP bit
has no effect.

Notes :
1. Writing 1 to both START and STOP bits simultaneously produces an undefined result.
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period_n Registers

The period_n registers together store the timeout period value. The internal counter
is loaded with the value stored in these registers whenever one of the following
occurs:

• A write operation to one of the period_n register

• The internal counter reaches 0

The timer's actual period is one cycle greater than the value stored in the
period_n registers because the counter assumes the value zero for one clock
cycle.

Writing to one of the period_n registers stops the internal counter, except when
the hardware is configured with Start/Stop control bits off. If Start/Stop
control bits is off, writing either register does not stop the counter. When the
hardware is configured with Writeable period disabled, writing to one of the
period_n registers causes the counter to reset to the fixed Timeout Period
specified at system generation time.

Note: A timeout period value of 0 is not a supported use case. Software configures timeout
period values greater than 0.

snap_n Registers

A master peripheral may request a coherent snapshot of the current internal counter
by performing a write operation (write-data ignored) to one of the snap_n registers.
When a write occurs, the value of the counter is copied to snap_n registers. The
snapshot occurs whether or not the counter is running. Requesting a snapshot does
not change the internal counter's operation.

17.4.4 Interrupt Behavior

The interval timer core generates an IRQ whenever the internal counter reaches zero
and the ITO bit of the control register is set to 1. Acknowledge the IRQ in one of
two ways:

• Clear the TO bit of the status register

• Disable interrupts by clearing the ITO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

17.5 Document Revision History

Table 159. Interval Timer Core Revision History

Date Version Changes

June 2015 2015.06.12 Updated "status Register Bits" table.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2013 v13.1.0 Updated the reset pulse description in the Configuring the Timer as a
Watchdog Timer section.

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

continued...   
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Date Version Changes

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Revised descriptions of register fields and bits.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. Updated the core’s name to reflect the
name used in SOPC Builder.

May 2008 v8.0.0 Added a new parameter and register map for the 64-bit timer.

17 Interval Timer Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
188



18 JTAG UART Core

18.1 Core Overview

The JTAG UART core with Avalon interface implements a method to communicate
serial character streams between a host PC and a Platform Designer system on an
Intel FPGA. In many designs, the JTAG UART core eliminates the need for a separate
RS-232 serial connection to a host PC for character I/O. The core provides an Avalon
interface that hides the complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios II processor) communicate with the
core by reading and writing control and data registers.

The JTAG UART core uses the JTAG circuitry built in to Intel FPGAs, and provides host
access via the JTAG pins on the FPGA. The host PC can connect to the FPGA via any
Intel FPGA JTAG download cable, such as the Intel FPGA download cable II. Software
support for the JTAG UART core is provided by Intel. For the Nios II processor, device
drivers are provided in the hardware abstraction layer (HAL) system library, allowing
software to access the core using the ANSI C Standard Library stdio.h routines.

Nios II processor users can access the JTAG UART via the Nios II IDE or the nios2-
terminal command-line utility. For further details, refer to the Nios II Software
Developer's Handbook or the Nios II IDE online help.

For the host PC, Intel provides JTAG terminal software that manages the connection to
the target, decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is Platform Designer-ready and integrates easily into any Platform
Designer-generated system.

18.2 Functional Description

The figure below shows a block diagram of the JTAG UART core and its connection to
the JTAG circuitry inside an Intel FPGA. The following sections describe the
components of the core.
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Figure 55. JTAG UART Core Block Diagram
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18.2.1 Avalon Slave Interface and Registers

The JTAG UART core provides an Avalon slave interface to the JTAG circuitry on an
Intel FPGA. The user-visible interface to the JTAG UART core consists of two 32-bit
registers, data and control, that are accessed through an Avalon slave port. An
Avalon master, such as a Nios II processor, accesses the registers to control the core
and transfer data over the JTAG connection. The core operates on 8-bit units of data
at a time; eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can request an
interrupt when read data is available, or when the write FIFO is ready for data. For
further details see the Interrupt Behavior section.

18.2.2 Read and Write FIFOs

The JTAG UART core provides bidirectional FIFOs to improve bandwidth over the JTAG
connection. The FIFO depth is parameterizable to accommodate the available on-chip
memory. The FIFOs can be constructed out of memory blocks or registers, allowing
you to trade off logic resources for memory resources, if necessary.

18.2.3 JTAG Interface

Intel FPGAs contain built-in JTAG control circuitry between the device's JTAG pins and
the logic inside the device. The JTAG controller can connect to user-defined circuits
called nodes implemented in the FPGA. Because several nodes may need to
communicate via the JTAG interface, a JTAG hub, which is a multiplexer, is necessary.
During logic synthesis and fitting, the Intel Quartus Prime software automatically
generates the JTAG hub logic. No manual design effort is required to connect the JTAG
circuitry inside the device; the process is presented here only for clarity.

18.2.4 Host-Target Connection

Below you can see the connection between a host PC and an Platform Designer-
generated system containing a JTAG UART core.
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Figure 56. Example System Using the JTAG UART Core
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The JTAG controller on the FPGA and the download cable driver on the host PC
implement a simple data-link layer between host and target. All JTAG nodes inside the
FPGA are multiplexed through the single JTAG connection. JTAG server software on the
host PC controls and decodes the JTAG data stream, and maintains distinct
connections with nodes inside the FPGA.

The example system in the figure above contains one JTAG UART core and a Nios II
processor. Both agents communicate with the host PC over a single Intel FPGA
download cable. Thanks to the JTAG server software, each host application has an
independent connection to the target. Intel provides the JTAG server drivers and host
software required to communicate with the JTAG UART core.

Systems with multiple JTAG UART cores are possible, and all cores communicate via
the same JTAG interface. To maintain coherent data streams, only one processor
should communicate with each JTAG UART core.

18.3 Configuration

The following sections describe the available configuration options.

18.3.1 Configuration Page

The options on this page control the hardware configuration of the JTAG UART core.
The default settings are pre-configured to behave optimally with the Intel-provided
device drivers and JTAG terminal software. Most designers should not change the
default values, except for the Construct using registers instead of memory
blocks option.
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18.3.1.1 Write FIFO Settings

The write FIFO buffers data flowing from the Avalon interface to the host. The
following settings are available:

• Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only powers of
two are allowed. Larger values consume more on-chip memory resources. A depth
of 64 is generally optimal for performance, and larger values are rarely necessary.

• IRQ Threshold—The write IRQ threshold governs how the core asserts its IRQ in
response to the FIFO emptying. As the JTAG circuitry empties data from the write
FIFO, the core asserts its IRQ when the number of characters remaining in the
FIFO reaches this threshold value. For maximum bandwidth, a processor should
service the interrupt by writing more data and preventing the write FIFO from
emptying completely. A value of 8 is typically optimal. See the Interrupt
Behavior section for further details.

• Construct using registers instead of memory blocks—Turning on this option
causes the FIFO to be constructed out of on-chip logic resources. This option is
useful when memory resources are limited. Each byte consumes roughly 11 logic
elements (LEs), so a FIFO depth of 8 (bytes) consumes roughly 88 LEs.

18.3.1.2 Read FIFO Settings

The read FIFO buffers data flowing from the host to the Avalon interface. Settings are
available to control the depth of the FIFO and the generation of interrupts.

• Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only powers of
two are allowed. Larger values consume more on-chip memory resources. A depth
of 64 is generally optimal for performance, and larger values are rarely necessary.

• IRQ Threshold—The IRQ threshold governs how the core asserts its IRQ in
response to the FIFO filling up. As the JTAG circuitry fills up the read FIFO, the
core asserts its IRQ when the amount of space remaining in the FIFO reaches this
threshold value. For maximum bandwidth, a processor should service the interrupt
by reading data and preventing the read FIFO from filling up completely. A value
of 8 is typically optimal. See the Interrupt Behavior section for further details.

• Construct using registers instead of memory blocks—Turning on this option
causes the FIFO to be constructed out of logic resources. This option is useful
when memory resources are limited. Each byte consumes roughly 11 LEs, so a
FIFO depth of 8 (bytes) consumes roughly 88 LEs.

18.3.2 Simulation Settings

At system generation time, when Platform Designer generates the logic for the JTAG
UART core, a simulation model is also constructed. The simulation model offers
features to simplify simulation of systems using the JTAG UART core. Changes to the
simulation settings do not affect the behavior of the core in hardware; the settings
affect only functional simulation.

18.3.2.1 Simulated Input Character Stream

You can enter a character stream that will be simulated entering the read FIFO upon
simulated system reset. The MegaWizard Interface accepts an arbitrary character
string, which is later incorporated into the test bench. After reset, this character string
is pre-initialized in the read FIFO, giving the appearance that an external JTAG
terminal program is sending a character stream to the JTAG UART core.
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18.3.2.2 Prepare Interactive Windows

At system generation time, the JTAG UART core generator can create ModelSim
macros to open interactive windows during simulation. These windows allow the user
to send and receive ASCII characters via a console, giving the appearance of a
terminal session with the system executing in hardware. The following options are
available:

• Do not generate ModelSim aliases for interactive windows—This option
does not create any ModelSim macros for character I/O.

• Create ModelSim alias to open a window showing output as ASCII text—
This option creates a ModelSim macro to open a console window that displays
output from the write FIFO. Values written to the write FIFO via the Avalon
interface are displayed in the console as ASCII characters.

• Create ModelSim alias to open an interactive stimulus/response window—
This option creates a ModelSim macro to open a console window that allows input
and output interaction with the core. Values written to the write FIFO via the
Avalon interface are displayed in the console as ASCII characters. Characters
typed into the console are fed into the read FIFO, and can be read via the Avalon
interface. When this option is enabled, the simulated character input stream
option is ignored.

18.4 Hardware Simulation Considerations

The simulation features were created for easy simulation of Nios II processor systems
when using the ModelSim simulator. The simulation model is implemented in the JTAG
UART core's top-level HDL file. The synthesizable HDL and the simulation HDL are
implemented in the same file. Some simulation features are implemented using
translate on/off synthesis directives that make certain sections of HDL code
visible only to the synthesis tool.

For complete details about simulating the JTAG UART core in Nios II systems, refer to 
AN 351: Simulating Nios II Processor Designs.

Other simulators can be used, but require user effort to create a custom simulation
process. You can use the auto-generated ModelSim scripts as references to create
similar functionality for other simulators.

Note: Do not edit the simulation directives if you are using the recommended simulation
procedures. If you change the simulation directives to create a custom simulation
flow, be aware that Platform Designer overwrites existing files during system
generation. Take precautions to ensure your changes are not overwritten.

18.5 Software Programming Model

The following sections describe the software programming model for the JTAG UART
core, including the register map and software declarations to access the hardware. For
Nios II processor users, Intel provides HAL system library drivers that enable you to
access the JTAG UART using the ANSI C standard library functions, such as printf()
and getchar().
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18.5.1 HAL System Library Support

The Intel-provided driver implements a HAL character-mode device driver that
integrates into the HAL system library for Nios II systems. HAL users should access
the JTAG UART via the familiar HAL API and the ANSI C standard library, rather than
accessing the JTAG UART registers. ioctl() requests are defined that allow HAL
users to control the hardware-dependent aspects of the JTAG UART.

Note: If your program uses the Intel-provided HAL device driver to access the JTAG UART
hardware, accessing the device registers directly will interfere with the correct
behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to
the JTAG UART core's features. Nios II programs treat the JTAG UART core as a
character mode device, and send and receive data using the ANSI C standard library
functions, such as getchar() and printf().

The "Printing Characters to a JTAG UART core as stdout" example below demonstrates
the simplest possible usage, printing a message to stdout using printf(). In this
example, the Platform Designer system contains a JTAG UART core, and the HAL
system library is configured to use this JTAG UART device for stdout.

Table 160. Example: Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>
int main ()
{
printf("Hello world.\n");
return 0;
}

The Transmitting characters to a JTAG UART Core example demonstrates reading
characters from and sending messages to a JTAG UART core using the C standard
library. In this example, the Platform Designer system contains a JTAG UART core
named jtag_uart that is not necessarily configured as the stdout device. In this
case, the program treats the device like any other node in the HAL file system.

Table 161. Example: Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
char* msg = "Detected the character 't'.\n";
FILE* fp;
char prompt = 0;
fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
if (fp)
{
while (prompt != 'v')
{ // Loop until we receive a 'v'.
prompt = getc(fp); // Get a character from the JTAG UART.
if (prompt == 't')
{ // Print a message if character is 't'.
fwrite (msg, strlen (msg), 1, fp);
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}
if (ferror(fp)) // Check if an error occurred with the file
pointer clearerr(fp); // If so, clear it.
}
fprintf(fp, "Closing the JTAG UART file handle.\n");
fclose (fp);
}
return 0;
}

In this example, the ferror(fp) is used to check if an error occurred on the JTAG
UART connection, such as a disconnected JTAG connection. In this case, the driver
detects that the JTAG connection is disconnected, reports an error (EIO), and discards
data for subsequent transactions. If this error ever occurs, the C library latches the
value until you explicitly clear it with the clearerr() function.

For complete details of the HAL system library, refer to the Nios II Classic Software
Developer's Handbook.

The Nios II Embedded Design Suite (EDS) provides a number of software example
designs that use the JTAG UART core.

18.5.1.1 Driver Options: Fast vs. Small Implementations

To accommodate the requirements of different types of systems, the JTAG UART driver
has two variants, a fast version and a small version. The fast behavior is used by
default. Both the fast and small drivers fully support the C standard library functions
and the HAL API.

The fast driver is an interrupt-driven implementation, which allows the processor to
perform other tasks when the device is not ready to send or receive data. Because the
JTAG UART data rate is slow compared to the processor, the fast driver can provide a
large performance benefit for systems that could be performing other tasks in the
interim. In addition, the fast version of the Intel FPGA Avalon JTAG UART monitors the
connection to the host. The driver discards characters if no host is connected, or if the
host is not running an application that handles the I/O stream.

The small driver is a polled implementation that waits for the JTAG UART hardware
before sending and receiving each character. The performance of the small driver is
poor if you are sending large amounts of data. The small version assumes that the
host is always connected, and will never discard characters. Therefore, the small
driver will hang the system if the JTAG UART hardware is ever disconnected from the
host while the program is sending or receiving data. There are two ways to enable the
small footprint driver:

• Enable the small footprint setting for the HAL system library project. This option
affects device drivers for all devices in the system.

• Specify the preprocessor option -DALTERA_AVALON_JTAG_UART_SMALL. Use this
option if you want the small, polled implementation of the JTAG UART driver, but
you do not want to affect the drivers for other devices.
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18.5.1.2 ioctl() Operations

The fast version of the JTAG UART driver supports the ioctl() function to allow HAL-
based programs to request device-specific operations. Specifically, you can use the
ioctl() operations to control the timeout period, and to detect whether or not a host
is connected. The fast driver defines the ioctl() operations shown in below.

Table 162. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT Set the timeout (in seconds) after which the driver will decide that the host is not connected. A
timeout of 0 makes the target assume that the host is always connected. The ioctl arg
parameter passed in must be a pointer to an integer.

TIOCGCONNECTED Sets the integer arg parameter to a value that indicates whether the host is connected and
acting as a terminal (1), or not connected (0). The ioctl arg parameter passed in must be a
pointer to an integer.

For details about the ioctl() function, refer to the Nios II Classic Software
Developer's Handbook.

18.5.2 Software Files

The JTAG UART core is accompanied by the following software files. These files define
the low-level interface to the hardware, and provide the HAL drivers. Application
developers should not modify these files.

• altera_avalon_jtag_uart_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware. The symbols in this
file are used only by device driver functions.

• altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files
implement the HAL system library device driver.

18.5.3 Accessing the JTAG UART Core via a Host PC

Host software is necessary for a PC to access the JTAG UART core. The Nios II IDE
supports the JTAG UART core, and displays character I/O in a console window. Intel
also provides a command-line utility called nios2-terminal that opens a terminal
session with the JTAG UART core.

For further details, refer to the Nios II Software Developer's Handbook and Nios II IDE
online help.

18.5.4 Register Map

Programmers using the HAL API never access the JTAG UART core directly via its
registers. In general, the register map is only useful to programmers writing a device
driver for the core.

Note: The Intel-provided HAL device driver accesses the device registers directly. If you are
writing a device driver, and the HAL driver is active for the same device, your driver
will conflict and fail to operate.
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The table below shows the register map for the JTAG UART core. Device drivers
control and communicate with the core through the two, 32-bit memory-mapped
registers.

Table 163. JTAG UART Core Register Map

Offse
t

Regis
ter

Name

R/
W

Bit Description

31 .. 16 15 14 .. 11 10 9 8 7 .. 2 1 0

0 data RW RAVAIL RVA
LID

Reserved DATA

1 cont
rol

RW WSPACE Reserved AC WI RI Reserved WE RE

Note: Reserved fields—Read values are undefined. Write zero.

18.5.4.1 Data Register

Embedded software accesses the read and write FIFOs via the data register. The table
below describes the function of each bit.

Table 164. data Register Bits

Bit(s) Name Access Description

[7:0] DATA R/W The value to transfer to/from the JTAG core. When writing, the
DATA field holds a character to be written to the write FIFO. When
reading, the DATA field holds a character read from the read FIFO.

[15] RVALID R Indicates whether the DATA field is valid. If RVALID=1, the DATA
field is valid, otherwise DATA is undefined.

[32:16] RAVAIL R The number of characters remaining in the read FIFO (after the
current read).

A read from the data register returns the first character from the FIFO (if one is
available) in the DATA field. Reading also returns information about the number of
characters remaining in the FIFO in the RAVAIL field. A write to the data register
stores the value of the DATA field in the write FIFO. If the write FIFO is full, the
character is lost.

18.5.4.2 Control Register

Embedded software controls the JTAG UART core's interrupt generation and reads
status information via the control register. The Control Register Bits table below
describes the function of each bit.

Table 165. Control Register Bits

Bit(s) Name Access Description

0 RE R/W Interrupt-enable bit for read interrupts.

1 WE R/W Interrupt-enable bit for write interrupts.

8 RI R Indicates that the read interrupt is pending.

continued...   
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Bit(s) Name Access Description

9 WI R Indicates that the write interrupt is pending.

10 AC R/C Indicates that there has been JTAG activity since the bit was
cleared. Writing 1 to AC clears it to 0.

[32:16] WSPACE R The number of spaces available in the write FIFO.

A read from the control register returns the status of the read and write FIFOs.
Writes to the register can be used to enable/disable interrupts, or clear the AC bit.

The RE and WE bits enable interrupts for the read and write FIFOs, respectively. The
WI and RI bits indicate the status of the interrupt sources, qualified by the values of
the interrupt enable bits (WE and RE). Embedded software can examine RI and WI to
determine the condition that generated the IRQ. See the Interrupt Behavior section
for further details.

The AC bit indicates that an application on the host PC has polled the JTAG UART core
via the JTAG interface. Once set, the AC bit remains set until it is explicitly cleared via
the Avalon interface. Writing 1 to AC clears it. Embedded software can examine the AC
bit to determine if a connection exists to a host PC. If no connection exists, the
software may choose to ignore the JTAG data stream. When the host PC has no data
to transfer, it can choose to poll the JTAG UART core as infrequently as once per
second. Delays caused by other host software using the JTAG download cable could
cause delays of up to 10 seconds between polls.

18.5.5 Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual interrupt
conditions is pending and enabled.

Interrupt behavior is of interest to device driver programmers concerned with the
bandwidth performance to the host PC. Example designs and the JTAG terminal
program provided with Nios II Embedded Design Suite (EDS) are pre-configured with
optimal interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and read interrupts.
The WE and RE bits in the control register enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly empty. The
nearly empty threshold, write_threshold, is specified at system generation time
and cannot be changed by embedded software. The write interrupt condition is set
whenever there are write_threshold or fewer characters in the write FIFO. It is
cleared by writing characters to fill the write FIFO beyond the write_threshold.
Embedded software should only enable write interrupts after filling the write FIFO. If it
has no characters remaining to send, embedded software should disable the write
interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full. The
nearly full threshold value, read_threshold, is specified at system generation time
and cannot be changed by embedded software. The read interrupt condition is set
whenever the read FIFO has read_threshold or fewer spaces remaining. The read
interrupt condition is also set if there is at least one character in the read FIFO and no
more characters are expected. The read interrupt is cleared by reading characters
from the read FIFO.
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For optimum performance, the interrupt thresholds should match the interrupt
response time of the embedded software. For example, with a 10-MHz JTAG clock, a
new character is provided (or consumed) by the host PC every 1 µs. With a threshold
of 8, the interrupt response time must be less than 8 µs. If the interrupt response
time is too long, performance suffers. If it is too short, interrupts occurs too often.

For Nios II processor systems, read and write thresholds of 8 are an appropriate
default.

18.6 Document Revision History

Table 166. JTAG UART Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.

For previous versions of this chapter, refer to the Intel Quartus Prime Handbook
Archive.
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19 On-Chip FIFO Memory Core

19.1 Core Overview

The on-chip FIFO memory core buffers data and provides flow control in an Platform
Designer system. The core can operate with a single clock or with separate clocks for
the input and output ports, and it does not support burst read or write.

The input interface to the on-chip FIFO memory core may be an Avalon Memory
Mapped (Avalon-MM) write slave or an Avalon Streaming (Avalon-ST) sink. The output
interface can be an Avalon-ST source or an Avalon-MM read slave. The data is
delivered to the output interface in the same order that it was received at the input
interface, regardless of the value of channel, packet, frame, or any other signals.

In single-clock mode, the on-chip FIFO memory core includes an optional status
interface that provides information about the fill level of the FIFO core. In dual-clock
mode, separate, optional status interfaces can be included for the input and output
interfaces. The status interface also includes registers to set and control interrupts.

Device drivers are provided in the HAL system library allowing software to access the
core using ANSI C.

19.2 Functional Description

The on-chip FIFO memory core has four configurations:

• Avalon-MM write slave to Avalon-MM read slave

• Avalon-ST sink to Avalon-ST source

• Avalon-MM write slave to Avalon-ST source

• Avalon-ST sink to Avalon-MM read slave

In all configurations, the input and output interfaces can use the optional
backpressure signals to prevent underflow and overflow conditions. For the
Avalon-MM interface, backpressure is implemented using the waitrequest
signal. For Avalon-ST interfaces, backpressure is implemented using the ready
and valid signals. For the on-chip FIFO memory core, the delay between the sink
asserts ready and the source drives valid data is one cycle.

19.2.1 Avalon-MM Write Slave to Avalon-MM Read Slave

In this configuration, the input is a zero-address-width Avalon-MM write slave. An
Avalon-MM write master pushes data into the FIFO core by writing to the input
interface, and a read master (possibly the same master) pops data by reading from its
output interface. The input and output data must be the same width.
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If Allow backpressure is turned on, the waitrequest signal is asserted whenever
the data_in master tries to write to a full FIFO buffer. waitrequest is only
deasserted when there is enough space in the FIFO buffer for a new transaction to
complete. waitrequest is asserted for read operations when there is no data to be
read from the FIFO buffer, and is deasserted when the FIFO buffer has data.

Figure 57. FIFO with Avalon-MM Input and Output Interfaces
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19.2.2 Avalon-ST Sink to Avalon-ST Source

This configuration has streaming input and output interfaces as illustrated in the figure
below. You can parameterize most aspects of the Avalon-ST interfaces including the
bits per symbol, symbols per beat, and the width of error and channel signals.
The input and output interfaces must be the same width. If Allow backpressure is
turned on, both interfaces use the ready and valid signals to indicate when space is
available in the FIFO core and when valid data is available.

For more information about the Avalon-ST interface protocol, refer to the Avalon
Interface Specifications.

Figure 58. FIFO with Avalon-ST Input and Output Interfaces
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19.2.3 Avalon-MM Write Slave to Avalon-ST Source

In this configuration, the input is an Avalon-MM write slave with a width of 32 bits as
shown in the FIFO with Avalon-MM Input Interface and Avalon-ST Output
Interface figure below. The Avalon-ST output (source) data width must also be 32
bits. You can configure output interface parameters, including: bits per symbol,
symbols per beat, and the width of the channel and error signals. The FIFO core
performs the endian conversion to conform to the output interface protocol.

The signals that comprise the output interface are mapped into bits in the Avalon
address space. If Allow backpressure is turned on, the input interface asserts
waitrequest to indicate that the FIFO core does not have enough space for the
transaction to complete.

Figure 59. FIFO with Avalon-MM Input Interface and Avalon-ST Output Interface
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Table 167. Bit Field

Offset 31 24 23 19 18     16 15     13 12 8 7 4 3 2 1 0

base + 0 Symbol 3 Symbol 2 Symbol 1 Symbol 0

base + 1 reserved reserved error reserved channel reserved empty E
O
P

S
O
P

Table 168. Memory Map

Offset Bits Field Description

0 31:0 SYMBOL_0, SYMBOL_1,
SYMBOL_2 ..
SYMBOL_n

Packet data. The value of the Symbols per beat parameter specifies
the number of fields in this register; Bits per symbol specifies the
width of each field.

1 0 SOP The value of the startofpacket signal.

1 EOP The value of the endofpacket signal.

6:2 EMPTY The value of the empty signal.

7 — Reserved.

continued...   
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Offset Bits Field Description

15:8 CHANNEL The value of the channel signal. The number of bits occupied
corresponds to the width of the signal. For example, if the width of the
channel signal is 5, bits 8 to 12 are occupied and bits 13 to 15 are
unused.

23:16 ERROR The value of the error signal. The number of bits occupied corresponds
to the width of the signal. For example, if the width of the error signal is
3, bits 16 to 18 are occupied and bits 19 to 23 are unused.

31:24 — Reserved.

If Enable packet data is turned off, the Avalon-MM write master writes all data at
address offset 0 repeatedly to push data into the FIFO core.

If Enable packet data is turned on, the Avalon-MM write master starts by writing the
SOP, ERROR (optional), CHANNEL (optional), EOP, and EMPTY packet status
information at address offset 1. Writing to address offset 1 does not push data into the
FIFO core. The Avalon-MM master then writes packet data to address offset 0
repeatedly, pushing 8-bit symbols into the FIFO core. Whenever a valid write occurs at
address offset 0, the data and its respective packet information is pushed into the
FIFO core. Subsequent data is written at address offset 0 without the need to clear the
SOP field. Rewriting to address offset 1 is not required each time if the subsequent
data to be pushed into the FIFO core is not the end-of-packet data, as long as ERROR
and CHANNEL do not change.

At the end of each packet, the Avalon-MM master writes to the address at offset 1 to
set the EOP bit to 1, before writing the last symbol of the packet at offset 0. The write
master uses the empty field to indicate the number of unused symbols at the end of
the transfer. If the last packet data is not aligned with the symbols per beat, the
EMPTY field indicates the number of empty symbols in the last packet data. For
example, if the Avalon-ST interface has symbols per beat of 4, and the last packet
only has 3 symbols, the empty field will be 1, indicating that one symbol (the least
significant symbol in the memory map) is empty.

19.2.4 Avalon-ST Sink to Avalon-MM Read Slave

In this configuration seen in the figure below, the input is an Avalon-ST sink and the
output is an Avalon-MM read slave with a width of 32 bits. The Avalon-ST input (sink)
data width must also be 32 bits. You can configure input interface parameters,
including: bits per symbol, symbols per beat, and the width of the channel and
error signals. The FIFO core performs the endian conversion to conform to the
output interface protocol.

An Avalon-MM master reads the data from the FIFO core. The signals are mapped into
bits in the Avalon address space. If Allow backpressure is turned on, the input
(sink) interface uses the ready and valid signals to indicate when space is available
in the FIFO core and when valid data is available. For the output interface,
waitrequest is asserted for read operations when there is no data to be read from
the FIFO core. It is deasserted when the FIFO core has data to send. The memory
map for this configuration is exactly the same as for the Avalon-MM to Avalon-ST FIFO
core. See the for Memory Map table for more information.
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Figure 60. FIFO with Avalon-ST Input and Avalon-MM Output
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If Enable packet data is turned off, read data repeatedly at address offset 0 to pop
the data from the FIFO core.

If Enable packet data is turned on, the Avalon-MM read master starts reading from
address offset 0. If the read is valid, that is, the FIFO core is not empty, both data and
packet status information are popped from the FIFO core. The packet status
information is obtained by reading at address offset 1. Reading from address offset 1
does not pop data from the FIFO core. The ERROR, CHANNEL, SOP, EOP and EMPTY
fields are available at address offset 1 to determine the status of the packet data read
from address offset 0.

The EMPTY field indicates the number of empty symbols in the data field. For example,
if the Avalon-ST interface has symbols-per-beat of 4, and the last packet data only
has 1 symbol, the empty field is 3 to indicate that 3 symbols (the 3 least significant
symbols in the memory map) are empty.

19.2.5 Status Interface

The FIFO core provides two optional status interfaces, one for the master writing to
the input interface and a second for the read master reading from the output
interface. For FIFO cores that operate in a single domain, a single status interface is
sufficient to monitor the status of the FIFO core. In the dual clocking scheme, a
second status interface using the output clock is necessary to accurately monitor the
status of the FIFO core in both clock domains.

19.2.6 Clocking Modes

When single-clock mode is used, the FIFO core being used is SCFIFO. When dual-clock
mode is chosen, the FIFO core being used is DCFIFO. In dual-clock mode, input data
and write-side status interfaces use the write side clock domain; the output data and
read-side status interfaces use the read-side clock domain.

19.3 Configuration

The following sections describe the available configuration options.

19.3.1 FIFO Settings

The following sections outline the settings that pertain to the FIFO core as a whole.
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Depth

Depth indicates the depth of the FIFO buffer, in Avalon-ST bits or Avalon-MM words.
The default depth is 16. When dual clock mode is used, the actual FIFO depth is equal
to depth-3. This is due to clock crossing and to avoid FIFO overflow.

Clock Settings

The two options are Single clock mode and Dual clock mode. In Single clock
mode, all interface ports use the same clock. In Dual clock mode, input data and
input side status are on the input clock domain. Output data and output side status
are on the output clock domain.

Status Port

The optional status ports are Avalon-MM slaves. To include the optional input side
status interface, turn on Create status interface for input on the Platform Designer
MegaWizard. For FIFOs whose input and output ports operate in separate clock
domains, you can include a second status interface by turning on Create status
interface for output. Turning on Enable IRQ for status ports adds an interrupt
signal to the status ports.

FIFO Implementation

This option determines if the FIFO core is built from registers or embedded memory
blocks. The default is to construct the FIFO core from embedded memory blocks.

19.3.2 Interface Parameters

The following sections outline the options for the input and output interfaces.

Input

Available input interfaces are Avalon-MM write slave and Avalon-ST sink.

Output

Available output interfaces are Avalon-MM read slave and Avalon-ST source.

Allow Backpressure

When Allow backpressure is on, an Avalon-MM interface includes the waitrequest
signal which is asserted to prevent a master from writing to a full FIFO buffer or
reading from an empty FIFO buffer. An Avalon-ST interface includes the ready and
valid signals to prevent underflow and overflow conditions.

Avalon-MM Port Settings

Valid Data widths are 8, 16, and 32 bits.

If Avalon-MM is selected for one interface and Avalon-ST for the other, the data width
is fixed at 32 bits.

The Avalon-MM interface accesses data 4 bytes at a time. For data widths other than
32 bits, be careful of potential overflow and underflow conditions.
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Avalon-ST Port Settings

The following parameters allow you to specify the size and error handling of the
Avalon-ST port or ports:

• Bits per symbol

• Symbols per beat

• Channel width

• Error width

If the symbol size is not a power of two, it is rounded up to the next power of two.
For example, if the bits per symbol is 10, the symbol will be mapped to a 16-bit
memory location. With 10-bit symbols, the maximum number of symbols per
beat is two.

Enable packet data provides an option for packet transmission.

19.4 Software Programming Model

The following sections describe the software programming model for the on-chip FIFO
memory core, including the register map and software declarations to access the
hardware. For Nios II processor users, Intel provides HAL system library drivers that
enable you to access the on-chip FIFO memory core using its HAL API.

19.4.1 HAL System Library Support

The Intel-provided driver implements a HAL device driver that integrates into the HAL
system library for Nios II systems. HAL users should access the on-chip FIFO memory
via the familiar HAL API, rather than accessing the registers directly.

19.4.2 Software Files

Intel provides the following software files for the on-chip FIFO memory core:

• altera_avalon_fifo_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware.

• altera_avalon_fifo_util.h—This file defines functions to access the on-chip
FIFO memory core hardware. It provides utilities to initialize the FIFO, read and
write status, enable flags and read events.

• altera_avalon_fifo.h—This file provides the public interface to the on-chip
FIFO memory

• altera_avalon_fifo_util.c—This file implements the utilities listed in
altera_avalon_fifo_util.h.

19.5 Programming with the On-Chip FIFO Memory

This section describes the low-level software constructs for manipulating the on-chip
FIFO memory core hardware. The table below lists all of the available functions.
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Table 169. On-Chip FIFO Memory Functions

Function Name Description

altera_avalon_fifo_init() Initializes the FIFO.

altera_avalon_fifo_read_status() Returns the integer value of the specified bit of the status
register. To read all of the bits at once, use the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_ienable() Returns the value of the specified bit of the interrupt enable
register. To read all of the bits at once, use the
ALTERA_AVALON_FIFO_EVENT_ALL mask.

altera_avalon_fifo_read_almostfull() Returns the value of the almostfull register.

altera_avalon_fifo_read_almostempty() Returns the value of the almostempty register.

altera_avalon_fifo_read_event() Returns the value of the specified bit of the event register. All of
the event bits can be read at once by using the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_level() Returns the fill level of the FIFO.

altera_avalon_fifo_clear_event() Clears the specified bits and the event register and performs
error checking.

altera_avalon_fifo_write_ienable() Writes the specified bits of the interruptenable register and
performs error checking.

altera_avalon_fifo_write_almostfull() Writes the specified value to the almostfull register and
performs error checking.

altera_avalon_fifo_write_almostempty() Writes the specified value to the almostempty register and
performs error checking.

altera_avalon_fifo_write_fifo() Writes the specified data to the write_address.

altera_avalon_fifo_write_other_info() Writes the packet status information to the write_address.
Only valid when the Enable packet data option is turned on.

altera_avalon_fifo_read_fifo() Reads data from the specified read_address.

altera_avalon_fifo_read__other_info() Reads the packet status information from the specified
read_address. Only valid when the Enable packet data option
is turned on.

19.5.1 Software Control

The table below provides the register map for the status register. The layout of
status register for the input and output interfaces is identical.

Table 170. FIFO Status Register Memory Map

offset 31 24 23 16 15 8 7 6 5 4 3 2 1 0

base fill_level

base + 1 i_status

base + 2 event

base + 3 interrupt
enable

base + 4 almostfull

base + 5 almostempty
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The table below outlines the use of the various fields of the

Table 171. FIFO Status Field Descriptions

Field Type Description

fill_level RO The instantaneous fill level of the FIFO, provided in units of symbols for a FIFO with an
Avalon-ST FIFO and words for an Avalon-MM FIFO.

i_status RO A 6-bit register that shows the FIFO’s instantaneous status. See Status Bit Field
Description Table for the meaning of each bit field.

event RW1C A 6-bit register with exactly the same fields as i_status. When a bit in the i_status
register is set, the same bit in the event register is set. The bit in the event register is only
cleared when software writes a 1 to that bit.

interruptenable RW A 6-bit interrupt enable register with exactly the same fields as the event and i_status
registers. When a bit in the event register transitions from a 0 to a 1, and the corresponding
bit in interruptenable is set, the master Is interrupted.

almostfull RW A threshold level used for interrupts and status. Can be written by the Avalon-MM status
master at any time. The default threshold value for DCFIFO is Depth-4. The default threshold
value for SCFIFO is Depth-1. The valid range of the threshold value is from 1 to the default. 1
is used when attempting to write a value smaller than 1. The default is used when attempting
to write a value larger than the default.

almostempty RW A threshold level used for interrupts and status. Can be written by the Avalon-MM status
master at any time. The default threshold value for DCFIFO is 1. The default threshold value
for SCFIFO is 1. The valid range of the threshold value is from 1 to the maximum allowable
almostfull threshold. 1 is used when attempting to write a value smaller than 1. The
maximum allowable is used when attempting to write a value larger than the maximum
allowable.

status register.

Table 172. Status Bit Field Descriptions

Bit(s) Name Description

0 FULL Has a value of 1 if the FIFO is currently full.

1 EMPTY Has a value of 1 if the FIFO is currently empty.

2 ALMOSTFULL Has a value of 1 if the fill level of the FIFO is equal or greater than the almostfull value.

3 ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO is less or equal than the almostempty value.

4 OVERFLOW Is set to 1 for 1 cycle every time the FIFO overflows. The FIFO overflows when an Avalon write
master writes to a full FIFO. OVERFLOW is only valid when Allow backpressure is off.

5 UNDERFLOW Is set to 1 for 1 cycle every time the FIFO underflows. The FIFO underflows when an Avalon
read master reads from an empty FIFO. UNDERFLOW is only valid when Allow backpressure
is off.

These fields are identical to those in the status register and are set at the same
time; however, these fields are only cleared when software writes a one to clear
(W1C). The event fields can be used to determine if a particular event has occurred.

Table 173. Event Bit Field Descriptions

Bit(s) Name Description

0 E_FULL Has a value of 1 if the FIFO has been full and the bit has not been cleared by software.

1 E_EMPTY Has a value of 1 if the FIFO has been empty and the bit has not been cleared by software.

continued...   
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Bit(s) Name Description

2 E_ALMOSTFULL Has a value of 1 if the fill level of the FIFO has been greater than the almostfull
threshold value and the bit has not been cleared by software.

3 E_ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO has been less than the almostempty value and
the bit has not been cleared by software.

4 E_OVERFLOW Has a value of 1 if the FIFO has overflowed and the bit has not been cleared by software.

5 E_UNDERFLOW Has a value of 1 if the FIFO has underflowed and the bit has not been cleared by software.

The table below provides a mask for the six STATUS fields. When a bit in the event
register transitions from a zero to a one, and the corresponding bit in the
interruptenable register is set, the master is interrupted.

Table 174. InterruptEnable Bit Field Descriptions

Bit(s) Name Description

0 IE_FULL Enables an interrupt if the FIFO is currently full.

1 IE_EMPTY Enables an interrupt if the FIFO is currently empty.

2 IE_ALMOSTFULL Enables an interrupt if the fill level of the FIFO is greater than the value of the almostfull
register.

3 IE_ALMOSTEMPTY Enables an interrupt if the fill level of the FIFO is less than the value of the almostempty
register.

4 IE_OVERFLOW Enables an interrupt if the FIFO overflows. The FIFO overflows when an Avalon write master
writes to a full FIFO.

5 IE_UNDERFLOW Enables an interrupt if the FIFO underflows. The FIFO underflows when an Avalon read
master reads from an empty FIFO.

6 ALL Enables all 6 status conditions to interrupt.

Macros to access all of the registers are defined in altera_avalon_fifo_regs.h. For
example, this file includes the following macros to access the status register.

#define ALTERA_AVALON_FIFO_LEVEL_REG         0
#define ALTERA_AVALON_FIFO_STATUS_REG        1
#define ALTERA_AVALON_FIFO_EVENT_REG         2
#define ALTERA_AVALON_FIFO_IENABLE_REG       3
#define ALTERA_AVALON_FIFO_ALMOSTFULL_REG    4
#define ALTERA_AVALON_FIFO_ALMOSTEMPTY_REG   5

For a complete list of predefined macros and utilities to access the on-chip FIFO
hardware, see: <install_dir>\quartus\sopc_builder\components
\altera_avalon_fifo\HAL\inc\
alatera_avalon_fifo.h and <install_dir>\quartus\sopc_builder
\components\altera_avalon_fifo\HAL\inc\
alatera_avalon_fifo_util.h.

19.5.2 Software Example

/***********************************************************************/
//Includes
#include "altera_avalon_fifo_regs.h"
#include "altera_avalon_fifo_util.h"
#include "system.h"
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#include "sys/alt_irq.h"
#include <stdio.h>
#include <stdlib.h>
#define ALMOST_EMPTY 2
#define ALMOST_FULL OUTPUT_FIFO_OUT_FIFO_DEPTH-5
volatile int input_fifo_wrclk_irq_event;
void print_status(alt_u32 control_base_address)
{
printf("--------------------------------------\n");
printf("LEVEL = %u\n", altera_avalon_fifo_read_level(control_base_address) );
printf("STATUS = %u\n", altera_avalon_fifo_read_status(control_base_address,
ALTERA_AVALON_FIFO_STATUS_ALL) );
printf("EVENT = %u\n", altera_avalon_fifo_read_event(control_base_address,
ALTERA_AVALON_FIFO_EVENT_ALL) );
printf("IENABLE = %u\n", altera_avalon_fifo_read_ienable(control_base_address,
ALTERA_AVALON_FIFO_IENABLE_ALL) );
printf("ALMOSTEMPTY = %u\n",
altera_avalon_fifo_read_almostempty(control_base_address) );
printf("ALMOSTFULL = %u\n\n",
altera_avalon_fifo_read_almostfull(control_base_address));
}
static void handle_input_fifo_wrclk_interrupts(void* context, alt_u32 id)
{
/* Cast context to input_fifo_wrclk_irq_event's type. It is important
* to declare this volatile to avoid unwanted compiler optimization.
*/
volatile int* input_fifo_wrclk_irq_event_ptr = (volatile int*) context;
/* Store the value in the FIFO's irq history register in *context. */
*input_fifo_wrclk_irq_event_ptr =
altera_avalon_fifo_read_event(INPUT_FIFO_IN_CSR_BASE, 
ALTERA_AVALON_FIFO_EVENT_ALL);
printf("Interrupt Occurs for %#x\n", INPUT_FIFO_IN_CSR_BASE);
print_status(INPUT_FIFO_IN_CSR_BASE);
/* Reset the FIFO's IRQ History register. */
altera_avalon_fifo_clear_event(INPUT_FIFO_IN_CSR_BASE,
ALTERA_AVALON_FIFO_EVENT_ALL);
}
/* Initialize the fifo */
static int init_input_fifo_wrclk_control()
{
int return_code = ALTERA_AVALON_FIFO_OK;
/* Recast the IRQ History pointer to match the alt_irq_register() function
* prototype. */
void* input_fifo_wrclk_irq_event_ptr = (void*) &input_fifo_wrclk_irq_event;
/* Enable all interrupts. */
/* Clear event register, set enable all irq, set almostempty and
almostfull threshold */
return_code = altera_avalon_fifo_init(INPUT_FIFO_IN_CSR_BASE,
0, // Disabled interrupts
ALMOST_EMPTY,
ALMOST_FULL);
/* Register the interrupt handler. */
alt_irq_register( INPUT_FIFO_IN_CSR_IRQ,
input_fifo_wrclk_irq_event_ptr, handle_input_fifo_wrclk_interrupts );
return return_code;
}

19.6 On-Chip FIFO Memory API

This section describes the application programming interface (API) for the on-chip
FIFO memory core.
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19.6.1 altera_avalon_fifo_init()

Prototype: int altera_avalon_fifo_init(alt_u32 address, alt_u32 ienable, alt_u32
emptymark, alt_u32 fullmark)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
ienable—the value to write to the interruptenable register
emptymark—the value for the almost empty threshold level
fullmark—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR
for clear errors, ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR for interrupt enable write errors,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR for errors writing the almostfull and
almostempty registers.

Description: Clears the event register, writes the interruptenable register, and sets the almostfull register
and almostempty registers.

19.6.2 altera_avalon_fifo_read_status()

Prototype: int altera_avalon_fifo_read_status(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the status register

Returns: Returns the masked bits of the addressed register.

Description: Gets the addressed register bits—the AND of the value of the addressed register and the mask.

19.6.3 altera_avalon_fifo_read_ienable()

Prototype: int altera_avalon_fifo_read_ienable(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the interruptenable register

Returns: Returns the logical AND of the interruptenable register and the mask.

Description: Gets the logical AND of the interruptenable register and the mask.
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19.6.4 altera_avalon_fifo_read_almostfull()

Prototype: int altera_avalon_fifo_read_almostfull(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostfull register.

Description: Gets the value of the almostfull register.

19.6.5 altera_avalon_fifo_read_almostempty()

Prototype: int altera_avalon_fifo_read_almostempty(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostempty register.

Description: Gets the value of the almostempty register.

19.6.6 altera_avalon_fifo_read_event()

Prototype: int altera_avalon_fifo_read_event(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the event register

Returns: Returns the logical AND of the event register and the mask.

Description: Gets the logical AND of the event register and the mask. To read single bits of the event register use
the single bit masks, for example: ALTERA_AVALON_FIFO_FIFO_EVENT_F_MSK. To read the entire
event register use the full mask: ALTERA_AVALON_FIFO_EVENT_ALL.

19.6.7 altera_avalon_fifo_read_level()

Prototype: int altera_avalon_fifo_read_level(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
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Parameters: address—the base address of the FIFO control slave

Returns: Returns the fill level of the FIFO.

Description: Gets the fill level of the FIFO.

19.6.8 altera_avalon_fifo_clear_event()

Prototype: int altera_avalon_fifo_clear_event(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the mask to use for bit-clearing (1 means clear this bit, 0 means do not clear)

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR if
unsuccessful.

Description: Clears the specified bits of the event register.

19.6.9 altera_avalon_fifo_write_ienable()

Prototype: int altera_avalon_fifo_write_ienable(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the value to write to the interruptenable register. See altera_avalon_fifo_regs.h for
individual interrupt bit masks.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR
if unsuccessful.

Description: Writes the specified bits of the interruptenable register.

19.6.10 altera_avalon_fifo_write_almostfull()

Prototype: int altera_avalon_fifo_write_almostfull(alt_u32 address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostfull register.
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19.6.11 altera_avalon_fifo_write_almostempty()

Prototype: int altera_avalon_fifo_write_almostempty(alt_u32 address, alt_u23 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost empty threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostempty register.

19.6.12 altera_avalon_write_fifo()

Prototype: int altera_avalon_write_fifo(alt_u32 write_address, alt_u32 ctrl_address,
alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the value to write to address offset 0 for Avalon-MM to Avalon-ST transfers, the value to write to
the single address available for Avalon-MM to Avalon-MM transfers. See the Avalon Interface
Specifications section for the data ordering.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL if unsuccessful.

Description: Writes data to the specified address if the FIFO is not full.

19.6.13 altera_avalon_write_other_info()

Prototype: int altera_avalon_write_other_info(alt_u32 write_address, alt_u32 ctrl_address,
alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the packet status information to write to address offset 1 of the Avalon interface. See the
Avalon Interface Specifications section for the ordering of the packet status information.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL if unsuccessful.

Description: Writes the packet status information to the write_address. Only valid when Enable packet data is
on.
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19.6.14 altera_avalon_fifo_read_fifo()

Prototype: int altera_avalon_fifo_read_fifo(alt_u32 read_address, alt_u32 ctrl_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave
ctrl_address—the base address of the FIFO control slave

Returns: Returns the data from address offset 0, or 0 if the FIFO is empty.

Description: Gets the data addressed by read_address.

R**altera_avalon_fifo_read_other_info()

Prototype: int altera_avalon_fifo_read_other_info(alt_u32 read_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

Returns: Returns the packet status information from address offset 1 of the Avalon interface. See the Avalon
Interface Specifications section for the ordering of the packet status information.

Description: Reads the packet status information from the specified read_address. Only valid when Enable
packet data is on.

19.7 Document Revision History

Table 175. On-Chip FIFO Memory Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of Platform Designer, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in Platform
Designer”, and “Referenced Documents” sections.

July 2010 v10.0.0 Revised the description of the memory map.

November 2009 v9.1.0 Added description to the core overview.

March 2009 v9.0.0 Updated the description of the function altera_avalon_fifo_read_status().

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.
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20 On-Chip Memory (RAM and ROM) Core

20.1 Core Overview

Intel FPGAs include on-chip memory blocks that can be used as RAM or ROM in
Platform Designer systems. On-chip memory has the following benefits for Platform
Designer systems:

• On-chip memory has fast access time, compared to off-chip memory.

• Platform Designer automatically instantiates on-chip memory inside the Platform
Designer system, so you do not have to make any manual connections.

• Certain memory blocks can have initialized contents when the FPGA powers up.
This feature is useful, for example, for storing data constants or processor boot
code.

• On-chip memories support dual port accesses, allowing two master to access the
same memory concurrently.

20.2 Component-Level Design for On-Chip Memory

In Platform Designer you instantiate on-chip memory by clicking On-chip Memory
(RAM or ROM) from the list of available components. The configuration window for the
On-chip Memory (RAM or ROM) component has the following options: Memory type,
Size, and Read latency.
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20.2.1 Memory Type

This options defines the structure of the on-chip memory:

• RAM (writable)—This setting creates a readable and writable memory.

• ROM (read only)—This setting creates a read-only memory.

• Dual-port access—This setting creates a memory component with two slaves,
which allows two masters to access the memory simultaneously.

Note: The memory component operates under true dual-port mode where both
slave ports have address ports for read or write operations. If two masters
access the same address simultaneously in a dual-port memory undefined
results will occur. Concurrent accesses are only a problem for two writes. A
read and write to the same location will read out the old data and store the
new data.

• Single clock operation—Single clock operation setting creates single clock source
to clock both slaves port. If single clock operation is not selected, each of the two
slaves port is clocked by different clock sources.

Note: For Intel Stratix 10 devices, only single clock operation is supported.

• Read During Write Mode—This setting determines what the output data of the
memory should be when a simultaneous read and write to the same memory
location occurs.

• Block type—This setting directs the Intel Quartus Prime software to use a specific
type of memory block when fitting the on-chip memory in the FPGA.

Note: The MRAM blocks do not allow the contents to be initialized during power
up. The M512s memory type does not support dual-port mode where both
ports support both reads and writes.

Because of the constraints on some memory types, it is frequently best to use the
Auto setting. Auto allows the Intel Quartus Prime software to choose a type and the
other settings direct the Intel Quartus Prime software to select a particular type.
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20.2.2 Size

This options defines the size and width of the memory.

• Enable different width for Dual-port Access—Different width for dual-port access
status.

Note: A different width for dual-port access is not supported for Intel Stratix 10
devices.

• Slave S1 Data width—This setting determines the data width of the memory. The
available choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Assign Data width
to match the width of the master that accesses this memory the most frequently
or has the most critical throughput requirements. For example, if you are
connecting the on-chip memory to the data master of a Nios II processor, you
should set the data width of the on-chip memory to 32 bits, the same as the data-
width of the Nios II data master. Otherwise, the access latency could be longer
than one cycle because the Avalon interconnect fabric performs width translation.

• Total memory size—This setting determines the total size of the on-chip memory
block. The total memory size must be less than the available memory in the target
FPGA.

• Minimize memory block usage (may impact fmax)—Minimize memory block usage
(may impact fmax)—This option is only available for devices that include M4K
memory blocks. If selected, the Intel Quartus Prime software divides the memory
by depth rather than width, so that fewer memory blocks are used. This change
may decrease fmax.

20.2.3 Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM slaves. Pipelined
access improves fMAX performance, but also adds latency cycles when reading the
memory. The Read latency option allows you to specify either one or two cycles of
read latency required to access data. If the Dual-port access setting is turned on, you
can specify a different read latency for each slave. When you have dual-port memory
in your system you can specify different clock frequencies for the ports. You specify
this on the System Contents tab in Platform Designer.

20.2.4 ROM/RAM Memory Protection

This setting if enabled, creates additional reset request port for memory protection
during reset. This additional reset input port is used to gate off the clock to the
memory.

20.2.5 ECC Parameter

This setting if enabled, extends the data width to support ECC bits. It does not
instantiate any ECC encoder or decoder logic within this component.
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20.2.6 Memory Initialization

The memory initialization parameter section contains the following options:

• Initialize memory content—Option for user to enable memory content
initialization.

• Enable non-default initialization file—You can specify your own initialization file by
selecting Enable non-default initialization file. This option allows the file you
specify to be used to initialize the memory in place of the default initialization file
created by Platform Designer.

• Enable Partial Reconfiguartion Initialization Mode—This setting if enabled,
automatically instantiates logic to support Partial Reconfiguration use cases for
initialized memory.

• Enable In-System Memory Content Editor Feature—Enables a JTAG interface used
to read and write to the RAM while it is operating. You can use this interface to
update or read the contents of the memory from your host PC.

20.3 Platform Designer System-Level Design for On-Chip Memory

There are few Platform Designer system-level design considerations for on-chip
memories. See “Platform Designer System-Level Design”.

When generating a new system, Platform Designer creates a blank initialization file in
the Intel Quartus Prime project directory for each on-chip memory that can power up
with initialized contents. The name of this file is <name of memory
component>.hex.

20.4 Simulation for On-Chip Memory

At system generation time, Platform Designer generates a simulation model for the
on-chip memory. This model is embedded inside the Platform Designer system, and
there are no user-configurable options for the simulation testbench.

You can provide memory initialization contents for simulation in the file <Intel
Quartus Prime project directory>/<Platform Designer system
name>_sim/<Memory component name>.hex.

20.5 Intel Quartus Prime Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the Platform Designer system, and there are
no signals to connect to the Intel Quartus Prime project.

To provide memory initialization contents, you must fill in the file <name of memory
component>.hex. The Intel Quartus Prime software recognizes this file during design
compilation and incorporates the contents into the configuration files for the FPGA.

Note: For the memory to be initialized, you then must compile the hardware in the Intel
Quartus Prime software for the SRAM Object File (.sof) to pick up the memory
initialization files. All memory types with the exception of MRAMs support this feature.
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20.6 Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the Platform Designer system, and there is
nothing to connect at the board level.

20.7 Example Design with On-Chip Memory

This section demonstrates adding a 4 KByte on-chip RAM to the example design. This
memory uses a single slave interface with a read latency of one cycle.

For demonstration purposes, the figure below shows the result of generating the
Platform Designer system at this stage. In a normal design flow, you generate the
system only after adding all system components.

Figure 61. Platform Designer System with On-Chip Memory
onchip_memory2_0

altera_avalon_onchip_memory2

clk1

s1

reset1

clock

avalon

reset

Because the on-chip memory is contained entirely within the Platform Designer
system, Platform Designer_memory_system has no I/O signals associated with
onchip_ram. Therefore, you do not need to make any Intel Quartus Prime project
connections or assignments for the on-chip RAM, and there are no board-level
considerations.

20.8 Document Revision History

Table 176. On-Chip Memory (RAM or ROM) Core

Date Version Changes

May 2017 2017.05.08 Initial release
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21 Optrex 16207 LCD Controller Core

21.1 Core Overview

The Optrex 16207 LCD controller core with Avalon Interface (LCD controller core)
provides the hardware interface and software driver required for a Nios II processor to
display characters on an Optrex 16207 (or equivalent) 16×2-character LCD panel.
Device drivers are provided in the HAL system library for the Nios II processor. Nios II
programs access the LCD controller as a character mode device using ANSI C standard
library routines, such as printf(). The LCD controller is Platform Designer-ready,
and integrates easily into any Platform Designer-generated system.

The Nios II Embedded Design Suite (EDS) includes an Optrex LCD module and provide
several ready-made example designs that display text on the Optrex 16207 via the
LCD controller.

For details about the Optrex 16207 LCD module, see the manufacturer's Dot Matrix
Character LCD Module User's Manual available online.

21.2 Functional Description

The LCD controller core consists of two user-visible components:

• Eleven signals that connect to pins on the Optrex 16207 LCD panel—These signals
are defined in the Optrex 16207 data sheet.

— E—Enable (output)

— RS—Register Select (output)

— R/W—Read or Write (output)

— DB0 through DB7—Data Bus (bidirectional)

• An Avalon Memory-Mapped (Avalon-MM) slave interface that provides access to 4
registers.
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Figure 62. LCD Controller Block Diagram
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21.3 Software Programming Model

This section describes the software programming model for the LCD controller.

21.3.1 HAL System Library Support

Intel provides HAL system library drivers for the Nios II processor that enable you to
access the LCD controller using the ANSI C standard library functions. The Intel-
provided drivers integrate into the HAL system library for Nios II systems. The LCD
driver is a standard character-mode device, as described in the Nios II Software
Developer’s Handbook. Therefore, using printf() is the easiest way to write
characters to the display.

The LCD driver requires that the HAL system library include the system clock driver.

21.3.2 Displaying Characters on the LCD

The driver implements VT100 terminal-like behavior on a miniature scale for the 16×2
screen. Characters written to the LCD controller are stored to an 80-column × 2-row
buffer maintained by the driver. As characters are written, the cursor position is
updated. Visible characters move the cursor position to the right. Any visible
characters written to the right of the buffer are discarded. The line feed character (\n)
moves the cursor down one line and to the left-most column.

The buffer is scrolled up as soon as a printable character is written onto the line below
the bottom of the buffer. Rows do not scroll as soon as the cursor moves down to
allow the maximum useful information in the buffer to be displayed.

If the visible characters in the buffer fit on the display, all characters are displayed. If
the buffer is wider than the display, the display scrolls horizontally to display all the
characters. Different lines scroll at different speeds, depending on the number of
characters in each line of the buffer.

The LCD driver supports a small subset of ANSI and VT100 escape sequences that can
be used to control the cursor position, and clear the display as shown below.
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Table 177. Escape Sequence Supported by the LCD Controller

Sequence Meaning

BS   (\b) Moves the cursor to the left by one character.

CR   (\r) Moves the cursor to the start of the current line.

LF   (\n) Moves the cursor to the start of the line and move it down
one line.

ESC (  (\x1B) Starts a VT100 control sequence.

ESC   [   <y>   ;   <x>   H Moves the cursor to the y, x position specified – positions
are counted from the top left which is 1;1.

ESC   [  K Clears from current cursor position to end of line.

ESC   [   2  J Clears the whole screen.

The LCD controller is an output-only device. Therefore, attempts to read from it
returns immediately indicating that no characters have been received.

The LCD controller drivers are not included in the system library when the Reduced
device drivers option is enabled for the system library. If you want to use the LCD
controller while using small drivers for other devices, add the preprocessor option—
DALT_USE_LCD_16207 to the preprocessor options.

21.3.3 Software Files

The LCD controller is accompanied by the following software files. These files define
the low-level interface to the hardware and provide the HAL drivers. Application
developers should not modify these files.

• altera_avalon_lcd_16207_regs.h — This file defines the core's register
map, providing symbolic constants to access the low-level hardware.

• altera_avalon_lcd_16207.h, altera_avalon_lcd_16207.c — These files
implement the LCD controller device drivers for the HAL system library.

21.3.4 Register Map

The HAL device drivers make it unnecessary for you to access the registers directly.
Therefore, Intel does not publish details about the register map. For more information,
the altera_avalon_lcd_16207_regs.h file describes the register map, and the
Dot Matrix Character LCD Module User's Manual from Optrex describes the register
usage.

21.3.5 Interrupt Behavior

The LCD controller does not generate interrupts. However, the LCD driver's text
scrolling feature relies on the HAL system clock driver, which uses interrupts for timing
purposes.
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21.4 Document Revision History

Table 178. Optrex 16207 LCD Controller Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.
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22 PIO Core

22.1 Core Overview

The parallel input/output (PIO) core with Avalon interface provides a memory-mapped
interface between an Avalon Memory-Mapped (Avalon-MM) slave port and general-
purpose I/O ports. The I/O ports connect either to on-chip user logic, or to I/O pins
that connect to devices external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in situations
where a “bit banging” approach is sufficient. Some example uses are:

• Controlling LEDs

• Acquiring data from switches

• Controlling display devices

• Configuring and communicating with off-chip devices, such as application-specific
standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based on input
signals.

22.2 Functional Description

Each PIO core can provide up to 32 I/O ports. An intelligent host such as a
microprocessor controls the PIO ports by reading and writing the register-mapped
Avalon-MM interface. Under control of the host, the PIO core captures data on its
inputs and drives data to its outputs. When the PIO ports are connected directly to I/O
pins, the host can tristate the pins by writing control registers in the PIO core. The
example below shows a processor-based system that uses multiple PIO cores to drive
LEDs, capture edges from on-chip reset-request control logic, and control an off-chip
LCD display.
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Figure 63. System Using Multiple PIO Cores
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When integrated into an Platform Designer-generated system, the PIO core has two
user-visible features:

• A memory-mapped register space with four registers: data, direction,
interruptmask, and edgecapture

• 1 to 32 I/O ports

The I/O ports can be connected to logic inside the FPGA, or to device pins that
connect to off-chip devices. The registers provide an interface to the I/O ports via
the Avalon-MM interface. See Register Map for the PIO Core table for a
description of the registers.

22.2.1 Data Input and Output

The PIO core I/O ports can connect to either on-chip or off-chip logic. The core can be
configured with inputs only, outputs only, or both inputs and outputs. If the core is
used to control bidirectional I/O pins on the device, the core provides a bidirectional
mode with tristate control.

The hardware logic is separate for reading and writing the data register. Reading the
data register returns the value present on the input ports (if present). Writing data
affects the value driven to the output ports (if present). These ports are independent;
reading the data register does not return previously-written data.

22.2.2 Edge Capture

The PIO core can be configured to capture edges on its input ports. It can capture low-
to-high transitions, high-to-low transitions, or both. Whenever an input detects an
edge, the condition is indicated in the edgecapture register. The types of edges
detected is specified at system generation time, and cannot be changed via the
registers.

22.2.3 IRQ Generation

The PIO core can be configured to generate an IRQ on certain input conditions. The
IRQ conditions can be either:
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• Level-sensitive—The PIO core hardware can detect a high level. A NOT gate can be
inserted external to the core to provide negative sensitivity.

• Edge-sensitive—The core's edge capture configuration determines which type of
edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt mask
determines which input port can generate interrupts.

22.3 Example Configurations

Figure 64. PIO Core with Input Ports, Output Ports, and IRQ Support
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The block diagram below shows the PIO core configured in bidirectional mode, without
support for IRQs.

Figure 65. PIO Cores with Bidirectional Ports

direction

data
in

out

address

data

control

  32
Avalon-MM

Interface
to On-Chip

Logic

22.3.1 Avalon-MM Interface

The PIO core's Avalon-MM interface consists of a single Avalon-MM slave port. The
slave port is capable of fundamental Avalon-MM read and write transfers. The Avalon-
MM slave port provides an IRQ output so that the core can assert interrupts.

22.4 Configuration

The following sections describe the available configuration options.

22.4.1 Basic Settings

The Basic Settings page allows you to specify the width, direction and reset value of
the I/O ports.
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22.4.1.1 Width

The width of the I/O ports can be set to any integer value between 1 and 32.

22.4.1.2 Direction

You can set the port direction to one of the options shown below.

Table 179. Direction Settings

Setting Description

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving
and capturing data. The direction of each pin is individually
selectable. To tristate an FPGA I/O pin, set the direction to
input.

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are
separate, unidirectional buses of n bits wide.

22.4.1.3 Output Port Reset Value

You can specify the reset value of the output ports. The range of legal values depends
on the port width.

22.4.1.4 Output Register

The option Enable individual bit set/clear output register allows you to set or
clear individual bits of the output port. When this option is turned on, two additional
registers—outset and outclear—are implemented. You can use these registers to
specify the output bit to set and clear.

22.4.2 Input Options

The Input Options page allows you to specify edge-capture and IRQ generation
settings. The Input Options page is not available when Output ports only is
selected on the Basic Settings page.

22.4.2.1 Edge Capture Register

Turn on Synchronously capture to include the edge capture register, edgecapture,
in the core. The edge capture register allows the core to detect and generate an
optional interrupt when an edge of the specified type occurs on an input port. The
user must further specify the following features:

• Select the type of edge to detect:

— Rising Edge

— Falling Edge

— Either Edge

• Turn on Enable bit-clearing for edge capture register to clear individual bit in
the edge capture register. To clear a given bit, write 1 to the bit in the edge
capture register.
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22.4.2.2 Interrupt

Turn on Generate IRQ to assert an IRQ output when a specified event occurs on
input ports. The user must further specify the cause of an IRQ event:

• Level— The core generates an IRQ whenever a specific input is high and
interrupts are enabled for that input in the interruptmask register.

• Edge— The core generates an IRQ whenever a specific bit in the edge capture
register is high and interrupts are enabled for that bit in the interruptmask
register.

When Generate IRQ is off, the interruptmask register does not exist.

22.4.3 Simulation

The Simulation page allows you to specify the value of the input ports during
simulation. Turn on Hardwire PIO inputs in test bench to set the PIO input ports to
a certain value in the testbench, and specify the value in Drive inputs to field.

22.5 Software Programming Model

This section describes the software programming model for the PIO core, including the
register map and software constructs used to access the hardware. For Nios II
processor users, Intel provides the HAL system library header file that defines the PIO
core registers. The PIO core does not match the generic device model categories
supported by the HAL, so it cannot be accessed via the HAL API or the ANSI C
standard library.

The Nios II Embedded Design Suite (EDS) provides several example designs that
demonstrate usage of the PIO core. In particular, the count_binary.c example uses
the PIO core to drive LEDs, and detect button presses using PIO edge-detect
interrupts.

22.5.1 Software Files

The PIO core is accompanied by one software file, altera_avalon_pio_regs.h.
This file defines the core's register map, providing symbolic constants to access the
low-level hardware.

22.5.2 Register Map

An Avalon-MM master peripheral, such as a CPU, controls and communicates with the
PIO core via the four 32-bit registers, shown below. The table assumes that the PIO
core's I/O ports are configured to a width of n bits.

Table 180. Register Map for the PIO Core

Offset Register Name R/W (n-1) ... 2 1 0

0 data read access R Data value currently on PIO inputs

write access W New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O port. A value of 0
sets the direction to input; 1 sets the direction to output.

continued...   
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Offset Register Name R/W (n-1) ... 2 1 0

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.

3 edgecapture (1) , (2) R/W Edge detection for each input port.

4 outset W Specifies which bit of the output port to set. Outset value
is not stored into a physical register in the IP core. Hence
it's value is not reserve for future use.

5 outclear W Specifies which output bit to clear. Outclear value is not
stored into a physical register in the IP core. Hence it's
value is not reserve for future use.

Note :
1. This register may not exist, depending on the hardware configuration. If a register is not present, reading the register returns

an undefined value, and writing the register has no effect.
2. If the option Enable bit-clearing for edge capture register is turned off, writing any value to the edgecapture register

clears all bits in the register. Otherwise, writing a 1 to a particular bit in the register clears only that bit.

22.5.2.1 data Register

Reading from data returns the value present at the input ports if the PIO core
hardware is configured to input, or inout mode only. If the PIO core hardware is
configured to output-only mode, reading from the data register returns the value
present at the output ports. Whereas, if the PIO core hardware is configured to
bidirectional mode, reading from data register returns value depending on the
direction register value, setting to 1 returns value present at the output ports, setting
to 0 returns undefined value.

Writing to data stores the value to a register that drives the output ports. If the PIO
core hardware is configured in input-only mode, writing to data has no effect. If the
PIO core hardware is in bidirectional mode, the registered value appears on an output
port only when the corresponding bit in the direction register is set to 1 (output).

22.5.2.2 direction Register

The direction register controls the data direction for each PIO port, assuming the
port is bidirectional. When bit n in direction is set to 1, port n drives out the value
in the corresponding bit of the data register.

The direction register only exists when the PIO core hardware is configured in
bidirectional mode. In input-only, output-only and inout mode, the direction
register does not exist. In this case, reading direction returns an undefined value,
writing direction has no effect. The mode (input, output, inout or bidirectional) is
specified at system generation time, and cannot be changed at runtime.

After reset, all direction register bits are 0, so that all bidirectional I/O ports are
configured as inputs. If those PIO ports are connected to device pins, the pins are held
in a high-impedance state. In bi-directional mode, you will need to write to the
direction register to change the direction of the PIO port (0-input, 1-output).

22.5.2.3 interruptmask Register

Setting a bit in the interruptmask register to 1 enables interrupts for the
corresponding PIO input port. Interrupt behavior depends on the hardware
configuration of the PIO core. See the Interrupt Behavior section.
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The interruptmask register only exists when the hardware is configured to generate
IRQs. If the core cannot generate IRQs, reading interruptmask returns an
undefined value, and writing to interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are disabled for all
PIO ports.

22.5.2.4 edgecapture Register

Bit n in the edgecapture register is set to 1 whenever an edge is detected on input
port n. An Avalon-MM master peripheral can read the edgecapture register to
determine if an edge has occurred on any of the PIO input ports. If the edge capture
register bit has been previously set, in_port toggling activity will not change value.

If the option Enable bit-clearing for the edge capture register is turned off, writing any
value to the edgecapture register clears all bits in the register. Otherwise, writing a
1 to a particular bit in the register clears only that bit.

The type of edge(s) to detect is fixed in hardware at system generation time. The
edgecapture register only exists when the hardware is configured to capture edges.
If the core is not configured to capture edges, reading from edgecapture returns an
undefined value, and writing to edgecapture has no effect.

22.5.2.5 outset and outclear Register

You can use the outset and outclear registers to set and clear individual bits of the
output port. For example, to set bit 6 of the output port, write 0x40 to the outset
register. Writing 0x08 to the outclear register clears bit 3 of the output port.

These registers are only present when the option Enable individual bit set/clear
output register is turned on. Outset and outclear registers are not physical
registers inside the IP core, hence the output port value will only be affected by the
current update outset value or current update outclear value only.

22.5.3 Interrupt Behavior

The PIO core outputs a single IRQ signal that can connect to any master peripheral in
the system. The master can read either the data register or the edgecapture
register to determine which input port caused the interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is asserted
whenever corresponding bits in the data and interruptmask registers are 1. When
the hardware is configured for edge-sensitive interrupts, the IRQ is asserted whenever
corresponding bits in the edgecapture and interruptmask registers are 1. The
IRQ remains asserted until explicitly acknowledged by disabling the appropriate bit(s)
in interruptmask, or by writing to edgecapture.

22.5.4 Software Files

The PIO core is accompanied by the following software file. This file provide low-level
access to the hardware. Application developers should not modify the file.
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• altera_avalon_pio_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware. The symbols in this
file are used by device driver functions.

22.6 Document Revision History

Table 181. PIO Core Revision History

Date Version Changes

December 2015 2015.12.16 Updated "edgecapture Register" section

June 2015 2015.06.12 • Updated "Register Map" section
• Updated "data Register" section
• Updated "direction Register" section
• Updated "outset and outclear Register" section

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2013 v13.1.0 Updated note (2) in Register map for PIO Core Table

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections

July 2010 v10.0.0 No change from previous release

November 2009 v9.1.0 No change from previous release

March 2009 v9.0.0 Added a section on new registers, outset and outclear

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. Added the description for Output Port
Reset Value and Simulation parameters

May 2008 v8.0.0 No change from previous release
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23 PLL Cores

23.1 Core Overview

The PLL cores, Avalon ALTPLL and PLL, provide a means of accessing the dedicated on-
chip PLL circuitry in the Intel Stratix (except Stratix V), and Cyclone series FPGAs.
Both cores are a component wrapper around the Intel FPGA ALTPLL IP core.

The PLL core is scheduled for product obsolescence and discontinued support.
Therefore, Intel recommends that you use the Avalon ALTPLL core in your designs.

The core takes an Platform Designer system clock as its input and generates PLL
output clocks locked to that reference clock.

The PLL cores support the following features:

• All PLL features provided by Intel FPGA ALTPLL IP core. The exact feature set
depends on the device family.

• Access to status and control signals via Avalon Memory-Mapped (Avalon-MM)
registers or top-level signals on the Platform Designer system module.

• Dynamic phase reconfiguration in Stratix III and Stratix IV device families.

The PLL output clocks are made available in two ways:

• As sources to system-wide clocks in your Platform Designer system.

• As output signals on your Platform Designer system module.

For details about the ALTPLL IP core, refer to the ALTPLL IP Core User Guide.
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23.2 Functional Description

Figure 66. PLL Core Block Diagram
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23.2.1 ALTPLL IP Core

The PLL cores consist of an ALTPLL IP core instantiation and an Avalon-MM slave
interface. This interface can optionally provide access to status and control registers
within the cores. The ALTPLL IP core takes an Platform Designer system clock as its
reference, and generates one or more phase-locked loop output clocks.

23.2.2 Clock Outputs

Depending on the target device family, the ALTPLL IP core can produce two types of
output clock:

• internal (c)—clock outputs that can drive logic either inside or outside the Platform
Designer system module. Internal clock outputs can also be mapped to top-level
FPGA pins. Internal clock outputs are available on all device families.

• external (e)—clock outputs that can only drive dedicated FPGA pins. They cannot
be used as on-chip clock sources. External clock outputs are not available on all
device families.

The Avalon ALTPLL core, however, does not differentiate the internal and external
clock outputs and allows the external clock outputs to be used as on-chip clock
sources.

To determine the exact number and type of output clocks available on your target
device, refer to the ALTPLL IP Core User Guide.
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23.2.3 PLL Status and Control Signals

Depending on how the ALTPLL IP core is parameterized, there can be a variable
number of status and control signals. You can choose to export certain status and
control signals to the top-level Platform Designer system module. Alternatively,
Avalon-MM registers can provide access to the signals. Any status or control signals
which are not mapped to registers are exported to the top-level module. For details,
refer to the Instantiating the Avalon ALTPLL Core.

23.2.4 System Reset Considerations

At FPGA configuration, the PLL cores reset automatically. PLL-specific reset circuitry
guarantees that the PLL locks before releasing reset for the overall Platform Designer
system module.

Resetting the PLL resets the entire Platform Designer system module.

23.3 Instantiating the Avalon ALTPLL Core

When you instantiate the Avalon ALTPLL core, the MegaWizard Plug-In Manager is
automatically launched for you to parameterize the ALTPLL IP core. There are no
additional parameters that you can configure in Platform Designer.

The pfdena signal of the ALTPLL IP core is not exported to the top level of the
Platform Designer module. You can drive this port by writing to the PFDENA bit in the
control register.

The locked, pllena/extclkena, and areset signals of the IP core are always
exported to the top level of the Platform Designer module. You can read the locked
signal and reset the core by manipulating respective bits in the registers. See the
Register Definitions and Bit List section for more information on the registers.

For details about using the ALTPLL MegaWizard Plug-In Manager, refer to the ALTPLL
IP Core User Guide.

23.4 Instantiating the PLL Core

This section describes the options available in the MegaWizard™ interface for the PLL
core in Platform Designer.

PLL Settings Page

The PLL Settings page contains a button that launches the ALTPLL MegaWizard Plug-
In Manager. Use the MegaWizard Plug-In Manager to parameterize the ALTPLL IP core.
The set of available parameters depends on the target device family.

You cannot click Finish in the PLL wizard nor configure the PLL interface until you
parameterize the ALTPLL IP core.

Interface Page

The Interface page configures the access modes for the optional advanced PLL status
and control signals.
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For each advanced signal present on the ALTPLL IP core, you can select one of the
following access modes:

• Export—Exports the signal to the top level of the Platform Designer system
module.

• Register—Maps the signal to a bit in a status or control register.

The advanced signals are optional. If you choose not to create any of them in the
ALTPLL MegaWizard Plug-In, the PLL's default behavior is as shown in below.

You can specify the access mode for the advanced signals shown in below. The
ALTPLL core signals, not displayed in this table, are automatically exported to the
top level of the Platform Designer system module.

Table 182. ALTPLL Advanced Signal

ALTPLL
Name

Input /
Output

Avalon-MM PLL Wizard
Name

Default Behavior Description

areset input PLL Reset Input The PLL is reset only at
device configuration.

This signal resets the entire Platform
Designer system module, and restores the
PLL to its initial settings.

pllena input PLL Enable Input The PLL is enabled. This signal enables the PLL.
pllena is always exported.

pfdena input PFD Enable Input The phase-frequency
detector is enabled.

This signal enables the phase-frequency
detector in the PLL, allowing it to lock on to
changes in the clock reference.

locked output PLL Locked Output — This signal is asserted when the PLL is
locked to the input clock.

Asserting areset resets the entire Platform Designer system module, not just the
PLL.

Finish

Click Finish to insert the PLL into the Platform Designer system. The PLL clock
output(s) appear in the clock settings table on the Platform Designer System
Contents tab.

If the PLL has external output clocks, they appear in the clock settings table like other
clocks; however, you cannot use them to drive components within the Platform
Designer system.

For details about using external output clocks, refer to the ALTPLL IP Core User Guide.

The Platform Designer automatically connects the PLL's reference clock input to the
first available clock in the clock settings table.

If there is more than one Platform Designer system clock available, verify that the PLL
is connected to the appropriate reference clock.

23.5 Hardware Simulation Considerations

The HDL files generated by Platform Designer for the PLL cores are suitable for both
synthesis and simulation. The PLL cores support the standard Platform Designer
simulation flow, so there are no special considerations for hardware simulation.
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23.6 Register Definitions and Bit List

Device drivers can control and communicate with the cores through two memory-
mapped registers, status and control. The width of these registers are 32 bits in
the Avalon ALTPLL core but only 16 bits in the PLL core.

In the PLL core, the status and control bits shown in the PLL Cores Register map
below are present only if they have been created in the ALTPLL MegaWizard Plug-In
Manager, and set to Register on the Interface page in the PLL wizard. These
registers are always created in the Avalon ALTPLL core.

Table 183. PLL Cores Register Map

Offset Register
Name

R/W Bit Description

31/15
(2)

30 29 ... 9 8 7 6 5 4 3 2 1 0

0 status R/O (1) phasedone locked

1 control R/W (1) pfdena areset

2 phase
reconfig
control

R/W phase (1) counter_number

3 — — Undefined

Note :
1. Reserved. Read values are undefined. When writing, set reserved bits to zero.
2. The registers are 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.

23.6.1 Status Register

Embedded software can access the PLL status via the status register. Writing to
status has no effect.

Table 184. Status Register Bits

Bit Number Bit Name Value after reset Description

0 locked

(2)
1 Connects to the locked signal on the ALTPLL IP core. The locked

bit is high when valid clocks are present on the output of the PLL.

1 phasedone

(2)
0 Connects to the phasedone signal on the ALTPLL IP core. The

phasedone output of the ALTPLL is synchronized to the system
clock.

2:15/31 (1) — — Reserved. Read values are undefined.

Note :
1. The status register is 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.
2. Both the locked and phasedone outputs from the Avalon ALTPLL component are available as conduits and reflect the

non-synchronized outputs from the ALTPLL.

23.6.2 Control Register

Embedded software can control the PLL via the control register. Software can also
read back the status of control bits.
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Table 185. Control Register Bits

Bit Number Bit Name Value after reset Description

0 areset 0 Connects to the areset signal on the ALTPLL IP core. Writing a 1
to this bit initiates a PLL reset.

1 pfdena 1 Connects to the pfdena signal on the ALTPLL IP core. Writing a 0
to this bit disables the phase frequency detection.

2:15/31 (1) — — Reserved. Read values are undefined. When writing, set reserved
bits to zero.

Note :
1. The controlregister is 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.

23.6.3 Phase Reconfig Control Register

Embedded software can control the dynamic phase reconfiguration via the phase
reconfig control register.

Table 186. Phase Reconfig Control Register Bits

Bit Number Bit Name Value after
reset

Description

0:8 counter_number — A binary 9-bit representation of the counter that needs to be
reconfigured. Refer to the Counter_Number Bits and Selection
table for the counter selection.

9:29 — — Reserved. Read values are undefined. When writing, set reserved
bits to zero.

30:31 phase (1) — 01: Step up phase of counter_number
10: Step down phase of counter_number
00 and 11: No operation

Note :
1. Phase step up or down when set to 1 (only applicable to the Avalon ALTPLL core).

The table below lists the counter number and selection. For example, 100 000 000
selects counter C0 and 100 000 001 selects counter C1.

Table 187. Counter_Number Bits and Selection

Counter_Number [0:8] Counter Selection

0 0000 0000 All output counters

0 0000 0001 M counter

> 0 0000 0001 Undefined

1 0000 0000 C0

1 0000 0001 C1

1 0000 0010 C2

... ...

1 0000 1000 C8

1 0000 1001 C9

> 1 0000 1001 Undefined
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23.7 Document Revision History

Table 188. PLL Cores Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Revised descriptions of register fields and bits.

March 2009 v9.0.0 Added information on the new Avalon ALTPLL core.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.
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24 DMA Controller Core

24.1 Core Overview

The direct memory access (DMA) controller core with Avalon interface performs bulk
data transfers, reading data from a source address range and writing the data to a
different address range. An Avalon Memory-Mapped (Avalon-MM) master peripheral,
such as a CPU, can offload memory transfer tasks to the DMA controller. While the
DMA controller performs memory transfers, the master is free to perform other tasks
in parallel.

The DMA controller transfers data as efficiently as possible, reading and writing data
at the maximum pace allowed by the source or destination. The DMA controller is
capable of performing Avalon transfers with flow control, enabling it to automatically
transfer data to or from a slow peripheral with flow control (for example, UART), at
the maximum pace allowed by the peripheral.

Instantiating the DMA controller in Platform Designer creates one slave port and two
master ports. You must specify which slave peripherals can be accessed by the read
and write master ports. Likewise, you must specify which other master peripheral(s)
can access the DMA control port and initiate DMA transactions. The DMA controller
does not export any signals to the top level of the system module.

Note: While instantiating the DMA controller in the hierarchical subsystem, add an Avalon-
MM pipeline bridge in front of the exported master interface of the DMA controller in
the subsystem. This will allow you to configure the bus width of the pipeline bridge to
match the slave address bus.

For the Nios II processor, device drivers are provided in the HAL system library. See
the Software Programming Model section for details of HAL support.

24.2 Functional Description

You can use the DMA controller to perform data transfers from a source address-space
to a destination address-space. The controller has no concept of endianness and does
not interpret the payload data. The concept of endianness only applies to a master
that interprets payload data.

The source and destination may be either an Avalon-MM slave peripheral (for example,
a constant address) or an address range in memory. The DMA controller can be used
in conjunction with peripherals with flow control, which allows data transactions of
fixed or variable length. The DMA controller can signal an interrupt request (IRQ)
when a DMA transaction completes. A transaction is a sequence of one or more Avalon
transfers initiated by the DMA controller core.
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The DMA controller has two Avalon-MM master ports—a master read port and a
master write port—and one Avalon-MM slave port for controlling the DMA as shown in
the figure below.

Figure 67. DMA Controller Block Diagram
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A typical DMA transaction proceeds as follows:

1. A CPU prepares the DMA controller for a transaction by writing to the control port.

2. The CPU enables the DMA controller. The DMA controller then begins transferring
data without additional intervention from the CPU. The DMA’s master read port
reads data from the read address, which may be a memory or a peripheral. The
master write port writes the data to the destination address, which can also be a
memory or peripheral. A shallow FIFO buffers data between the read and write
ports.

3. The DMA transaction ends when a specified number of bytes are transferred (a
fixed-length transaction) or an end-of-packet signal is asserted by either the
sender or receiver (a variable-length transaction). At the end of the transaction,
the DMA controller generates an interrupt request (IRQ) if it was configured by the
CPU to do so.

4. During or after the transaction, the CPU can determine if a transaction is in
progress, or if the transaction ended (and how) by examining the DMA controller’s
status register.

24.2.1 Setting Up DMA Transactions

An Avalon-MM master peripheral sets up and initiates DMA transactions by writing to
registers via the control port. The Avalon-MM master programs the DMA engine using
byte addresses which are byte aligned. The master peripheral configures the following
options:
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• Read (source) address location

• Write (destination) address location

• Size of the individual transfers: Byte (8-bit), halfword (16-bit), word (32-bit),
doubleword (64-bit) or quadword (128-bit)

• Enable interrupt upon end of transaction

• Enable source or destination to end the DMA transaction with end-of-packet signal

• Specify whether source and destination are memory or peripheral

The master peripheral then sets a bit in the control register to initiate the DMA
transaction.

24.2.2 The Master Read and Write Ports

The DMA controller reads data from the source address through the master read port,
and then writes to the destination address through the master write port. You program
the DMA controller using byte addresses. Read and write start addresses should be
aligned to the transfer size. For example, to transfer data words, if the start address is
0, the address will increment to 4, 8, and 12. For heterogeneous systems where a
number of different slave devices are of different widths, the data width for read and
write masters matches the width of the widest data-width slave addressed by either
the read or the write master. For bursting transfers, the burst length is set to the DMA
transaction length with the appropriate unit conversion. For example, if a 32-bit data
width DMA is programmed for a word transfer of 64 bytes, the length registered is
programmed with 64 and the burst count port will be 16. If a 64-bit data width DMA is
programmed for a doubleword transfer of 8 bytes, the length register is programmed
with 8 and the burst count port will be 1.

There is a shallow FIFO buffer between the master read and write ports. The default
depth is 2, which makes the write action depend on the data-available status of the
FIFO, rather than on the status of the master read port.

Both the read and write master ports can perform Avalon transfers with flow control,
which allows the slave peripheral to control the flow of data and terminate the DMA
transaction.

For details about flow control in Avalon-MM data transfers and Avalon-MM peripherals,
refer to Avalon Interface Specifications.

24.2.3 Addressing and Address Incrementing

When accessing memory, the read (or write) address increments by 1, 2, 4, 8, or 16
after each access, depending on the width of the data. On the other hand, a typical
peripheral device (such as UART) has fixed register locations. In this case, the read/
write address is held constant throughout the DMA transaction.
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The rules for address incrementing are, in order of priority:

• If the control register’s RCON (or WCON) bit is set, the read (or write) increment
value is 0.

• Otherwise, the read and write increment values are set according to the transfer
size specified in the control register, as shown below.

Table 189. Address Increment Values

Transfer Width Increment

byte 1

halfword 2

word 4

doubleword 8

quadword 16

In systems with heterogeneous data widths, care must be taken to present the
correct address or offset when configuring the DMA to access native-aligned
slaves. For example, in a system using a 32-bit Nios II processor and a 16-bit
DMA, the base address for the UART txdata register must be divided by the
dma_data_width/cpu_data_width—2 in this example.

24.3 Parameters

This section describes the parameters you can configure.

24.3.1 DMA Parameters (Basic)

The DMA Parameters page includes the following parameters.

Transfer Size

The parameter Width of the DMA Length Register specifies the minimum width of
the DMA’s transaction length register, which can be between 1 and 32. The length
register determines the maximum number of transfers possible in a single DMA
transaction.

By default, the length register is wide enough to span any of the slave peripherals
mastered by the read or write ports. Overriding the length register may be necessary
if the DMA master port (read or write) masters only data peripherals, such as a UART.
In this case, the address span of each slave is small, but a larger number of transfers
may be desired per DMA transaction.

Burst Transactions

When Enable Burst Transfers is turned on, the DMA controller performs burst
transactions on its master read and write ports. The parameter Maximum Burst Size
determines the maximum burst size allowed in a transaction.

In burst mode, the length of a transaction must not be longer than the configured
maximum burst size. Otherwise, the transaction must be performed as multiple
transactions.
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FIFO Depth

The parameter Data Transfer FIFO Depth specifies the depth of the FIFO buffer
used for data transfers. Intel recommends that you set the depth of the FIFO buffer to
at least twice the maximum read latency of the slave interface connected to the read
master port. A depth that is too low reduces transfer throughput.

FIFO Implementation

This option determines the implementation of the FIFO buffer between the master
read and write ports. Select Construct FIFO from Registers to implement the FIFO
using one register per storage bit. This option has a strong impact on logic utilization
when the DMA controller’s data width is large. See the Advanced Options section.

To implement the FIFO using embedded memory blocks available in the FPGA, select
Construct FIFO from Memory Blocks.

24.3.2 Advanced Options

The Advanced Options page includes the following parameters.

Allowed Transactions

You can choose the transfer datawidth(s) supported by the DMA controller hardware.
The following datawidth options can be enabled or disabled:

• Byte

• Halfword (two bytes)

• Word (four bytes)

• Doubleword (eight bytes)

• Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the number of on-chip logic
resources consumed by the DMA controller core. For example, if a system has
both 16-bit and 32-bit memories, but the DMA controller transfers data to the 16-
bit memory, 32-bit transfers could be disabled to conserve logic resources.

24.4 Software Programming Model

This section describes the programming model for the DMA controller, including the
register map and software declarations to access the hardware. For Nios II processor
users, Intel provides HAL system library drivers that enable you to access the DMA
controller core using the HAL API for DMA devices.

24.4.1 HAL System Library Support

The Intel-provided driver implements a HAL DMA device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the DMA controller
via the familiar HAL API, rather than accessing the registers directly.

If your program uses the HAL device driver to access the DMA controller, accessing the
device registers directly interferes with the correct behavior of the driver.
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The HAL DMA driver provides both ends of the DMA process; the driver registers itself
as both a receive channel (alt_dma_rxchan) and a transmit channel
(alt_dma_txchan). The Nios II Software Develope’s Handbook provides
complete details of the HAL system library and the usage of DMA devices.

ioctl() Operations

ioctl() operation requests are defined for both the receive and transmit channels,
which allows you to control the hardware-dependent aspects of the DMA controller.
Two ioctl() functions are defined for the receiver driver and the transmitter driver:
alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl(). The table below lists
the available operations. These are valid for both the transmit and receive channels.

Table 190. Operations for alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl()

Request Meaning

ALT_DMA_SET_MODE_8 Transfers data in units of 8 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_16 Transfers data in units of 16 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_32 Transfers data in units of 32 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_64 Transfers data in units of 64 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_128 Transfers data in units of 128 bits. The parameter arg is ignored.

ALT_DMA_RX_ONLY_ON (1) Sets a DMA receiver into streaming mode. In this case, data is read continuously from
a single location. The parameter arg specifies the address to read from.

ALT_DMA_RX_ONLY_OFF (1) Turns off streaming mode for a receive channel. The parameter arg is ignored.

ALT_DMA_TX_ONLY_ON (1) Sets a DMA transmitter into streaming mode. In this case, data is written continuously
to a single location. The parameter arg specifies the address to write to.

ALT_DMA_TX_ONLY_OFF (1) Turns off streaming mode for a transmit channel. The parameter arg is ignored.

Notes :
1. These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old names

(ALT_DMA_TX_STREAM_ON, ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and ALT_DMA_RX_STREAM_OFF)
are still valid, but new designs should use the new names.

Limitations

Currently the Intel-provided drivers do not support 64-bit and 128-bit DMA
transactions.

This function is not thread safe. If you want to access the DMA controller from more
than one thread then you should use a semaphore or mutex to ensure that only one
thread is executing within this function at any time.

24.4.2 Software Files

The DMA controller is accompanied by the following software files. These files define
the low-level interface to the hardware. Application developers should not modify
these files.
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• altera_avalon_dma_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The symbols in this
file are used only by device driver functions.

• altera_avalon_dma.h, altera_avalon_dma.c—These files implement the
DMA controller’s device driver for the HAL system library.

24.4.3 Register Map

Programmers using the HAL API never access the DMA controller hardware directly via
its registers. In general, the register map is only useful to programmers writing a
device driver.

The Intel-provided HAL device driver accesses the device registers directly. If you are
writing a device driver, and the HAL driver is active for the same device, your driver
will conflict and fail to operate.

Device drivers control and communicate with the hardware through five memory-
mapped 32-bit registers.

Table 191. DMA Controller Register Map

Offs
et

Regi
ster
Nam

e

Read
/

Writ
e

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 sta
tus 
(1)

RW (2)  LEN WEO
P

REO
P

BUS
Y

DON
E

1 rea
dad
dre
ss

RW Read master start address

2 wri
tea
ddr
ess

RW Write master start address

3 len
gth

RW DMA transaction length (in bytes)

4 — — Reserved (3)

5 — — Reserved (3)

6 con
tro
l

RW   (2) SOF
TWA
RER
ESE
T

QUA
DWO
RD

DOU
BLE
WOR
D

WCO
N

RCO
N

LEE
N

WEE
N

REE
N

I_E
N

GO WOR
D

HW BYT
E

7 — — Reserved (3)

Notes :
1. Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.
2. These bits are reserved. Read values are undefined. Write zero.
3. This register is reserved. Read values are undefined. The result of a write is undefined.
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status Register

The status register consists of individual bits that indicate conditions inside the DMA
controller. The status register can be read at any time. Reading the status register
does not change its value.

Table 192. status Register Bits

Bit Number Bit Name Read/Write/Clear Description

0 DONE R/C A DMA transaction is complete. The DONE bit is set to 1 when an end of
packet condition is detected or the specified transaction length is
completed. Write zero to the status register to clear the DONE bit.

1 BUSY R The BUSY bit is 1 when a DMA transaction is in progress.

2 REOP R The REOP bit is 1 when a transaction is completed due to an end-of-packet
event on the read side.

3 WEOP R The WEOP bit is 1 when a transaction is completed due to an end of packet
event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to zero.

readaddress Register

The readaddress register specifies the first location to be read in a DMA transaction.
The readaddress register width is determined at system generation time. It is wide
enough to address the full range of all slave ports mastered by the read port.

writeaddress Register

The writeaddress register specifies the first location to be written in a DMA
transaction. The writeaddress register width is determined at system generation
time. It is wide enough to address the full range of all slave ports mastered by the
write port.

length Register

The length register specifies the number of bytes to be transferred from the read
port to the write port. The length register is specified in bytes. For example, the
value must be a multiple of 4 for word transfers, and a multiple of 2 for halfword
transfers.

The length register is decremented as each data value is written by the write master
port. When length reaches 0 the LEN bit is set. The length register does not
decrement below 0.

The length register width is determined at system generation time. It is at least wide
enough to span any of the slave ports mastered by the read or write master ports,
and it can be made wider if necessary.

control Register

The control register is composed of individual bits that control the DMA’s internal
operation. The control register’s value can be read at any time. The control register
bits determine which, if any, conditions of the DMA transaction result in the end of a
transaction and an interrupt request.
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Table 193. Control Register Bits

Bit
Number

Bit Name Read/
Write/
Clear

Description

0 BYTE RW Specifies byte transfers.

1 HW RW Specifies halfword (16-bit) transfers.

2 WORD RW Specifies word (32-bit) transfers.

3 GO RW Enables DMA transaction. When the GO bit is set to 0 during idle stage
(before execution starts), the DMA is prevented from executing
transfers. When the GO bit is set to 1 during idle stage and the length
register is non-zero, transfers occur.
If go bit is de-asserted low before write transaction complete, done bit
will never go high. It is advisable that GO bit is modified during idle
stage (no execution happened) only.

4 I_EN RW Enables interrupt requests (IRQ). When the I_EN bit is 1, the DMA
controller generates an IRQ when the status register’s DONE bit is set to
1. IRQs are disabled when the I_EN bit is 0.

5 REEN RW Ends transaction on read-side end-of-packet. When the REEN bit is set
to 1, a slave port with flow control on the read side may end the DMA
transaction by asserting its end-of-packet signal. REEN bit should be set
to 0.

6 WEEN RW Ends transaction on write-side end-of-packet. WEEN bit should be set
to 0.

7 LEEN RW Ends transaction when the length register reaches zero. When this bit
is 0, length reaching 0 does not cause a transaction to end. In this
case, the DMA transaction must be terminated by an end-of-packet
signal from either the read or write master port. LEEN bit should be set
to 1.

8 RCON RW Reads from a constant address. When RCON is 0, the read address
increments after every data transfer. This is the mechanism for the DMA
controller to read a range of memory addresses. When RCON is 1, the
read address does not increment. This is the mechanism for the DMA
controller to read from a peripheral at a constant memory address. For
details, see the Addressing and Address Incrementing section.

9 WCON RW Writes to a constant address. Similar to the RCON bit, when WCON is 0
the write address increments after every data transfer; when WCON is 1
the write address does not increment. For details, see Addressing and
Address Incrementing.

10 DOUBLEWORD RW Specifies doubleword transfers.

11 QUADWORD RW Specifies quadword transfers.

12 SOFTWARERESET RW Software can reset the DMA engine by writing this bit to 1 twice. Upon
the second write of 1 to the SOFTWARERESET bit, the DMA control is
reset identically to a system reset. The logic which sequences the
software reset process then resets itself automatically.

The data width of DMA transactions is specified by the BYTE, HW, WORD, DOUBLEWORD,
and QUADWORD bits. Only one of these bits can be set at a time. If more than one of
the bits is set, the DMA controller behavior is undefined. The width of the transfer is
determined by the narrower of the two slaves read and written. For example, a DMA
transaction that reads from a 16-bit flash memory and writes to a 32-bit on-chip
memory requires a halfword transfer. In this case, HW must be set to 1, and BYTE,
WORD, DOUBLEWORD, and QUADWORD must be set to 0.
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To successfully perform transactions of a specific width, that width must be enabled in
hardware using the Allowed Transaction hardware option. For example, the DMA
controller behavior is undefined if quadword transfers are disabled in hardware, but
the QUADWORD bit is set during a DMA transaction.

Executing a DMA software reset when a DMA transfer is active may result in
permanent bus lockup (until the next system reset). The SOFTWARERESET bit should
therefore not be written except as a last resort.

24.4.4 Interrupt Behavior

The DMA controller has a single IRQ output that is asserted when the status
register’s DONE bit equals 1 and the control register’s I_EN bit equals 1.

Writing the status register clears the DONE bit and acknowledges the IRQ. A master
peripheral can read the status register and determine how the DMA transaction
finished by checking the LEN, REOP, and WEOP bits.

24.5 Document Revision History

Table 194. DMA Controller Core Revision History

Date Version Changes

November 2017 2017.11.06 Clarified the values for REEN and WEEN bits in the Table: Control Register
Bits.

December 2015 2015.12.12 Updated LEEN and WEEN in Control Register table.

June 2015 2015.06.12 Updated the GO bit description in the "Control Register Bits" table

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 Added a new parameter, FIFO Depth.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Updated the Functional Description of the core.

24 DMA Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
249



25 Modular Scatter-Gather DMA Core

25.1 Core Overview

In a processor subsystem, data transfers between two memory spaces can happen
frequently. In order to offload the processor from moving data around a system, a
Direct Memory Access (DMA) engine is introduced to perform this function instead.
The Modular Scatter-Gather DMA (mSGDMA) is capable of performing data movement
operations with preloaded instructions, called descriptors. Multiple descriptors with
different transfer sizes, and source and destination addresses have the option to
trigger interrupts.

The mSGDMA core has a modular design that facilitates easy integration with the
FPGA fabric. The core consists of a dispatcher block with optional read master and
write master blocks. The descriptor block receives and decodes the descriptor, and
dispatches instructions to the read master and write master blocks for further
operation. The block is also configured to transfer additional information to the host.
In this context, the read master block reads data through its Avalon-MM master
interface, and channels it into the Avalon-ST source interface, based on instruction
given by the dispatcher block. Conversely, the write master block receives data from
its Avalon-ST sink interface and writes it to the destination address via its Avalon-MM
master interface.

25.2 Feature Description

The mSGDMA provides three configuration structures for handling data transfers
between the Avalon-MM to Avalon-MM, Avalon-MM to Avalon-ST, and Avalon-ST to
Avalon-MM modes. The sub-core of the mSGDMA is instantiated automatically
according to the structure configured for the mSGDMA use model.
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Figure 68. mSGDMA Module Configuration with support for Memory-Mapped Reads and
Writes

Figure 69. mSGDMA Module Configuration with Support for Memory-Mapped Streaming
Reads to the Avalon-ST data bus
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Figure 70. mSGDMA Module Configuration with Support for Avalon-ST Data Write
Streaming to the Memory-Mapped Bus

The mSGDMA support 32-bit addressing by default. However, the core can support 64-
bit addressing when you select Extended Feature Options in the parameter editor.
It also supports extended features such as dynamic burst count programming, stride
addressing, extended discriptor format (64-bit addressing), and unique sequence
number identification for executed descriptor.

25.3 mSGDMA Interfaces and Parameters

25.3.1 Interface

The mSGDMA consists of the following:

• One Avalon-MM CSR slave port.

• One configurable Avalon-MM Slave or Avalon-ST Source Response port.

• Source and destination data path ports, which can be Avalon-MM or Avalon-ST.

The mSGDMA also provides an active-high-level interrupt output.

Only one clock domain can drive the mSGDMA. The requirement of different clock
domains between source and destination data paths are handled by the Platform
Designer fabric.

A hardware reset resets the whole system. Software reset resets the registers and
FIFOs of the dispatchers of the dispatcher and master modules. For a software reset,
read the resetting bit of the status register to determine when a full reset cycle
completes.
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25.3.1.1 Descriptor Slave Port

The descriptor slave port is write only and configurable to either 128 or 256 bits wide.
The width is dependent on the descriptor format you choose for your system. When
writing descriptors to this port, you must set the last bit high so the descriptor can be
completely written to the dispatcher module. You can access the byte lanes of this
port in any order, as long as the last bit is written to during the last write access.

25.3.1.2 Control and Status Register Slave Port

The control and status register (CSR) port is read/write accessible and is 32-bits wide.
When the dispatcher response port is disabled or set to memory-mapped mode then
the CSR port is responsible for sending interrupts to the host.

25.3.1.3 Response Port

The response port can be set to disabled, memory-mapped, or streaming. In memory-
mapped mode the response information is communicated to the host via an Avalon-
MM slave port. The response information is wider than the slave port, so the host
must perform two read operations to retrieve all the information.

Note: Reading from the last byte of the response slave port performs a destructive read of
the response buffer in the dispatcher module. As a result, always make sure that your
software reads from the last response address last.

When you configure the response port to an Avalon Streaming source interface,
connect it to a module capable of pre-fetching descriptors from memory. The following
table shows the ST data bits and their description.

Table 195. Response Source Port Bit Fields

ST Data Bits Description

31 - 0 Actual bytes transferred [31:0]

39 - 32 Error [7:0]

40 Early termination

41 Transfer complete IRQ mask

49 - 42 Error IRQ mask(10)

50 Early termination IRQ mask(10)

51 Descriptor buffer full(11)

255 - 52 Reserved

(10) Interrupt masks are buffered so that the descriptor pre-fetching block can assert the IRQ
signal.

(11) Combinational signal to inform the descriptor pre-fetching block that space is available for
another descriptor to be committed to the dispatcher descriptor FIFO(s).
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25.3.1.4 Parameters

Table 196. Component Parameters

Parameter Name Description Allowable Range

DMA Mode Transfer mode of mSGDMA. This parameter
determines sub-cores instantiation to construct
the mSGDMA structure.

Memory-Mapped to Memory-Mapped,
Memory-Mapped to Streaming,
Streaming to Memory-Mapped

Data Width Data path width. This parameter affects both
read master and write master data widths.

8, 16, 32, 64, 128, 256, 512, 1024

Use pre-determined master
address width

Use pre-determined master address width
instead of automatically-determined master
address width.

Enable, Disable

Pre-determined master address
width

Minimum master address width that is required
to address memory slave.

32

Expose mSGDMA read and
write master's streaming ports

When enabled, mSGDMA read master's data
source port and mSGDMA write master's data
sink port will be exposed for connection outside
mSGDMA core.

Enable, Disable

Data Path FIFO Depth Depth of internal data path FIFO. 16, 32, 64, 128, 256, 512, 1024,
2048, 4096

Descriptor FIFO Depth FIFO size to store descriptor count. 8, 16, 32, 64, 128, 256, 512, 1024

Response Port Option to enable response port and its port
interface type

Memory-Mapped, Streaming, Disabled

Maximum Transfer Legth Maximum transfer length. With shorter length
width being configured, the faster frequency of
mSGDMA can operate in FPGA.

1KB, 2KB, 4KB, 8KB, 16KB, 32KB,
64KB, 128KB,256KB, 512KB, 1MB,
2MB, 4MB, 8MB, 16MB, 32MB, 64MB,
128MB, 256MB, 512MB, 1GB, 2GB

Transfer Type Supported transaction type Full Word Accesses Only, Aligned
Accesses, Unaligned Accesses

Burst Enable Enable burst transfer Enable, Disable

Maximum Burst Count Maximum burst count 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024

Force Burst Alignment Enable Disable force burst aligment. Force burst
alignment forces the masters to post bursts of
length 1 until the address is aligned to a burst
boundary.

Enable, Disable

Enable Extended Feature
Support

Enable extended features. In order to use
stride addressing, programmable burst lengths,
64-bit addressing, or descriptor tagging the
enhanced features support must be enabled.

Enable, Disable

Stride Addressing Enable Enable stride addressing. Stride addressing
allows the DMA to read or write data that is
interleaved in memory. Stride addressing
cannot be enabled if the burst transfer option is
enabled.

Enable, Disable

Maximum Stride Words Maximum stride amount (in words) 1 – 2G

Programmable Burst Enable Enable dynamic burst programming Enable, Disable

Packet Support Enable Enable packetized transfer Enable, Disable

continued...   
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Parameter Name Description Allowable Range

Note: When PACKET_ENABLE parameter is
disabled and TRANSFER_TYPE is not
"Full Word Accesses Only", any
unaligned transfer length will cause
additional bytes to be written during the
last transfer beat of the Avalon
streaming data source port of the read
master core. Only with this parameter
set TRUE, actual bytes transferred is
meaningful for the transaction.
PACKET_ENABLE only applys for ST-to-
MM and MM-to-ST DMA operation mode.

Error Enable Enable error field of ST interface Enable, Disable

Error Width Error field width 1, 2, 3, 4, 5, 6, 7, 8

Channel Enable Enable channel field of ST interface Enable, Disable

Channel Width Channel field width 1, 2, 3, 4, 5, 6, 7, 8

Enable Pre-Fetching module Enables prefetcher modules, a hardware core
which fetches descriptors from memory.

Enable, Disable

Enable bursting on descriptor
read master

Enable read burst will turn on the bursting
capabilities of the prefetcher's read descriptor
interface.

Enable, Disable

Data Width of Descriptor read/
write master data path

Width of the Avalon-MM descriptor read/write
data path.

32, 64, 128, 256

Maximum Burst Count on
descriptor read master

Maximum burst count. Enable, Disable
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25.3.2 mSGDMA Parameter Editor

Figure 71. Modular Scatter-Gather DMA Parameter Editor

25.4 mSGDMA Descriptors

The descriptor slave port is 128-bits for standard descriptors and 256-bits for
extended descriptors. The tables below show acceptable standard and extended
descriptor formats.

Table 197. Standard Descriptor Format

Byte Lanes

Offset 3 2 1 0

0x0 Read Address[31:0]

0x4 Write Address[31:0]

0x8 Length[31:0]

0xC Control[31:0]
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Table 198. Extended Descriptor Format

Byte Lanes

Offset 3 2 1 0

0x0 Read Address[31:0]

0x4 Write Address[31:0]

0x8 Length[31:0]

0xC Write Burst
Count[7:0]

Read Burst Count
[7:0]

Sequence Number[15:0]

0x10 Write Stride[15:0] Read Stride[15:0]

0x14 Read Address[63:32]

0x18 Write Address[63:32]

0x1C Control[31:0]

All descriptor fields are aligned on byte boundaries and span multiple bytes when
necessary. You can access each byte lane of the descriptor slave port independently of
the others, allowing you to populate the descriptor using any access size.

Note: The location of the control field is dependent on the descriptor format you used. The
last bit of the control field commits the descriptor to the dispatcher buffer when it is
asserted. As a result, the control field is located at the end of a descriptor. This allows
you to write the descriptor sequentially to the dispatcher block.

25.4.1 Read and Write Address Fields

The read and write address fields correspond to the source and destination address for
each buffer transfer. Depending on the transfer type, you do not need to provide the
read or write address. When performing memory-mapped to streaming transfers, the
write address must not be written as there is no destination address. There is no
destination address since the data is being transfered to a streaming port. Likewise,
when performing streaming to memory-mapped transfers, the read address must not
be written as the data source is a streaming port.

If a read or write address descriptor is written in a configuration that does not require
it, the mSGDMA ignores the unnecessary address. If a standard descriptor is used and
an attempt to write a 64-bit address is made, the upper 32 bits are lost and can cause
the hardware to alias a lower address space. 64-bit addressing requires the use of the
extended descriptor format.

25.4.2 Length Field

The length field is used to specify the number of bytes to transfer per descriptor. The
length field is also used for streaming to memory-mapped packet transfers. This limits
the number of bytes that can be transferred before the end-of-packet (EOP) arrives.
As a result, you must always program the length field. If you do not wish to limit
packet based transfers in the case of Avalon-ST to Avalon-MM transfers, program the
length field with the largest possible value of 0xFFFFFFFF. This method allows you to
specify a maximum packet size for each descriptor that has packet support enabled.
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25.4.3 Sequence Number Field

The sequence number field is available only when using extended descriptors.The
sequence number is an arbitrary value that you assign to a descriptor, so that you can
determine which descriptor is being operated on by the read and write masters. When
performing memory-mapped to memory-mapped transfers, this value is tracked
independently for masters since each can be operating on a different descriptor. To
use this functionality, program the descriptors with unique sequence numbers. Then,
access the dispatcher CSR slave port to determine which descriptor is operated on.

25.4.4 Read and Write Burst Count Fields

The programmable read and write burst counts are only available when using the
extended descriptor format. The programmable burst count is optional and can be
disabled in the read and write masters. Because the programmable burst count is an
eight bit field for each master, the maximum that you can program burst counts of 1
to 128. Programming a value of zero or anything larger than 128 bits will be converted
to the maximum burst count specified for each master automatically.

The maximum programmable burst count is 128 but when you instantiate the DMA,
you can have different selections up to 1024. Refer to the MAX_BURST_COUNT
parameter in the parameter table. You will still have a burst count of 128 if you
program for greater than 128. Programing to 0, gets the maximum burst count
selected during instantiation time.

Related Links

Parameters on page 254
For more information, refer to the MAX_BURST_COUNT parameter.

25.4.5 Read and Write Stride Fields

The read and write stride fields are optional and only available when using the
extended descriptor format. The stride value determines how the read and write
masters increment the address when accessing memory. The stride value is in terms
of words, so the address incrementing is dependent on the master data width.

When stride is enabled, the master defaults to sequential accesses, which is the
equivalent to a stride distance of one. A stride of zero instructs the master to
continuously access the same address. A stride of two instructs the master to skip
every other word in a sequential transfer. You can use this feature to perform
interleaved data accesses, or to perform a frame buffer row and column transpose.
The read and write stride distances are stored independently allowing, you to use
different address incrementing for read and write accesses in memory-to-memory
transfers. For example, to perform a 2:1 data decimation transfer, you would simply
configure the read master for a stride distance of two and the write master for a stride
distance of one. To complete the decimation operation you could also insert a filter
between the two masters.

25.4.6 Control Field

The control field is available for both the standard and extended descriptor formats.
This field can be programmed to configure parked descriptors, error handling, and
interrupt masks. The interrupt masks are programmed into the descriptor so that
interrupt enables are unique for each transfer.
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Table 199. Descriptor Control Field Bit Definition

Bit Sub-Field Name Definition

31 Go Commits all the descriptor information into the descriptor FIFO.
As the host writes different fields in the descriptor, FIFO byte enables
are asserted to transfer the write data to appropriate byte locations in
the FIFO.
However, the data written is not committed until the go bit has been
written.
As a result, ensure that the go bit is the last bit written for each
descriptor.
Writing '1' to the go bit commits the entire descriptor into the
descriptor FIFO(s).

30:25 <reserved>

24 Early done enable Hides the latency between read descriptors.
When the read master is set, it does not wait for pending reads to
return before requesting another descriptor.
Typically this bit is set for all descriptors except the last one. This bit is
most effective for hiding high read latency. For example, it reads from
SDRAM, PCIe, and SRIO.

23:16 Transmit Error / Error IRQ
Enable

For for Avalon-MM to Avalon-ST transfers, this field is used to specify a
transmit error.
This field is commonly used for transmitting error information
downstream to streaming components, such as an Ethernet MAC.
In this mode, these control bits control the error bits on the streaming
output of the read master.
For Avalon-ST to Avalon-MM transfers, this field is used as an error
interrupt mask.
As errors arrive at the write master streaming sink port, they are held
persistently. When the transfer completes, if any error bits were set at
any time during the transfer and the error interrupt mask bits are set,
then the host receives an interrupt.
In this mode, these control bits are used as an error encountered
interrupt enable.

15 Early Termination IRQ Enable Signals an interrupt to the host when a Avalon-ST to Avalon-MM
transfer completes early.
For example, if you set this bit and set the length field to 1MB for
Avalon-ST to Avalon-MM transfers, this interrupt asserts when more
than 1MB of data arrives to the write master without the end of packet
being seen.

14 Transfer Complete IRQ Enable Signals an interrupt to the host when a transfer completes.
In the case of Avalon-MM to Avalon-ST transfers, this interrupt is based
on the read master completing a transfer.
In the case of Avalon-ST to Avalon-MM or Avalon-MM to Avalon-MM
transfers, this interrupt is based on the write master completing a
transfer.

13 <reserved>

12 End on EOP End on end of packet allows the write master to continuously transfer
data during Avalon-ST to Avalon-MM transfers without knowing how
much data is arriving ahead of time.
This bit is commonly set for packet-based traffic such as Ethernet.

11 Park Writes When set, the dispatcher continues to reissue the same descriptor to
the write master when no other descriptors are buffered.

10 Park Reads When set, the dispatcher continues to reissue the same descriptor to
the read master when no other descriptors are buffered. This is
commonly used for video frame buffering.

continued...   
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Bit Sub-Field Name Definition

9 Generate EOP Emits an end of packet on last beat of a Avalon-MM to Avlaon-ST
transfer

8 Generate SOP Emits a start of packet on the first beat of a Avalon-MM to Avalon-ST
transfer

7:0 Transmit Channel Emits a channel number during Avalon-MM to Avalon-ST transfers

25.5 Programming Model

25.5.1 Stop DMA Operation

The stop DMA operation is also referring to stop dispatcher. Once the “Stop
Dispatcher” bit is set in the Control Register, no further new read or write transaction
is issued. However, existing transactions pending completion are allowed to complete.
The command buffer in both the read master and write master must be clear before
the DMA resumes operation via a reset request. Proceed with the follwing steps for the
stop DMA operation:

1. Set the “Stop Dispatcher” bit of the Control Register.

2. Recursively check if “Stopped” bit of Status Register is asserted.

3. When the “Stopped” bit of the Status Register is asserted, reset the DMA by
setting the “Reset Dispatcher” bit of the Control Register.

4. Check if the “Resetting” bit of the Status Register is deasserted. If it is, DMA is
now back in normal operation.

25.5.2 Stop Descriptor Operation

The Stop Descriptor temporary stops the dispatcher core from continuing to issue
commands to the read master and write master. The dispatcher core operates in the
sense that it can accept a descriptor sent by the host up to its descriptor FIFO limit.
Proceed with the follwing steps for the stop descriptor operation:

1. Set “Stop Descriptor” bit of Control Register.

2. Check if “Stopped” bit of Status Register is asserted.

To resume DMA from its previously stop descriptor operation, do the following:

1. Unset the “Stop Descriptor” bit of Control Register.

2. Check if “Stopped” bit of Status Register is deasserted.

25.5.3 Recovery from Stopped on Error and Stopped on Early Termination

When stopped on error or stopped on early termination occurs, mSGDMA requires a
software reset to continue operation.

1. When the “Stopped” bit of the Status register is asserted, reset the DMA by
setting the “Reset Dispatcher” bit of Control register.

2. Check if the “Resetting” bit of Status register is deasserted. If it is, DMA is now
back in normal operation.
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25.6 Register Map of mSGDMA

The following table illustrates the mSGDMA register map under observation by host
processor from its Avalon-MM CSR interfaces.

Table 200. CSR Registers Map

Byte Lanes

Offset Attribute 3 2 1 0

0x0 Read/Clear Status

0x4 Read/Write Control

0x8 Read Write Fill Level[15:0] Read Fill Level[15:0]

0xC Read <reserved>(12) Response Fill Level[15:0]

0x10 Read Write Sequence Number[15:0](13) Read Sequence Number[15:0]2

0x14 N/A <reserved>1

0x18 N/A <reserved>1

0x1C N/A <reserved>1

25.6.1 Status Register

Table 201. Status Register Bit Definition

Bit Name Description

31:
10

<reserved> N/A

9 IRQ Set when interrupt condition occurs.
This bit is set by hardware and cleared by software. To clear this bit, software needs to write
a 1 to this bit. This bit is set when a hardware event has a higher priority than a clear by a
software event.

8 Stopped on Early
Termination

When the dispatcher is programmed to stop on early termination, this bit is set. Also set,
when the write master is performing a packet transfer and does not receive EOP before the
pre-determined amount of bytes are transferred, which is set in the descriptor length field.
If you do not wish to use early termination you should set the transfer length of the
descriptor to 0xFFFFFFFF ,which gives you the maximum packet based transfer possible
(early termination is always enabled for packet transfers).

7 Stopped on Error When the dispatcher is programmed to stop errors and when an error beat enters the write
master the bit is set.

6 Resetting Set when you write to the software reset register and the SGDMA is in the middle of a reset
cycle. This reset cycle is necessary to make sure there are no incoming transfers on the
fabric. When this bit de-asserts you may start using the SGDMA again.

5 Stopped Set when you either manually stop the SGDMA, or you setup the dispatcher to stop on
errors or early termination and one of those conditions occurred. If you manually stop the
SGDMA this bit is asserted after the master completes any read or write operations that
were already in progress.

continued...   

(12) Writing to reserved bits will have no impact on the hardware, reading will return unknown
data.

(13) Sequence numbers will only be present when dispatcher enhanced features are enabled.
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Bit Name Description

4 Response Buffer Full Set when the response buffer is full.

3 Response Buffer
Empty

Set when the response buffer is empty.

2 Descriptor Buffer Full Set when either the read or write command buffers are full.

1 Descriptor Buffer
Empty

Set when both the read and write command buffers are empty.

0 Busy Set when the dispatcher still has commands buffered, or one of the masters is still
transferring data.

25.6.2 Control Register

Table 202. Control Register Bit Definition

Bit Name Description

31:
10

<reserved> N/A

5 Stop Descriptors Setting this bit stops the SGDMA dispatcher from issuing more descriptors to the read or
write masters. Read the stopped status register to determine when the dispatcher stopped
issuing commands and the read and write masters are idle.

4 Global Interrupt
Enable Mask

Setting this bit allows interrupts to propagate to the interrupt sender port. This mask occurs
after the register logic so that interrupts are not missed when the mask is disabled.

3 Stop on Early
Termination

Setting this bit stops the SGDMA from issuing more read/write commands to the master
modules if the write master attempts to write more data than the user specifies in the
length field for packet transactions. The length field is used to limit how much data can be
sent and is always enabled for packet based writes.

2 Stop on Error Setting this bit stops the SGDMA from issuing more read/write commands to the master
modules if an error enters the write master module sink port.

1 Reset Dispatcher Setting this bit resets the registers and FIFOs of the dispatcher and master modules. Since
resets can take multiple clock cycles to complete due to transfers being in flight on the
fabric, you should read the resetting status register to determine when a full reset cycle has
completed.

0 Stop Dispatcher Setting this bit stops the SGDMA in the middle of a transaction. If a read or write operation
is occurring, then the access is allowed to complete. Read the stopped status register to
determine when the SGDMA has stopped. After reset, the dispatcher core defaults to a start
mode of operation.

The response slave port of mSGDMA contains registers providing information of the
executed transaction. This register map is only applicable when the response mode is
enabled and set to memory mapped. Also when the response port is enabled, it needs
to have responses read because it buffers responses. When setup as a memory-
mapped slave port, reading byte offset 0x7 outputs the response. If the response FIFO
becomes full the dispatcher stops issuing transfer commands to the read and write
masters. The following describes the registers definition.
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Table 203. Response Registers Map

Byte Lanes

Offset Access 3 2 1 0

0x0 Read Actual Bytes Transferred[31:0]

0x4 Read <reserved>(14) <reserved> Early
Termination(15)

Error[7:0]

The following list explains each of the fields:

• Actual bytes transferred determines how many bytes transferred when the
mSGDMA is configured in Avalon-ST to Avlaon-MM mode with packet support
enabled. Since packet transfers are terminated by the IP providing the data, this
field counts the number of bytes between the start-of-packet (SOP) and end-of-
packet (EOP) received by the write master. If the early termination bit of the
response is set, then the actual bytes transferred is an underestimate if the
transfer is unaligned.

• Error Determines if any errors were issued when the mSGDMA is configured in
Avalon-ST to Avlaon-MM mode with error support enabled. Each error bit is
persistent so that errors can accumulate throughout the transfer.

• Early Termination determines if a transfer terminates because the transfer
length is exceeded when the SGDMA is configured in Avalon-ST to Avalon-MM
mode with packet support enabled. This bit is set when the number of bytes
transferred exceeds the transfer length set in the descriptor before the end-of-
packet is received by the write master.

(14) Reading from byte 7 outputs the response FIFO.

(15) Early Termination is a single bit located at bit 8 of offset 0x4.
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25.7 Modular Scatter-Gather DMA Prefetcher Core

The mSGDMA Prefetcher core is an additional micro core to the existing mSGDMA
core. The Prefetcher core provides extra functionality through the Avalon-MM and
dispatcher core. The Avalon-MM fetches a series of descriptors from memory that
describes the required data transfers before passing them to dispatcher core for data
transfer execution. The series of descriptors in memory can be linked together to form
a descriptor list. This allows the DMA core to execute multiple descriptors in single
run, thus enabling transfer to a non-contiguous memory space and improves system
performance.

25.7.1 Functional Description

25.7.1.1 Supported Features

• Descriptor linked list

• Data transfer to non-contiguous memory space

• Descriptor write back

• Hardware descriptor polling

• 64-bit address spaces

25.7.1.2 Architecture Overview

The Prefetcher core supports all the three existing Modular SGDMA configurations:

• Memory-Mapped to Memory-Mapped

• Memory-Mapped to Streaming

• Streaming to Memory-Mapped

On interfaces facing host and external peripherals, it has dedicated Avalon-MM read
and write master interfaces to fetch series of descriptors from memory as well as
performing a descriptor write back. It has one Avalon Memory-Mapped CSR slave
interface for the host processor to access the configuration register in the Prefetcher
core.

On interfaces facing the internal dispatcher core, it has an Avalon-MM descriptor write
master interface to write a descriptor to the dispatcher core. It has Avalon-ST
response sink interface to receive response information from the dispatcher core upon
completion of each descriptor execution.
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Figure 72. Memory-Mapped to Memory-Mapped Configuration with Prefetcher Enabled
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Figure 73. Memory-Mapped to Streaming Configuration with Prefetcher Enabled
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Figure 74. Streaming to Memory-Mapped Configuration with Prefetcher Enabled
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25.7.1.3 Descriptor Format

The mSGDMA without the Prefetcher core defines two types of descriptor formats.
Standard descriptor format which consists of 128 bits and extended descriptor format
which consists of 256 bits. With the Prefetcher core enabled, the existing descriptor
format is expanded to 256 bits and 512 bits respectively in order to accommodate
additional control information for the prefetcher operation.

Table 204. Standard Descriptor Format when Prefetcher is Enabled

Byte Lanes

Offset 3 2 1 0

0x0 Read Address [31-0]

0x4 Write Address [31-0]

0x8 Length [31-0]

0xC Next Desc Ptr [31-0]

0x10 Actual Bytes Trasferred [31-0]

0x14 Reserved [15-0] Status [15-0]

0x18 Reserved [31-0]

0x1C Control [31, 30, 29..0]

Table 205. Extended Descriptor Format when Prefetcher is Enabled

Byte Lanes

Offset 3 2 1 0

continued...   
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0x0 Read Address [31-0]

0x4 Write Address [31-0]

0x8 Length [31-0]

0xC Next Desc Ptr [31-0]

0x10 Actual Bytes Trasferred [31-0]

0x14 Reserved [15-0] Status [15-0]

0x18 Reserved [31-0]

0x1C Write Burst Count
[7-0]

Read Burst Count
[7-0]

Sequence Number [15-0]

0x20 Write Stride [15-0] Read Stride [15-0]

0x24 Read Address [63-32]

0x28 Write Address [63-32]

0x2C Next Desc Ptr [63-32]

0x30 Reserved [31-0]

0x34 Reserved [31-0]

0x38 Reserved [31-0]

0x3C Control [31, 30, 29..0]

25.7.1.3.1 Descriptor Fields Definition

Next Descriptor Pointer

The next descriptor pointer field specifies the address of the next descriptor in the
linked list.

Actual Bytes Transferred

Specifies the actual number of bytes that has been transferred. This field is not
applicable if Modular SGDMA is configured as Memory-Mapped to Streaming transfer.

Table 206. Status

Bits Fields Description

15:9 Reserved Reserved fields

8 Early Termination Indicates early termination condition where write master is performing a
packet transfer and does not receive EOP before pre-determined amount of
bytes are transferred. This status bit is similar to status register bit 8 of the
dispatcher core. For more details refer to dispatcher core CSR definition.
This field is not applicable if Modular SGDMA is configured as Memory-
Mapped to Streaming transfer.

7:0 Error Indicates an error has arrived at the write master streaming sink port.
This field is not applicable if Modular SGDMA is configured as Memory-
Mapped to Streaming transfer.
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Table 207. Control

Bits Fields Description

30 Owned by Hardware This field determines whether hardware or software has write access to the
current descriptor.
When this field is set to 1, the Modular SGDMA can update the descriptor
and software should not access the descriptor due to the possibility of race
conditions. Otherwise, it is safe for software to update the descriptor.

For bit 31 and 29:0, refer to descriptor control field bit 31 and 29:0 defined in
dispatcher core. Table 199 on page 259

25.7.1.3.2 Descriptor Processing

The DMA descriptors specify data transfers to be performed. With the Prefetcher core,
a descriptor is stored in memory and accessed by the Prefetcher core through its
descriptor write and descriptor read Avalon-MM master. The mSGDMA has an internal
FIFO to store descriptors read from memory. This FIFO is located in the dispatcher’s
core. The descriptors must be initialized and aligned on a descriptor read/write data
width boundary. The Prefetcher core relies on a cleared Owned By Hardware bit to
stop processing. When the Owedn by Hardware bit is 1, the Prefetcher core goes
ahead to process the descriptor. When the Owned by Hardware bit is 0, the Prefetcher
core does not process the current descriptor and assumes the linked list has ended or
the next descriptor linked list is not yet ready.

Each time a descriptor has been processed, the core updates the Actual Byte
Transferred, Status and Control fields of the descriptor in memory (descriptor write
back). The Owned by Hardware bit in the descriptor control field is cleared by the core
during descriptor write back. Refer to software programming model section to know
more about recommended way to set up the Prefetcher core, building and updating
the descriptor list.

In order for the Prefetcher to know which memory addresses to perform descriptor
write back, the next descriptor pointer information will need to be buffered in
Prefetcher core. This buffer depth will be similar to descriptor FIFO depth in dispatcher
core. This information is taken out from buffer each time a response is received from
dispatcher.

25.7.1.4 Registers

25.7.1.4.1 Register Map
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Table 208. Register Map

Name Address Offset Description

Control 0x0 Specifies the Prefetcher core behavior
such as when to start the core.

Next Descriptor Pointer Low 0x1 Contains the address [31:0] of the
next descriptor to process. Software
sets this register to the address of the
first descriptor as part of the system
initialization sequence.
If descriptor polling is enabled, this
register is also updated by hardware to
store the latest next descriptor
address. The latest next descriptor
address is used by the Prefetcher core
to perform descriptor polling.

Next Descriptor Pointer High 0x2 Contains the address [63:32] of the
next descriptor to process. Software
set this register to the address of the
first descriptor as part of the system
initialization sequence. This field is
used only when higher than 32-bit
addressing is used when mSGDMA’s
extended feature is enabled.
If descriptor polling is enabled, this
register is also updated by hardware to
store the latest next descriptor
address. The latest next descriptor
address is used by the Prefetcher core
to perform descriptor polling.

Descriptor Polling Frequency 0x3 Descriptor Polling Frequency

Status 0x4 Status Register

25.7.1.4.2 Control Register

The address offset for the Control Register table is 0x0.

Table 209. Control Register

Bit Fields Access Default Value Description

31:5 Reserved R 0x0 Reserved fields

4 Park Mode R/W 0x0 This bit enables the mSGDMA to
repeatedly execute the same linked list
over and over again. In order for this to
work, software need to setup the last
descriptor to point back to the first
descriptor.
1: Park mode is enabled. Pefetcher will
not clear the owned by hardware field
during descriptor write back
0: Park mode is disabled. Prefetcher will
clear the owned by hardware field during
descriptor write back.
Software can terminate the park mode
operation by clearing this field. Since this
field is in CSR and not in descriptor field
itself, this termination event is
asynchronous to current descriptor in

continued...   
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Bit Fields Access Default Value Description

progress (user can’t deterministically
choose which descriptor in the linked list
to stop).
Park mode feature is not intended to be
used on the fly. User must not enable this
bit when the Prefetcher is already in
operation. This bit shall be set during
initialization/configuration phase of the
control register.

3 Global Interrupt Enable
Mask

R/W 0x0 Setting this bit will allow interrupts to
propagate to the interrupt sender port.
This mask occurs after the register logic
so that interrupts are not missed when the
mask is disabled.
Note: There is an equivalent global

interrupt enable mask bit in
dispatcher core CSR. When the
Prefetcher is enabled, software
shall use this bit. When the
Prefetcher is disabled, software
shall use equivalent global
interrupt enable mask bit in
dispatcher core CSR.

2 Reset_Prefetcher R/W1S(16) 0x0 This bit is used when software intends to
stop the Prefetcher core when it is in the
middle of data transfer. When this bit is 1,
the Prefetcher core begin its reset
sequence.
This bit is automatically cleared by
hardware when the reset sequence has
completed. Therefore, software need to
poll for this bit to be cleared by hardware
to ensure the reset sequence has finished.
This function is intended to be used along
with reset dispatcher function in
dispatcher core. Once the reset sequence
in the Prefetcher core has completed,
software is expected to reset the
dispatcher core, polls for dispatcher’s
reset sequence to be completed by
reading dispatcher core status register.

1 Desc_Poll_En R/W 0x0 Descriptor polling enable bit.
1: When the last descriptor in current
linked list has been processed, the
Prefetcher core polls the Owned By
Hardware bit of next descriptor to be set
and automatically resumes data transfer
without the need for software to set the
Run bit. The polling frequency is specified
in Desc_Poll_Freq register.
0: When the last descriptor in current
linked list has been processed, the
Prefetcher stops operation and clears the
run bit. In order to restart the DMA
engine, software need to set the Run bit
back to 1.
In case software intends to disable polling
operation in the middle of transfer,
software can write this field to 0. In this
case, the whole mSGDMA operation is
stopped when the Prefetcher core
encounter owned by hardware bit = 0.

continued...   
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Bit Fields Access Default Value Description

Note: This bit should be set during
initialization or configuration of the
control register.

0 Run R/W1S 0x0 Software sets this bit to 1 to start the
descriptor fetching operation which
subsequently initiates the DMA
transaction.
When descriptor polling is disabled, this
bit is automatically cleared by hardware
when the last descriptor in the descriptor
list has been processed or when the
Prefetcher core read owned by hardware
bit = 0.
When descriptor polling is enabled,
mSGDMA operation is continuously run.
Thus the run bit stays 1.
This field is also cleared by hardware
when reset sequence process triggered by
Reset_Prefetcher bit completes.

25.7.1.4.3 Descriptor Polling Frequency

Table 210. Desc_Poll_Freq

Bit Fields Access Default Description

31:16 Reserved R 0x0 Reserved fields

15:0 Poll_Freq R/W 0x0 Specifies the
frequency of
descriptor polling
operation. The polling
frequency is in term of
number of clock
cycles. The poll period
is counted from the
point where read data
is received by the
Prefetcher core.

25.7.1.4.4 Status

Table 211. Status

Bit Fields Access Default Value Description

31:1 Reserved R 0x0 Reserved fields

0 IRQ R/W1C(17) 0x0 Set by hardware when
an interrupt condition
occurs. Software must
perform a write 1 to
this field in order to
clear it.

continued...   
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field has no effect.

(17) W1C register attribute means, software write 1 to clear the field. Software write 0 to this field
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Bit Fields Access Default Value Description

There is an equivalent
IRQ status bit in the
dispatcher core CSR.
When the Prefetcher is
enabled, software
uses this bit as an IRQ
status indication.
When the Prefetcher is
disabled, software
uses equivalent IRQ
status bit in
dispatcher core CSR.

25.7.1.5 Interfaces

25.7.1.5.1 Avalon-MM Read Descriptor

This interface is used to fetch descriptors in memory. It supports non-burst or burst
mode which configurable during generation time.

Table 212. Avalon-MM Read Descriptor

Signal Role Width Description

Address 32 to 64-bit Avalon-MM read address.
32-bits if extended feture is disabled.
32- to 64-bits if extended feature is
enabled.

Read 1 Avalon-MM read control

Read data 32, 64, 128, 256, 512 Avalon-MM read data bus. Data width
is configurable during IP generation.

Wait request 1 Avalon-MM wait request for
backpressure control.

Read data valid 1 Avalon-MM read data valid indication.

Burstcount 1/2/3/4/5 Avalon-MM burst count. The maximum
burst count is configurable during IP
generation.
This signal role is applicable only when
the Enable Bursting on the descriptor
read master is turned on.

25.7.1.5.2 Avalon-MM Write Descriptor

This interface is used to access the Prefetcher CSR registers. It has fixed write and
read wait time of 0 cycles and read latency of 1 cycle.

Table 213. Avalon-MM Write Descriptor

Signal Role Width Description

Address 32 to 64 Avalon-MM write address

Write 1 Avalon-MM read control

continued...   
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Signal Role Width Description

Wait request 1 Avalon-MM waitrequest for
backpressure control

Write data 32, 64, 128, 256, 512 Avalon-MM write data bus

Byte enable 4, 8, 16, 32, 64 Avalon-MM write byte enable control.
Its width is automatically derived from
selected data width

25.7.1.5.3 Avalon-MM CSR

This interface is used to access the Prefetcher CSR registers. It has fixed write and
read wait time of 0 cycles and read latency of 1 cycle.

Table 214. Avalon-MM CSR

Signal Role Width Description

Address 3 Avalon-MM write address

Write 1 Avalon-MM read control

Read 1 Avalon-MM write control

Write data 32 Avalon-MM write data bus

Read data 32 Avalon-MM read data bus

25.7.1.5.4 Avalon-ST Descriptor Source

This interface is used by the Prefetcher to write descriptor information into the
dispatcher core.

Table 215. Avalon-ST Descriptor Source

Signal Role Width Description

Valid 1 Avalon-ST valid control

Ready 1 Avalon-ST ready control with ready
latency of 0. Refer to dispatcher's
descriptor format for wrtie data
definition.

Data 128/256 Avalon-ST data bus

25.7.1.5.5 Avalon-ST Response

This interface is used by the Prefetcher core to retrieve response information from
dispatcher’s core upon each transfer completion.

Table 216. Avalon-ST Response

Signal Role Width Description

Valid 1 Avalon-ST valid control.

continued...   
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Signal Role Width Description

Prefetcher core expects valid signal to
remain high while the bus is being
back pressured.

Ready 1 Avalon-ST ready control. Used by the
Prefetcher core to back pressure the
external ST response source.

Data 256 Avalon-ST data bus. Refer to
dispatcher’s response source format for
ST data definition.
Prefetcher core expects data signals to
remain constant while the bus is being
back pressured.

Streaming interface (ST) data bus format and definition are similar to the dispatcher’s
response source format:

Table 217. Avalon-ST Response Data Format and Definition

Bits Signal Information

[31:0] Acutal bytes transferred [31:0]

[39:32] Error [7:0]

40 Early termination

41 Transfer complete IRQ mask

[49:42] Error IRQ mask

50 Early termination IRQ mask

51 Descriptor buffer full

[255:52] Reserved

25.7.1.5.6 IRQ Interface

When the Prefetcher is enabled, IRQ generation no longer outputs from the
dispatcher’s core. It will be outputted from the Prefetcher core. The sources of the
interrupt remain the same which are transfer completion, early termination, and error
detection. Masking bits for each of the interrupt sources are programmed in the
descriptor. This information will be passed to the Prefetcher core through the ST
response interface. An equivalent global interrupt enable mask and IRQ status bit
which are defined in dispatcher core are now defined in the Prefetcher core as well.
These two bits need to be defined in the Prefetcher core since the actual IRQ register
is now located in the Prefetcher core.

25.7.1.6 Software Programming Model
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25.7.1.6.1 Setting up Descriptor and mSGDMA Configuration Flow

The following is the recommended software flow to setup the descriptor and
configuring the mSGDMA.

1. Build the descriptor list and terminate the list with a non-hardware owned
descriptor (Owned By Hardware = 0).

2. Configure mSGDMA by accessing dispatcher core control register (for example: to
configure Stop on Error, Stop on Early Termination, etc…)

3. Configure mSGDMA by accessing the Prefetcher core configuration register (for
example: to write the address of the first descriptor in the first list to the next
descriptor pointer register and set the Run bit to 1 to initiate transfers).

4. While the core is processing the first list, your software may build a second list of
descriptors.

5. An IRQ can be generated each time a descriptor transfer is completed (depends
whether transfer complete IRQ mask is set for that particular descriptor). If you
only need an IRQ to be generated when mSGDMA finishes processing the first list,
you only need to set transfer complete IRQ mask for the last descriptor in the first
list.

6. When the last descriptor in the first linked list has been processed, an IRQ will be
generated if the descriptor polling is disabled. Following this, your software needs
to update the next descriptor pointer register with the address of the first
descriptor in the second linked list before setting the run bit back to 1 to resume
transfers. If descriptor polling is enabled, software does not need to update the
next descriptor pointer register (for second descriptor linked list onwards) and set
the run bit back to 1. These 2 steps are automatically done by hardware. The
address of the new list is indicated by next descriptor pointer fields of the previous
list. The Prefetcher core polls for the Owned by Hardware bit to be 1 in order to
resume transfers. Software only needs to flip the Owned by Hardware bit of the
first descriptor in second linked list to 1 to indicate to the Prefetcher core that the
second linked list is ready.

7. If there are new descriptors to add, always add them to the list which the core is
not processing (indicated by Owned By Hardware = 0). For example, if the core is
processing the first list, add new descriptors to the second list and so forth. This
method ensures that the descriptors are not updated when the core is processing
them. Your software can read the descriptor in the memory to know the status of
the transfer (for example; to know the actual bytes being transferred, any error in
the transfer).

25.7.1.6.2 Resetting Prefetcher Core Flow

The following is the recommended flow for software to stop the mSGDMA when it is in
the middle of operation.

1. Write 1 to the Prefetcher control register bit 2 (Reset_Prefetcher bit set to 1).

2. Poll for control register bit 2 to be 0 (Reset_Prefetcher bit cleared by hardware).

3. Trigger software reset condition in the dispatcher core.

4. Poll for software reset condition in the dispatcher core to be completed by reading
the dispatcher core status register.

5. The whole reset flow has completed, software can reconfigure the mSGDMA.
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25.7.1.7 Parameters

Table 218. Prefetcher Parameters

Name Legal Value Description

Enable Pre-fetching Module 1 or 0 1: Pre-fetching is enabled
0: Pre-fetching is disabled

Enable bursting on descriptor read
master

1 or 0 1: Pre-fetching module uses Avalon-
MM bursting when fetching descriptors.

Data Width (Avalon-MM Read/Write
Descriptor)

32, 64, 128, 256, 512 Specifies the read and write data width
of Avalon-MM read and write descriptor
master.

Maximum Burst Count (Avalon-MM
Read Descriptor)

1, 2, 4, 8, 16 Specifies the maximum read burst
count of Avalon-MM read descriptor
master.

Enable Extended Feature Support 1 or 0 This is a derived parameter from the
mSGDMA top level composed. This is
needed by this core to determine
descriptor length (different length for
standard/extended descriptor).

FIFO Depth 8, 16, 32, 64, 128, 256, 512, 1024 This is a derived parameter from the
mSGDMA top level composed. This is
needed by this core to determine its
buffer depth to store next descriptor
pointer information for descriptor write
back.
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25.8 Driver Implementation

Following section contains the APIs for the mSGDMA HAL Driver. An open mSGDMA
API will instantiate an mSGDMA device with optional register interrupt service routine
(ISR). You must define your own specific handling mechanism in the callback function
when using an ISR. A callback function will be called by the ISR on error, early
termination, and on transfer complete.

25.8.1 alt_msgdma_standard_descriptor_async_transfer

Table 219. alt_msgdma_standard_descriptor_async_transfer

Prototype: int alt_msgdma_standard_descriptor_async_transfer(alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>,
<altera_msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to msgdma instance.
*desc — a pointer to a standard descriptor structure

Returns: “0” for success, –ENOSPC indicates FIFO buffer is full, –EPERM indicates operation not
permitted due to descriptor type conflict, -ETIME indicates Time out and skipping the looping
after 5 msec.

Description: A descriptor needs to be constructed and passing as a parameter pointer to *desc when calling
this function. This function will call the helper function
“alt_msgdma_descriptor_async_transfer” to start a non-blocking transfer of one standard
descriptor at a time. If the FIFO buffer for a read/write is full at the time of this call, the
routine will immediately return –ENOSPC, the application can then decide how to proceed
without being blocked. -ETIME will be returned if the time spending for writing the descriptor to
the dispatcher takes longer than 5 msec. You are advised to refer to the helper function for
details. If a callback routine has been previously registered with this particular mSGDMA
controller, the transfer will be set up to enable interrupt generation.

25 Modular Scatter-Gather DMA Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
277



25.8.2 alt_msgdma_extended_descriptor_async_transfer

Table 220. alt_msgdma_extended_descriptor_async_transfer

Prototype: int alt_msgdma_extended_descriptor_async_transfer(alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>,
<altera_msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to mSGDMA instance.
*desc — a pointer to an extended descriptor structure

Returns: “0” for success, –ENOSPC indicates FIFO buffer is full, –EPERM indicates operation not
permitted due to descriptor type conflict, -ETIME indicates time out and skipping the looping
after 5 msec.

Description: A descriptor needs to be constructed and passing as a parameter pointer to the *desc when
calling this function. This function will call the helper function
“alt_msgdma_descriptor_async_transfer” to start a non-blocking transfer of one standard
descriptor at a time. If the FIFO buffer for a read/write is full at the time of this call, the
routine will immediately return –ENOSPC, the application can then decide how to proceed
without being blocked.-ETIME will be returned if the time spending for writing descriptor to the
dispatcher takes longer than 5 msec. You are advised to refer the helper function for details. If
a callback routine has been previously registered with this particular mSGDMA controller, the
transfer will be set up to enable interrupt generation.
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25.8.3 alt_msgdma_descriptor_async_transfer

Table 221. alt_msgdma_descriptor_async_transfer

Prototype: static int alt_msgdma_descriptor_async_transfer(alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *standard_desc, alt_msgdma_extended_descriptor
*extended_desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>,
<altera_msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to mSGDMA instance.
*standard_desc — Pointer to single standard descriptor.
*extended_desc — Pointer to single extended descriptor.

Returns: “0” for success, –ENOSPC indicates FIFO buffer is full, –EPERM indicates operation not
permitted due to descriptor type conflict, -ETIME indicates Time out and skipping the looping
after 5 msec.

Description: Helper functions for both “alt_msgdma_standard_descriptor_async_transfer” and
“alt_msgdma_extended_descriptor_async_transfer”.
Note: Either one of both *standard_desc and *extended_desc must be assigned with NULL,

another with proper pointer value. Failing to do so can cause the function return with "-
EPERM ".

If a callback routine has been previously registered with this particular mSGDMA controller, the
transfer will be set up to enable interrupt generation. It is the responsibility of the application
developer to check source interruption, status completion and creating suitable interrupt
handling.
Note: "stop on error" of the CSR control register is always masking within this function. The

CSR control can be set by user through calling "alt_register_callback" with user defined
control setting.
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25.8.4 alt_msgdma_standard_descriptor_sync_transfer

Table 222. alt_msgdma_standard_descriptor_sync_transfer

Prototype: int alt_msgdma_standard_descriptor_sync_transfer(alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>,
<altera_msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to mSGDMA instance.
*desc — a pointer to a standard descriptor structure

Returns: “0” for success, “error” indicates errors or conditions causing msgdma stop issuing commands
to masters, suggest checking the bit set in the error with CSR status register.”-EPERM”
indicates operation not permitted due to descriptor type conflict. “-ETIME” indicates Time out
and skipping the looping after 5 msec.

Description: A standard descriptor needs to be constructed and passing as a parameter pointer to *desc
when calling this function. This function will call helper function
“alt_msgdma_descriptor_sync_transfer” to start a blocking transfer of one standard descriptor
at a time. If the FIFO buffer for a read or write is full at the time of this call, the routine will
wait until a free FIFO buffer is available to continue processing or a 5 msec time out. The
function will return “error” if errors or conditions causing the dispatcher to stop issuing the
commands to both the read and write masters before both the read and write command
buffers are empty. It is the responsibility of the application developer to check errors and
completion status.
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25.8.5 alt_msgdma_extended_descriptor_sync_transfer

Table 223. alt_msgdma_extended_descriptor_sync_transfer

Prototype: int alt_msgdma_extended_descriptor_sync_transfer(alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>,
<altera_msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to msgdma instance.
*desc — a pointer to an extended descriptor structure

Returns: “0” for success, “error” indicates errors or conditions causing msgdma stop issuing commands
to masters, suggest checking the bit set in the error with CSR status register.”-EPERM”
indicates operation not permitted due to descriptor type conflict. “-ETIME” indicates Time out
and skipping the looping after 5 msec.

Description: An extended descriptor needs to be constructed and passing as a parameter pointer to *desc
when calling this function. This function will call helper function
“alt_msgdma_descriptor_sync_transfer” to startcommencing a blocking transfer of one
extended descriptor at a time. If the FIFO buffer for one of read or write is full at the time of
this call, the routine will wait until free FIFO buffer available for continue processing or 5 msec
time out. The function will return “error” if errors or conditions causing the dispatcher stop
issuing the commands to both read and write masters before both read and write command
buffers are empty. It is the responsibility of the application developer to check errors and
completion status. -ETIME will be returned if the time spending for waiting the FIFO buffer,
writing descriptor to the dispatcher and any pending transfer to complete take longer than
5msec.
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25.8.6 alt_msgdma_descriptor_sync_transfer

Table 224. alt_msgdma_descriptor_sync_transfer

Prototype: int alt_msgdma_descriptor_sync_transfer(alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *standard_desc, alt_msgdma_extended_descriptor
*extended_desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>,
<altera_msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to msgdma instance.
*standard_desc — Pointer to single standard descriptor.
*extended_desc — Pointer to single extended descriptor.

Returns: “0” for success, “error” indicates errors or conditions causing msgdma stop issuing commands
to masters, suggest checking the bit set in the error with CSR status register.”-EPERM”
indicates operation not permitted due to descriptor type conflict. “-ETIME” indicates Time out
and skipping the looping after 5 msec.

Description: Helper functions for both “alt_msgdma_standard_descriptor_sync_transfer” and
“alt_msgdma_extended_descriptor_sync_transfer”.
Note: Either one of both *standard_desc and *extended_desc must be assigned with NULL,

another with proper pointer value. Failing to do so can cause the function return with "-
EPERM .

Note: "stop on error" of CSR control register is always being masked and the interrupt is
always disabled within this function. The CSR control can be set by user through calling
"alt_register_callback" with user defined control setting.
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25.8.7 alt_msgdma_construct_standard_st_to_mm_descriptor

Table 225. alt_msgdma_construct_standard_st_to_mm_descriptor

Prototype: int alt_msgdma_construct_standard_st_to_mm_descriptor (alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *descriptor, alt_u32 *write_address, alt_u32 length, alt_u32
control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to a standard descriptor structure.
*write_address – a pointer to the base address of the destination memory.
length - is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.

control – control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_standard_descriptor” for constructing
st_to_mm standard descriptors. Unnecessary elements are set to 0 for completeness and will
be ignored by the hardware.
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25.8.8 alt_msgdma_construct_standard_mm_to_st_descriptor

Table 226. alt_msgdma_construct_standard_mm_to_st_descriptor

Prototype: int alt_msgdma_construct_standard_mm_to_st_descriptor (alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *descriptor, alt_u32 *read_address, alt_u32 length, alt_u32
control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to a standard descriptor structure.
*read_address – a pointer to the base address of the source memory.
length – is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_standard_descriptor” for constructing
mm_to_st standard descriptors. Unnecessary elements are set to 0 for completeness and will
be ignored by the hardware.
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25.8.9 alt_msgdma_construct_standard_mm_to_mm_descriptor

Table 227. alt_msgdma_construct_standard_mm_to_mm_descriptor

Prototype: int alt_msgdma_construct_standard_mm_to_mm_descriptor (alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *descriptor, alt_u32 *read_address, alt_u32 *write_address,
alt_u32 length, alt_u32 control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to a standard descriptor structure.
*read_address – a pointer to the base address of the source memory.
*write_address – a pointer to the base address of the destination memory.
length – is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_standard_descriptor” for constructing
mm_to_mm standard descriptors. Unnecessary elements are set to 0 for completeness and will
be ignored by the hardware.
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25.8.10 alt_msgdma_construct_standard_descriptor

Table 228. alt_msgdma_construct_standard_descriptor

Prototype: static int alt_msgdma_construct_standard_descriptor (alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *descriptor, alt_u32 *read_address, alt_u32 *write_address,
alt_u32 length, alt_u32 control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to a standard descriptor structure.
*read_address – a pointer to the base address of the source memory.
*write_address – a pointer to the base address of the destination memory.
length - is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Helper functions for constructing mm_to_st, st_to_mm, mm_to_mm standard descriptors.
Unnecessary elements are set to 0 for completeness and will be ignored by the hardware.
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25.8.11 alt_msgdma_construct_extended_st_to_mm_descriptor

Table 229. alt_msgdma_construct_extended_st_to_mm_descriptor

Prototype: int alt_msgdma_construct_extended_st_to_mm_descriptor (alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *descriptor, alt_u32 *write_address, alt_u32 length, alt_u32
control, alt_u16 sequence_number, alt_u8 write_burst_count, alt_u16 write_stride)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to an extended descriptor structure.
*write_address – a pointer to the base address of the destination memory.
length – is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.
sequence number – programmable sequence number to identify which descriptor has been
sent to the master block.
write_burst_count – programmable burst count between 1 and 128 and a power of 2. Setting
to 0 will cause the master to use the maximum burst count instead.
write_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, every other word it is 2, etc…power of 2. Setting to 0 will cause the master to use the
maximum burst count instead.
write_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, every other word it is 2, etc…

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_extended_descriptor” for constructing
st_to_mm extended descriptors. Unnecessary elements are set to 0 for completeness and will
be ignored by the hardware.
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25.8.12 alt_msgdma_construct_extended_mm_to_st_descriptor

Table 230. alt_msgdma_construct_extended_mm_to_st_descriptor

Prototype: int alt_msgdma_construct_extended_mm_to_st_descriptor (alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *descriptor, alt_u32 *read_address, alt_u32 length, alt_u32
control, alt_u16 sequence_number, alt_u8 read_burst_count, alt_u16 read_stride)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to an extended descriptor structure.
*read_address – a pointer to the base address of the source memory.
length – is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.
sequence_number – programmable sequence number to identify which descriptor has been
sent to the master block.
read_burst_count – programmable burst count between 1 and 128 and a power of 2. Setting
to 0 will cause the master to use the maximum burst count instead.
read_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, every other word it is 2, etc…

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Function call helper function “alt_msgdma_construct_extended_descriptor” for constructing
mm_to_st extended descriptors. Unnecessary elements are set to 0 for completeness and will
be ignored by the hardware.
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25.8.13 alt_msgdma_construct_extended_mm_to_mm_descriptor

Table 231. alt_msgdma_construct_extended_mm_to_mm_descriptor

Prototype: int alt_msgdma_construct_extended_mm_to_mm_descriptor (alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *descriptor, alt_u32 *read_address, alt_u32 *write_address,
alt_u32 length, alt_u32 control, alt_u16 sequence_number, alt_u8 read_burst_count, alt_u8
write_burst_count, alt_u16 read_stride, alt_u16 write_stride)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to an extended descriptor structure.
*read_address – a pointer to the base address of the source memory.
*write_address – a pointer to the base address of the destination memory.
length – is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.
sequence_number – programmable sequence number to identify which descriptor has been
sent to the master block.
read_burst_count – programmable burst count between 1 and 128 and a power of 2. Setting
to 0 will cause the master to use the maximum burst count instead.
write_burst_count – programmable burst count between 1 and 128 and a power of 2. Setting
to 0 will cause the master to use the maximum burst count instead.
read_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, ever other word it is 2, etc…
write_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, every other word it is 2, etc…

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Function call helper function “alt_msgdma_construct_extended_descriptor” for constructing
mm_to_mm extended descriptors. Unnecessary elements are set to 0 for completeness and
will be ignored by the hardware.
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25.8.14 alt_msgdma_construct_extended_descriptor

Table 232. alt_msgdma_construct_extended_descriptor

Prototype: static int alt_msgdma_construct_descriptor (alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *descriptor, alt_u32 *read_address, alt_u32 *write_address,
alt_u32 length, alt_u32 control, alt_u16 sequence_number, alt_u8 read_burst_count, alt_u8
write_burst_count,
alt_u16 read_stride, alt_u16 write_stride)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.
*descriptor – a pointer to an extended descriptor structure.
*read_address – a pointer to the base address of the source memory.
*write_address – a pointer to the base address of the destination memory.
length – is used to specify the number of bytes to transfer per descriptor. The largest possible
value can be filled in is “0Xffffffff”.
control – control field.
sequence_number – programmable sequence number to identify which descriptor has been
sent to the master block.
read_burst_count – programmable burst count between 1 and 128 and a power of 2. Setting
to 0 will cause the master to use the maximum burst count instead.
write_burst_count – programmable burst count between 1 and 128 and a power of 2. Setting
to 0 will cause the master to use the maximum burst count instead.
read_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, ever other word it is 2, etc…
write_stride – programmable transfer stride. The stride value determines by how many words
the master will increment the address. For fixed addresses the stride value is 0, sequential it is
1, every other word it is 2, etc…

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has larger
value than hardware setting value.

Description: Helper functions for constructing mm_to_st, st_to_mm, mm_to_mm extended descriptors.
Unnecessary elements are set to 0 for completeness and will be ignored by the hardware.
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25.8.15 alt_msgdma_register_callback

Table 233. alt_msgdma_register_callback

Prototype: void alt_msgdma_register_callback(alt_msgdma_dev *dev, alt_msgdma_callback callback,
alt_u32 control, void *context)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev — a pointer to msgdma instance.
callback — Pointer to callback routine to execute at interrupt level
control — Setting control register and OR with other control bits in the non_blocking and
blocking transfer function.
*context — pointer to user define context

Returns: N/A

Description: Associate a user-specific routine with the mSGDMA interrupt handler. If a callback is registered,
all non-blocking mSGDMA transfers will enable interrupts that will cause the callback to be
executed. The callback runs as part of the interrupt service routine, and great care must be
taken to follow the guidelines for acceptable interrupt service routine behavior as described in
the Nios II Software Developer's Handbook. However, user can change some of the CSR control
setting in blocking transfer by calling this function.

25 Modular Scatter-Gather DMA Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
291



25.8.16 alt_msgdma_open

Table 234. alt_msgdma_open

Prototype: alt_msgdma_dev* alt_msgdma_open (const char* name)

Include: < modular_sgdma_dispatcher.h >

Parameters: *name — Character pointer to name of msgdma peripheral as registered with the HAL. For
example, an mSGDMA in Platform Designer would be opened by asking for
“MSGDMA_0_DISPATCHER_INTERNAL".

Returns: Pointer to msgdma device instance struct, or null if the device.
* could not be opened.

Description: Retrieves a pointer to the mSGDMA instance.
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25.8.17 alt_msgdma_write_standard_descriptor

Table 235. alt_msgdma_write_standard_descriptor

Prototype: int alt_msgdma_write_standard_descriptor (alt_u32 csr_base, alt_u32 descriptor_base,
alt_msgdma_standard_descriptor *descriptor)

Include: < modular_sgdma_dispatcher.h >, <altera_msgdma_descriptor_regs.h>

Parameters: csr_base – base address of the dispatcher CSR slave port.
descriptor_base – base address of the dispatcher descriptor slave port.
*descriptor – a pointer to a standard descriptor structure.

Returns: Returns 0 upon success. Other return codes are defined in "alt_errno.h".

Description: Sends a fully formed standard descriptor to the dispatcher module. If the dispatcher descriptor
buffer is full, “-ENOSPC” is returned. This function is not reentrant since it must complete
writing the entire descriptor to the dispatcher module and cannot be pre-empted.
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25.8.18 alt_msgdma_write_extended_descriptor

Table 236. alt_msgdma_write_extended_descriptor

Prototype: int alt_msgdma_write_extended_descriptor (alt_u32 csr_base, alt_u32 descriptor_base,
alt_msgdma_extended_descriptor *descriptor)

Include: < modular_sgdma_dispatcher.h >, <altera_msgdma_descriptor_regs.h>

Parameters: csr_base – base address of the dispatcher CSR slave port.
descriptor_base – base address of the dispatcher descriptor slave port.
*descriptor – a pointer to an extended descriptor structure.

Returns: Returns 0 upon success. Other return codes are defined in "alt_errno.h".

Description: Sends a fully formed extended descriptor to the dispatcher module. If the dispatcher descriptor
buffer is full an error is returned. This function is not reentrant since it must complete writing
the entire descriptor to the dispatcher module and cannot be pre-empted.
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25.8.19 alt_avalon_msgdma_init

Table 237. alt_avalon_msgdma_init

Prototype: void alt_msgdma_init (alt_msgdma_dev *dev, alt_u32 ic_id, alt_u32 irq)

Include: < modular_sgdma_dispatcher.h >, <altera_msgdma_descriptor_regs.h>,
<altera_msgdma_csr_regs.h>

Parameters: *dev – a pointer to mSGDMA instance.
ic_id – id of irq interrupt controller
irq – irq number that belonged to mSGDMA instance

Returns: N/A

Description: Initializes the mSGDMA controller. This routine is called from the
ALTERA_AVALON_MSGDMA_INIT macro and is called automatically by "alt_sys_init.c".

25.8.20 alt_msgdma_irq

Table 238. alt_msgdma_irq

Prototype: void alt_msgdma_irq(void *context)

Include: < modular_sgdma_dispatcher.h >, <sys/alt_irq.h>, <altera_msgdma_csr_regs.h>

Parameters: *context – a pointer to mSGDMA instance.

Returns: N/A

Description: Interrupt handler for mSGDMA. This function will call the user defined interrupt handler if user
registers their own interrupt handler with calling “alt_register_callback”.
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25.9 Document Revision History

Table 239. Modular Scatter-Gather DMA Core Revision History

Date Version Changes

May 2017 2017.05.08 Status Register on page 261 : Bit 9 description updated

May 2016 2016.05.03 Updated tables:
• Component Parameters

December 2015 2015.12.16 Added "alt_msgdma_irq" section.

November 2015 2015.11.06 Updated sections:
• Response Port
• Component Parameters
Sections added:
• Programming Model

— Stop DMA Operation
— Stop Descriptor Operation
— Recovery from Stopped on Error and Stopped on Early Termination

• Modular Scatter-Gather DMA Prefetcher Core
• Driver Implementation
Section removed:
• Unsupported Feature

July 2014 2014.07.24 Initial release
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26 Scatter-Gather DMA Controller Core
Intel recommends to use Modular Scatter-Gather DMA Core for your new designs.

26.1 Core Overview

The Scatter-Gather Direct Memory Access (SG-DMA) controller core implements high-
speed data transfer between two components. You can use the SG-DMA controller
core to transfer data from:

• Memory to memory

• Data stream to memory

• Memory to data stream

The SG-DMA controller core transfers and merges non-contiguous memory to a
continuous address space, and vice versa. The core reads a series of descriptors that
specify the data to be transferred.

For applications requiring more than one DMA channel, multiple instantiations of the
core can provide the required throughput. Each SG-DMA controller has its own series
of descriptors specifying the data transfers. A single software module controls all of
the DMA channels.

For the Nios II processor, device drivers are provided in the Hardware Abstraction
Layer (HAL) system library, allowing software to access the core using the provided
driver.

26.1.1 Example Systems

The block diagram below shows a SG-DMA controller core for the DMA subsystem of a
printed circuit board. The SG-DMA core in the FPGA reads streaming data from an
internal streaming component and writes data to an external memory. A Nios II
processor provides overall system control.
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Figure 75. SG-DMA Controller Core with Streaming Peripheral and External Memory
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The figure below shows a different use of the SG-DMA controller core, where the core
transfers data between an internal and external memory. The host processor and
memory are connected to a system bus, typically either a PCI Express or Serial
RapidIO™.

Figure 76. SG-DMA Controller Core with Internal and External Memory
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26.1.2 Comparison of SG-DMA Controller Core and DMA Controller Core

The SG-DMA controller core provides a significant performance enhancement over the
previously available DMA controller core, which could only queue one transfer at a
time. Using the DMA Controller core, a CPU had to wait for the transfer to complete
before writing a new descriptor to the DMA slave port. Transfers to non-contiguous
memory could not be linked; consequently, the CPU overhead was substantial for
small transfers, degrading overall system performance. In contrast, the SG-DMA
controller core reads a series of descriptors from memory that describe the required
transactions and performs all of the transfers without additional intervention from the
CPU.

26.2 Resource Usage and Performance

Resource utilization for the core is 600–1400 logic elements, depending upon the
width of the datapath, the parameterization of the core, the device family, and the
type of data transfer. The table below provides the estimated resource usage for a SG-
DMA controller core used for memory to memory transfer. The core is configurable and
the resource utilization varies with the configuration specified.

Table 240. SG-DMA Estimated Resource Usage

Datapath Cyclone II Stratix> 
(LEs)

Stratix II
(ALUTs)

8-bit datapath 850 650 600

32-bit datapath 1100 850 700

64-bit datapath 1250 1250 800

The core operating frequency varies with the device and the size of the datapath. The
table below provides an example of expected performance for SG-DMA cores
instantiated in several different device families.

Table 241. SG-DMA Peak Performance

Device Datapath fMAX Throughput

Cyclone II 64 bits 150 MHz 9.6 Gbps

Cyclone III 64 bits 160 MHz 10.2 Gbps

Stratix II/Stratix II GX 64 bits 250 MHz 16.0 Gbps

Stratix III 64 bits 300 MHz 19.2 Gbps

26.3 Functional Description

The SG-DMA controller core comprises three major blocks: descriptor processor, DMA
read, and DMA write. These blocks are combined to create three different
configurations:
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• Memory to memory

• Memory to stream

• Stream to memory

The type of devices you are transferring data to and from determines the
configuration to implement. Examples of memory-mapped devices are PCI, PCIe
and most memory devices. The Triple Speed Ethernet MAC, DSP IP core and many
video IPs are examples of streaming devices. A recompilation is necessary each
time you change the configuration of the SG-DMA controller core.

26.3.1 Functional Blocks and Configurations

The following sections describe each functional block and configuration.

Descriptor Processor

The descriptor processor reads descriptors from the descriptor list via its Avalon
Memory-Mapped (MM) read master port and pushes commands into the command
FIFOs of the DMA read and write blocks. Each command includes the following fields
to specify a transfer:

• Source address

• Destination address

• Number of bytes to transfer

• Increment read address after each transfer

• Increment write address after each transfer

• Generate start of packet (SOP) and end of packet (EOP)

After each command is processed by the DMA read or write block, a status token
containing information about the transfer such as the number of bytes actually
written is returned to the descriptor processor, where it is written to the respective
fields in the descriptor.

DMA Read Block

The DMA read block is used in memory-to-memory and memory-to-stream
configurations. The block performs the following operations:

• Reads commands from the input command FIFO.

• Reads a block of memory via the Avalon-MM read master port for each command.

• Pushes data into the data FIFO.

If burst transfer is enabled, an internal read FIFO with a depth of twice the
maximum read burst size is instantiated. The DMA read block initiates burst reads
only when the read FIFO has sufficient space to buffer the complete burst.

DMA Write Block

The DMA write block is used in memory-to-memory and stream-to-memory
configurations. The block reads commands from its input command FIFO. For each
command, the DMA write block reads data from its Avalon-ST sink port and writes it to
the Avalon-MM master port.
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If burst transfer is enabled, an internal write FIFO with a depth of twice the maximum
write burst size is instantiated. Each burst write transfers a fixed amount of data
equals to the write burst size, except for the last burst. In the last burst, the
remaining data is transferred even if the amount of data is less than the write burst
size.

Memory-to-Memory Configuration

Memory-to-memory configurations include all three blocks: descriptor processor, DMA
read, and DMA write. An internal FIFO is also included to provide buffering and flow
control for data transferred between the DMA read and write blocks.

The example below illustrates one possible memory-to-memory configuration with an
internal Nios II processor and descriptor list.

Figure 77. Example of Memory-to-Memory Configuration
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Memory-to-Stream Configuration

Memory-to-stream configurations include the descriptor processor and DMA read
blocks.

In this example, the Nios II processor and descriptor table are in the FPGA. Data from
an external DDR2 SDRAM is read by the SG-DMA controller and written to an on-chip
streaming peripheral.
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Figure 78. Example of Memory-to-Stream Configuration
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Stream-to-Memory Configuration

Stream-to-memory configurations include the descriptor processor and DMA write
blocks. This configuration is similar to the memory-to-stream configuration as the
figure below illustrates.

Figure 79. Example of Stream-to-Memory Configuration
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26.3.2 DMA Descriptors

DMA descriptors specify data transfers to be performed. The SG-DMA core uses a
dedicated interface to read and write the descriptors. These descriptors, which are
stored as a linked list, can be stored on an on-chip or off-chip memory and can be
arbitrarily long.

Storing the descriptor list in an external memory frees up resources in the FPGA;
however, an external descriptor list increases the overhead involved when the
descriptor processor reads and updates the list. The SG-DMA core has an internal FIFO
to store descriptors read from memory, which allows the core to perform descriptor
read, execute, and write back operations in parallel, hiding the descriptor access and
processing overhead.

The descriptors must be initialized and aligned on a 32-bit boundary. The last
descriptor in the list must have its OWNED_BY_HW bit set to 0 because the core relies
on a cleared OWNED_BY_HW bit to stop processing.

See the DMA Descriptors section for the structure of the DMA descriptor.
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Descriptor Processing

The following steps describe how the DMA descriptors are processed:

1. Software builds the descriptor linked list. See the Building and Updating
Descriptors List section for more information on how to build and update the
descriptor linked list.

2. Software writes the address of the first descriptor to the
next_descriptor_pointer register and initiates the transfer by setting the
RUN bit in the control register to 1. See the Software Programming Model
section for more information on the registers.

On the next clock cycle following the assertion of the RUN bit, the core sets the
BUSY bit in the status register to 1 to indicate that descriptor processing is
executing.

3. The descriptor processor block reads the address of the first descriptor from the
next_descriptor_pointer register and pushes the retrieved descriptor into
the command FIFO, which feeds commands to both the DMA read and write
blocks. As soon as the first descriptor is read, the block reads the next descriptor
and pushes it into the command FIFO. One descriptor is always read in advance
thus maximizing throughput.

4. The core performs the data transfer.

• In memory-to-memory configurations, the DMA read block receives the source
address from its command FIFO and starts reading data to fill the FIFO on its
stream port until the specified number of bytes are transferred. The DMA read
block pauses when the FIFO is full until the FIFO has enough space to accept
more data. 

The DMA write block gets the destination address from its command FIFO and
starts writing until the specified number of bytes are transferred. If the data
FIFO ever empties, the write block pauses until the FIFO has more data to
write.

• In memory-to-stream configurations, the DMA read block reads from the
source address and transfers the data to the core’s streaming port until the
specified number of bytes are transferred or the end of packet is reached. The
block uses the end-of-packet indicator for transfers with an unknown transfer
size. For data transfers without using the end-of-packet indicator, the transfer
size must be a multiple of the data width. Otherwise, the block requires extra
logic and may impact the system performance.

• In stream-to-memory configurations, the DMA write block reads from the
core’s streaming port and writes to the destination address. The block
continues reading until the specified number of bytes are transferred.

5. The descriptor processor block receives a status from the DMA read or write block
and updates the DESC_CONTROL, DESC_STATUS, and
ACTUAL_BYTES_TRANSFERRED fields in the descriptor. The OWNED_BY_HW bit in
the DESC_CONTROL field is cleared unless the PARK bit is set to 1.

Once the core starts processing the descriptors, software must not update
descriptors with OWNED_BY_HW bit set to 1. It is only safe for software to update a
descriptor when its OWNED_BY_HW bit is cleared.
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The SG-DMA core continues processing the descriptors until an error condition
occurs and the STOP_DMA_ER bit is set to 1, or a descriptor with a cleared
OWNED_BY_HW bit is encountered.

Building and Updating Descriptor List

Intel recommends the following method of building and updating the descriptor list:

1. Build the descriptor list and terminate the list with a non-hardware owned
descriptor (OWNED_BY_HW = 0). The list can be arbitrarily long.

2. Set the interrupt IE_CHAIN_COMPLETED.

3. Write the address of the first descriptor in the first list to the
next_descriptor_pointer register and set the RUN bit to 1 to initiate
transfers.

4. While the core is processing the first list, build a second list of descriptors.

5. When the SD-DMA controller core finishes processing the first list, an interrupt is
generated. Update the next_descriptor_pointer register with the address of
the first descriptor in the second list. Clear the RUN bit and the status register.
Set the RUN bit back to 1 to resume transfers.

6. If there are new descriptors to add, always add them to the list which the core is
not processing. For example, if the core is processing the first list, add new
descriptors to the second list and so forth.

This method ensures that the descriptors are not updated when the core is
processing them. Because the method requires a response to the interrupt, a
high-latency interrupt may cause a problem in systems where stalling data
movement is not possible.

26.3.3 Error Conditions

The SG-DMA core has a configurable error width. Error signals are connected directly
to the Avalon-ST source or sink to which the SG-DMA core is connected.

26 Scatter-Gather DMA Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
304



The list below describes how the error signals in the SG-DMA core are implemented in
the folowing configurations:

• Memory-to-memory configuration

No error signals are generated. The error field in the register and descriptor is
hardcoded to 0.

• Memory-to-stream configuration

If you specified the usage of error bits in the core, the error bits are generated in
the Avalon-ST source interface. These error bits are hardcoded to 0 and generated
in compliance with the Avalon-ST slave interfaces.

• Stream-to-memory configuration

If you specified the usage of error bits in the core, error bits are generated in the
Avalon-ST sink interface. These error bits are passed from the Avalon-ST sink
interface and stored in the registers and descriptor.

The table below lists the error signals when the core is operating in the memory-
to-stream configuration and connected to the transmit FIFO interface of the Intel
FPGA Triple-Speed Ethernet IP core.

Table 242. Avalon-ST Transmit Error Types

Signal Type Description

TSE_transmit_error[0] Transmit Frame Error. Asserted to indicate that the
transmitted frame should be viewed as invalid by the
Ethernet MAC. The frame is then transferred onto the GMII
interface with an error code during the frame transfer.

The table below lists the error signals when the core is operating in the stream-to-
memory configuration and connected to the transmit FIFO interface of the Triple-
Speed Ethernet IP Core.

Table 243. Avalon-ST Receive Error Types

Signal Type Description

TSE_receive_error[0] Receive Frame Error. This signal indicates that an error has
occurred. It is the logical OR of receive errors 1 through 5.

TSE_receive_error[1] Invalid Length Error. Asserted when the received frame has
an invalid length as defined by the IEEE 802.3 standard.

TSE_receive_error[2] CRC Error. Asserted when the frame has been received with
a CRC-32 error.

TSE_receive_error[3] Receive Frame Truncated. Asserted when the received frame
has been truncated due to receive FIFO overflow.

TSE_receive_error[4] Received Frame corrupted due to PHY error. (The PHY has
asserted an error on the receive GMII interface.)

TSE_receive_error[5] Collision Error. Asserted when the frame was received with a
collision.

Each streaming core has a different set of error codes. Refer to the respective user
guides for the codes.
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26.4 Parameters

Table 244. Configurable Parameters

Parameter Legal Values Description

Transfer mode Memory To Memory
Memory To Stream
Stream To Memory

Configuration to use. For more information about these
configurations, see the Memory-to-Memory Configuration
section.

Enable bursting on
descriptor read master

On/Off If this option is on, the descriptor processor block uses Avalon-MM
bursting when fetching descriptors and writing them back in memory.
With 32-bit read and write ports, the descriptor processor block can
fetch the 256-bit descriptor by performing 8-word burst as opposed
to eight individual single-word transactions.

Allow unaligned
transfers

On/Off If this option is on, the core allows accesses to non-word-aligned
addresses. This option doesn’t apply for burst transfers.
Unaligned transfers require extra logic that may negatively impact
system performance.

Enable burst transfers On/Off Turning on this option enables burst reads and writes.

Read burstcount signal
width

1–16 The width of the read burstcount signal. This value determines the
maximum burst read size.

Write burstcount signal
width

1–16 The width of the write burstcount signal. This value determines the
maximum burst write size.

Data width 8, 16, 32, 64 The data width in bits for the Avalon-MM read and write ports.

Source error width 0–7 The width of the error signal for the Avalon-ST source port.

Sink error width 0 – 7 The width of the error signal for the Avalon-ST sink port.

Data transfer FIFO
depth

2, 4, 8, 16, 32, 64 The depth of the internal data FIFO in memory-to-memory
configurations with burst transfers disabled.

The SG-DMA controller core should be given a higher priority (lower IRQ value) than
most of the components in a system to ensure high throughput.

26.5 Simulation Considerations

Signals for hardware simulation are automatically generated as part of the Nios II
simulation process available in the Nios II IDE.

26.6 Software Programming Model

The following sections describe the software programming model for the SG-DMA
controller core.

26.6.1 HAL System Library Support

The Intel-provided driver implements a HAL device driver that integrates into the HAL
system library for Nios II systems. HAL users should access the SG-DMA controller
core via the familiar HAL API and the ANSI C standard library.
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26.6.2 Software Files

The SG-DMA controller core provides the following software files. These files provide
low-level access to the hardware and drivers that integrate into the Nios II HAL
system library. Application developers should not modify these files.

• altera_avalon_sgdma_regs.h—defines the core's register map, providing
symbolic constants to access the low-level hardware

• altera_avalon_sgdma.h—provides definitions for the Intel FPGA Avalon SG-
DMA buffer control and status flags.

• altera_avalon_sgdma.c—provides function definitions for the code that
implements the SG-DMA controller core.

• altera_avalon_sgdma_descriptor.h—defines the core's descriptor, providing
symbolic constants to access the low-level hardware.

26.6.3 Register Maps

The SG-DMA controller core has three registers accessible from its Avalon-MM
interface; status, control and next_descriptor_pointer. Software can
configure the core and determines its current status by accessing the registers.

The control/status register has a 32-bit interface without byte-enable logic, and
therefore cannot be properly accessed by a master with narrower data width than
itself. To ensure correct operation of the core, always access the register with a master
that is at least 32 bits wide.

Table 245. Register Map

32-bit Word
Offset (Byte

Offset)

Register Name Reset
Value

Description

base + 0
(0x0)

status 0 This register indicates the core’s current status such as what
caused the last interrupt and if the core is still processing
descriptors. See the status Register Map table for the
status register map.

base + 1
(0x4)

version 1 Indicate the hardware version number. Only being used by
software driver for software backward compatibility purpose.

base + 4
(0x10)

control 0 This register specifies the core’s behavior such as what triggers
an interrupt and when the core is started and stopped. The
host processor can configure the core by setting the register
bits accordingly. See the Control Register Bit Map table for
the control register map.

base + 8
(0x20)

next_descriptor_pointer 0 This register contains the address of the next descriptor to
process. Set this register to the address of the first descriptor
as part of the system initialization sequence.
Intel recommends that user applications clear the RUN bit in
the control register and wait until the BUSY bit of the
status register is set to 0 before reading this register.
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Table 246. Control Register Bit Map

Bit Bit Name Access Description

0 IE_ERROR R/W When this bit is set to 1, the core generates an interrupt if an
Avalon-ST error occurs during descriptor processing. (1)

1 IE_EOP_ENCOUNTERED R/W When this bit is set to 1, the core generates an interrupt if an EOP is
encountered during descriptor processing. (1)

2 IE_DESCRIPTOR_COMPLETED R/W When this bit is set to 1, the core generates an interrupt after each
descriptor is processed. (1)

3 IE_CHAIN_COMPLETED R/W When this bit is set to 1, the core generates an interrupt after the
last descriptor in the list is processed, that is when the core
encounters a descriptor with a cleared OWNED_BY_HW bit. (1)

4 IE_GLOBAL R/W When this bit is set to 1, the core is enabled to generate interrupts.

5 RUN R/W Set this bit to 1 to start the descriptor processor block which
subsequently initiates DMA transactions. Prior to setting this bit to
1, ensure that the register next_descriptor_pointer is updated
with the address of the first descriptor to process. The core
continues to process descriptors in its queue as long as this bit is 1.
Clear this bit to stop the core from processing the next descriptor in
its queue. If this bit is cleared in the middle of processing a
descriptor, the core completes the processing before stopping. The
host processor can then modify the remaining descriptors and
restart the core.

6 STOP_DMA_ER R/W Set this bit to 1 to stop the core when an Avalon-ST error is
encountered during a DMA transaction. This bit applies only to
stream-to-memory configurations.

7 IE_MAX_DESC_PROCESSED R/W Set this bit to 1 to generate an interrupt after the number of
descriptors specified by MAX_DESC_PROCESSED are processed.

8 .. 15 MAX_DESC_PROCESSED R/W Specifies the number of descriptors to process before the core
generates an interrupt.

16 SW_RESET R/W Software can reset the core by writing to this bit twice. Upon the
second write, the core is reset. The logic which sequences the
software reset process then resets itself automatically.
Executing a software reset when a DMA transfer is active may result
in permanent bus lockup until the next system reset. Hence, Intel
recommends that you use the software reset as your last resort.

17 PARK R/W Seting this bit to 0 causes the SG-DMA controller core to clear the
OWNED_BY_HW bit in the descriptor after each descriptor is
processed. If the PARK bit is set to 1, the core does not clear the
OWNED_BY_HW bit, thus allowing the same descriptor to be
processed repeatedly without software intervention. You also need
to set the last descriptor in the list to point to the first one.

18 DESC_POLL_EN R/W Set this bit to 1 to enable polling mode. When you set this bit to 1,
the core continues to poll for the next descriptor until the
OWNED_BY_HW bit is set. The core also updates the descriptor
pointer to point to the current descriptor.

19 Reserved

20..30 TIMEOUT_COUNTER RW Specifies the number of clocks to wait before polling again. The valid
range is 1 to 255. The core also updates the next_desc_ptr field
so that it points to the next descriptor to read.

31 CLEAR_INTERRUPT R/W Set this bit to 1 to clear pending interrupts.

Note :
1. All interrupts are generated only after the descriptor is updated.
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Intel recommends that you read the status register only after the RUN bit in the
control register is cleared.

Table 247. Status Register Bit Map

Bit Bit Name Access Description

0 ERROR R/C (1) (2) A value of 1 indicates that an Avalon-ST error was encountered
during a transfer.

1 EOP_ENCOUNTERED R/C A value of 1 indicates that the transfer was terminated by an
end-of-packet (EOP) signal generated on the Avalon-ST source
interface. This condition is only possible in stream-to-memory
configurations.

2 DESCRIPTOR_COMPLETED R/C (1) (2) A value of 1 indicates that a descriptor was processed to
completion.

3 CHAIN_COMPLETED R/C (1) (2) A value of 1 indicates that the core has completed processing
the descriptor chain.

4 BUSY R (3) A value of 1 indicates that descriptors are being processed.
This bit is set to 1 on the next clock cycle after the RUN bit is
asserted and does not get cleared until one of the following
event occurs:
• After the processing of the descriptor completes and the RUN

bit is cleared.
• When an error condition occurs, the STOP_DMA_ER bit is set

to 1 and the processing of the current descriptor completes.

5 .. 31 Reserved

Note :
1. This bit must be cleared after a read is performed. Write one to clear this bit.
2. This bit is updated by hardware after each DMA transfer completes. It remains set until software writes one to clear.
3. This bit is continuously updated by the hardware.

26.6.4 DMA Descriptors

See the Data Structure section for the structure definition.

Table 248. DMA Descriptor Structure

Byte Offset Field Names

31  24 23 16 15  8 7 0

base source

base + 4 Reserved

base + 8 destination

base + 12 Reserved

base + 16 next_desc_ptr

base + 20 Reserved

base + 24 Reserved bytes_to_transfer

base + 28 desc_control desc_status actual_bytes_transferred
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Table 249. DMA Descriptor Field Description

Field Name Access Description

source R/W Specifies the address of data to be read. This address is set to 0 if the
input interface is an Avalon-ST interface.

destination R/W Specifies the address to which data should be written. This address is set
to 0 if the output interface is an Avalon-ST interface.

next_desc_ptr R/W Specifies the address of the next descriptor in the linked list.

bytes_to_transfer R/W Specifies the number of bytes to transfer. If this field is 0, the SG-DMA
controller core continues transferring data until it encounters an EOP.

actual_bytes_transferred R Specifies the number of bytes that are successfully transferred by the
core. This field is updated after the core processes a descriptor.

desc_status R/W This field is updated after the core processes a descriptor. See
DESC_STATUS Bit Map for the bit map of this field.

desc_control R/W Specifies the behavior of the core. This field is updated after the core
processes a descriptor. See the DESC_CONTROL Bit Map table for
descriptions of each bit.

Table 250. DESC_CONTROL Bit Map

Bit (s) Field Name Access Description

0 GENERATE_EOP W When this bit is set to 1,the DMA read block asserts the EOP signal on
the final word.

1 READ_FIXED_ADDRESS R/W This bit applies only to Avalon-MM read master ports. When this bit is
set to 1, the DMA read block does not increment the memory
address. When this bit is set to 0, the read address increments after
each read.

2 WRITE_FIXED_ADDRESS R/W This bit applies only to Avalon-MM write master ports. When this bit is
set to 1, the DMA write block does not increment the memory
address. When this bit is set to 0, the write address increments after
each write.
In memory-to-stream configurations, the DMA read block generates a
start-of-packet (SOP) on the first word when this bit is set to 1.

[6:3] Reserved — —

3 .. 6 AVALON-ST_CHANNEL_NUMBER R/W The DMA read block sets the channel signal to this value for each
word in the transaction. The DMA write block replaces this value with
the channel number on its sink port.

7 OWNED_BY_HW R/W This bit determines whether hardware or software has write access to
the current register.
When this bit is set to 1, the core can update the descriptor and
software should not access the descriptor due to the possibility of
race conditions. Otherwise, it is safe for software to update the
descriptor.

After completing a DMA transaction, the descriptor processor block updates the
desc_status field to indicate how the transaction proceeded.

Table 251. DESC_STATUS Bit Map

Bit Bit Name Access Description

[7:0] ERROR_0 .. ERROR_7 R Each bit represents an error that occurred on the Avalon-ST interface.
The context of each error is defined by the component connected to the
Avalon-ST interface.
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26.6.5 Timeouts

The SG-DMA controller does not implement internal counters to detect stalls. Software
can instantiate a timer component if this functionality is required.

26.7 Programming with SG-DMA Controller

This section describes the device and descriptor data structures, and the application
programming interface (API) for the SG-DMA controller core.

26.7.1 Data Structure

Table 252. Device Data Structure

typedef struct alt_sgdma_dev
{
alt_llist llist; // Device linked-list entry
const char *name; // Name of SGDMA in SOPC System
void *base; // Base address of SGDMA
alt_u32 *descriptor_base; // reserved
alt_u32 next_index; // reserved
alt_u32 num_descriptors; // reserved
alt_sgdma_descriptor *current_descriptor; // reserved
alt_sgdma_descriptor *next_descriptor; // reserved
alt_avalon_sgdma_callback callback; // Callback routine pointer
void *callback_context; // Callback context pointer
alt_u32 chain_control; // Value OR'd into control reg
} alt_sgdma_dev;

Table 253. Descriptor Data Structure

typedef struct {
alt_u32 *read_addr;
alt_u32 read_addr_pad;
alt_u32 *write_addr;
alt_u32 write_addr_pad;
alt_u32 *next;
alt_u32 next_pad;
alt_u16 bytes_to_transfer;
alt_u8 read_burst; /* Reserved field. Set to 0. */
alt_u8 write_burst;/* Reserved field. Set to 0. */
alt_u16 actual_bytes_transferred;
alt_u8 status;
alt_u8 control;
} alt_avalon_sgdma_packed alt_sgdma_descriptor;

26 Scatter-Gather DMA Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
311



26.7.2 SG-DMA API

Table 254. Function List

Name Description

alt_avalon_sgdma_do_async_transfer() Starts a non-blocking transfer of a descriptor chain.

alt_avalon_sgdma_do_sync_transfer() Starts a blocking transfer of a descriptor chain. This function
blocks both before transfer if the controller is busy and until
the requested transfer has completed.

alt_avalon_sgdma_construct_mem_to__mem_desc() Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-MM to Avalon-MM transfer.

alt_avalon_sgdma_construct_stream_to_mem_desc(
)

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-ST to Avalon-MM transfer. The
function automatically terminates the descriptor chain with
a NULL descriptor.

alt_avalon_sgdma_construct_mem_to_stream_desc(
)

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-MM to Avalon-ST transfer.

alt_avalon_sgdma_enable_desc_poll() Enables descriptor polling mode. To use this feature, you
need to make sure that the hardware supports polling.

alt_avalon_sgdma_disable_desc_poll() Disables descriptor polling mode.

alt_avalon_sgdma_check_descriptor_status() Reads the status of a given descriptor.

alt_avalon_sgdma_register_callback() Associates a user-specific callback routine with the SG-DMA
interrupt handler.

alt_avalon_sgdma_start() Starts the DMA engine. This is not required when
alt_avalon_sgdma_do_async_transfer()and
alt_avalon_sgdma_do_sync_transfer() are used.

alt_avalon_sgdma_stop() Stops the DMA engine. This is not required when
alt_avalon_sgdma_do_async_transfer()and
alt_avalon_sgdma_do_sync_transfer() are used.

alt_avalon_sgdma_open() Returns a pointer to the SG-DMA controller with the given
name.

26.7.3 alt_avalon_sgdma_do_async_transfer()

Prototype: int alt_avalon_do_async_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its “next” descriptor field
initialized either to a non-ready descriptor, or to the next descriptor in the chain.

Returns: Returns 0 success. Other return codes are defined in errno.h.

Description: Set up and begin a non-blocking transfer of one or more descriptors or a descriptor chain. If the SG-
DMA controller is busy at the time of this call, the routine immediately returns EBUSY; the application
can then decide how to proceed without being blocked. If a callback routine has been previously
registered with this particular SG-DMA controller, the transfer is set up to issue an interrupt on error,
EOP, or chain completion. Otherwise, no interrupt is registered and the application developer must
check for and handle errors and completion. The run bit is cleared before the begining of the transfer
and is set to 1 to restart a new descriptor chain.
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26.7.4 alt_avalon_sgdma_do_sync_transfer()

Prototype: alt_u8 alt_avalon_sgdma_do_sync_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Not recommended.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its “next” descriptor field
initialized either to a non-ready descriptor, or to the next descriptor in the chain.

Returns: Returns the contents of the status register.

Description: Sends a fully formed descriptor or list of descriptors to the SG-DMA controller for transfer. This function
blocks both before transfer, if the SG-DMA controller is busy, and until the requested transfer has
completed. If an error is detected during the transfer, it is abandoned and the controller’s status register
contents are returned to the caller. Additional error information is available in the status bits of each
descriptor that the SG-DMA processed. The user application searches through the descriptor or list of
descriptors to gather specific error information. The run bit is cleared before the begining of the transfer
and is set to 1 to restart a new descriptor chain.

26.7.5 alt_avalon_sgdma_construct_mem_to_mem_desc()

Prototype: void alt_avalon_sgdma_construct_mem_to_mem_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u32 *write_addr, alt_u16 length, int read_fixed,
int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the “next” descriptor. This does not need to be a complete or functional descriptor,
but must be properly allocated.
*read_addr—the first read address for the SG-DMA transfer.
*write_addr—the first write address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA reads from a fixed address.
write_fixed—if non-zero, the SG-DMA writes to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-MM to Avalon-MM transfer. The function sets
the OWNED_BY_HW bit in the descriptor's control field, marking the completed descriptor as ready to
run. The descriptor is processed when the SG-DMA controller receives the descriptor and the RUN bit is
1.
The next field of the descriptor being constructed is set to the address in *next. The OWNED_BY_HW
bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes processing of the *desc,
it does not process the descriptor at *next until its OWNED_BY_HW bit is set. To create a descriptor
chain, you can repeatedly call this function using the previous call's *next pointer in the *desc
parameter.
You must properly allocate memory for the creation of both the descriptor under construction as well as
the next descriptor in the chain.
Descriptors must be in a memory device mastered by the SG-DMA controller’s chain read and chain
write Avalon master ports. Care must be taken to ensure that both *desc and *next point to areas of
memory mastered by the controller.
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26.7.6 alt_avalon_sgdma_construct_stream_to_mem_desc()

Prototype: void alt_avalon_sgdma_construct_stream_to_mem_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *write_addr, alt_u16 length_or_eop, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the “next” descriptor. This does not need to be a complete or functional descriptor,
but must be properly allocated.
*write_addr—the first write address for the SG-DMA transfer.
length_or_eop—the number of bytes for the transfer. If set to zero (0x0), the transfer continues until an
EOP signal is received from the Avalon-ST interface.
write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-ST to Avalon-MM transfer. The source (read)
data for the transfer comes from the Avalon-ST interface connected to the SG-DMA controller's
streaming read port.
The function sets the OWNED_BY_HW bit in the descriptor's control field, marking the completed
descriptor as ready to run. The descriptor is processed when the SG-DMA controller receives the
descriptor and the RUN bit is 1.
The next field of the descriptor being constructed is set to the address in *next. The OWNED_BY_HW bit
of the descriptor at *next is explicitly cleared. Once the SG-DMA completes processing of the *desc, it
does not process the descriptor at *next until its OWNED_BY_HW bit is set. To create a descriptor chain,
you can repeatedly call this function using the previous call's *next pointer in the *desc parameter.
You must properly allocate memory for the creation of both the descriptor under construction as well as
the next descriptor in the chain.
Descriptors must be in a memory device mastered by the SG-DMA controller’s chain read and chain
write Avalon master ports. Care must be taken to ensure that both *desc and *next point to areas of
memory mastered by the controller.

26.7.7 alt_avalon_sgdma_construct_mem_to_stream_desc()

Prototype: void alt_avalon_sgdma_construct_mem_to_stream_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u16 length, int read_fixed, int generate_sop, int
generate_eop, alt_u8 atlantic_channel)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the “next” descriptor. This does not need to be a complete or functional descriptor,
but must be properly allocated.
*read_addr—the first read address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA reads from a fixed address.
generate_sop—if non-zero, the SG-DMA generates a SOP on the Avalon-ST interface when commencing
the transfer.
generate_eop—if non-zero, the SG-DMA generates an EOP on the Avalon-ST interface when completing
the transfer.
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atlantic_channel—an 8-bit Avalon-ST channel number. Channels are currently not supported. Set this
parameter to 0.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in alt_avalon_sgdma-
descriptor *desc for an Avalon-MM to Avalon-ST transfer. The destination (write) data for the transfer
goes to the Avalon-ST interface connected to the SG-DMA controller's streaming write port. The function
sets the OWNED_BY_HW bit in the descriptor's control field, marking the completed descriptor as ready
to run. The descriptor is processed when the SG-DMA controller receives the descriptor and the RUN bit
is 1.
The next field of the descriptor being constructed is set to the address in *next. The OWNED_BY_HW bit
of the descriptor at *next is explicitly cleared. Once the SG-DMA completes processing of the *desc, it
does not process the descriptor at *next until its OWNED_BY_HW bit is set. To create a descriptor chain,
you can repeatedly call this function using the previous call's *next pointer in the *desc parameter.
You are responsible for properly allocating memory for the creation of both the descriptor under
construction as well as the next descriptor in the chain. Descriptors must be in a memory device
mastered by the SG-DMA controller’s chain read and chain write Avalon master ports. Care must be
taken to ensure that both *desc and *next point to areas of memory mastered by the controller.

26.7.8 alt_avalon_sgdma_enable_desc_poll()

Prototype: void alt_avalon_sgdma_enable_desc_poll(alt_sgdma_dev *dev, alt_u32 frequency)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>
*dev—a pointer to an SG-DMA device structure.

Parameters: frequency—the frequency value to set. Only the lower 11-bit value of the frequency is written to the
control register.

Returns: void

Description: Enables descriptor polling mode with a specific frequency. There is no effect if the hardware does not
support this mode.

26.7.9 alt_avalon_sgdma_disable_desc_poll()

Prototype: void alt_avalon_sgdma_disable_desc_poll(alt_sgdma_dev *dev)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.

Returns: void

Description: Disables descriptor polling mode.

26.7.10 alt_avalon_sgdma_check_descriptor_status()

Prototype: int alt_avalon_sgdma_check_descriptor_status(alt_sgdma_descriptor *desc)

Thread-safe: Yes.

Available from ISR: Yes.
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Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the constructed descriptor to examine.

Returns: Returns 0 if the descriptor is error-free, not owned by hardware, or a previously requested transfer
completed normally. Other return codes are defined in errno.h.

Description: Checks a descriptor previously owned by hardware for any errors reported in a previous transfer. The
routine reports: errors reported by the SG-DMA controller, the buffer in use.

26.7.11 alt_avalon_sgdma_register_callback()

Prototype: void alt_avalon_sgdma_register_callback(alt_sgdma_dev *dev, alt_avalon_sgdma_callback callback,
alt_u16 chain_control, void *context)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.
callback—a pointer to the callback routine to execute at interrupt level.
chain_control—the SG-DMA control register contents.
*context—a pointer used to pass context-specific information to the ISR. context can point to any ISR-
specific information.

Returns: void

Description: Associates a user-specific routine with the SG-DMA interrupt handler. If a callback is registered, all non-
blocking transfers enables interrupts that causes the callback to be executed. The callback runs as part
of the interrupt service routine, and care must be taken to follow the guidelines for acceptable interrupt
service routine behavior as described in the Nios II Software Developer’s Handbook.
To disable callbacks after registering one, call this routine with 0x0 as the callback argument.

26.7.12 alt_avalon_sgdma_start()

Prototype: void alt_avalon_sgdma_start(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Starts the DMA engine and processes the descriptor pointed to in the controller's next descriptor pointer
and all subsequent descriptors in the chain. It is not necessary to call this function when do_sync or
do_async is used.

26.7.13 alt_avalon_sgdma_stop()

Prototype: void alt_avalon_sgdma_stop(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.
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Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Stops the DMA engine following completion of the current buffer descriptor. It is not necessary to call
this function when do_sync or do_async is used.

26.7.14 alt_avalon_sgdma_open()

Prototype: alt_sgdma_dev* alt_avalon_sgdma_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: name—the name of the SG-DMA device to open.

Returns: A pointer to the SG-DMA device structure associated with the supplied name, or NULL if no
corresponding SG-DMA device structure was found.

Description: Retrieves a pointer to a hardware SG-DMA device structure.

26.8 Document Revision History

Table 255. Scatter-Gather DMA Controller Core Revision History

Date Version Changes

October 2015 2015.10.30 Updated sections:
• Register Maps: "Control Register Bit Map" table
• SG-DMA API: "Function List" table
Added sections:
• alt_avalon_sgdma_enable_desc_poll()
• alt_avalon_sgdma_disable_desc_poll()

July 2014 2014.07.24 Updated Register Maps table, included version register

December 2010 v10.1.0 Updated figure 19-4 and figure 19-5.
Revised the bit description of IE_GLOBAL in table 19-7.
Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Revised descriptions of register fields and bits.
Added description to the memory-to-stream configurations.
Added descriptions to alt_avalon_sgdma_do_sync_transfer() and
alt_avalon_sgdma_do_async_transfer() API.
Added a list on error signals implementation.

March 2009 v9.0.0 Added description of Enable bursting on descriptor read master.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size.
Added section DMA Descriptors in Functional Specifications
Revised descriptions of register fields and bits.
Reorganized sections Software Programming Model and Programming with
SG-DMA Controller Core.

May 2008 v8.0.0 Added sections on burst transfers.
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27 SDRAM Controller Core

27.1 Core Overview

The SDRAM controller core with Avalon interface provides an Avalon Memory-Mapped
(Avalon-MM) interface to off-chip SDRAM. The SDRAM controller allows designers to
create custom systems in an Intel FPGA device that connect easily to SDRAM chips.
The SDRAM controller supports standard SDRAM as described in the PC100
specification.

SDRAM is commonly used in cost-sensitive applications requiring large amounts of
volatile memory. While SDRAM is relatively inexpensive, control logic is required to
perform refresh operations, open-row management, and other delays and command
sequences. The SDRAM controller connects to one or more SDRAM chips, and handles
all SDRAM protocol requirements. Internal to the device, the core presents an Avalon-
MM slave port that appears as linear memory (flat address space) to Avalon-MM
master peripherals.

The core can access SDRAM subsystems with various data widths (8, 16, 32, or
64 bits), various memory sizes, and multiple chip selects. The Avalon-MM interface is
latency-aware, allowing read transfers to be pipelined. The core can optionally share
its address and data buses with other off-chip Avalon-MM tri-state devices. This
feature is valuable in systems that have limited I/O pins, yet must connect to multiple
memory chips in addition to SDRAM.

27.2 Functional Description

The diagram below shows a block diagram of the SDRAM controller core connected to
an external SDRAM chip.
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Figure 80. SDRAM Controller with Avalon Interface Block Diagram
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The following sections describe the components of the SDRAM controller core in detail.
All options are specified at system generation time, and cannot be changed at
runtime.

Related Links

SDRAM Controller Core on page 318

27.2.1 Avalon-MM Interface

The Avalon-MM slave port is the user-visible part of the SDRAM controller core. The
slave port presents a flat, contiguous memory space as large as the SDRAM chip(s).
When accessing the slave port, the details of the PC100 SDRAM protocol are entirely
transparent. The Avalon-MM interface behaves as a simple memory interface. There
are no memory-mapped configuration registers.

The Avalon-MM slave port supports peripheral-controlled wait states for read and write
transfers. The slave port stalls the transfer until it can present valid data. The slave
port also supports read transfers with variable latency, enabling high-bandwidth,
pipelined read transfers. When a master peripheral reads sequential addresses from
the slave port, the first data returns after an initial period of latency. Subsequent
reads can produce new data every clock cycle. However, data is not guaranteed to
return every clock cycle, because the SDRAM controller must pause periodically to
refresh the SDRAM.

For details about Avalon-MM transfer types, refer to the Avalon Interface
Specifications.

27.2.2 Off-Chip SDRAM Interface

The interface to the external SDRAM chip presents the signals defined by the PC100
standard. These signals must be connected externally to the SDRAM chip(s) through
I/O pins on the Intel FPGA device.
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27.2.2.1 Signal Timing and Electrical Characteristics

The timing and sequencing of signals depends on the configuration of the core. The
hardware designer configures the core to match the SDRAM chip chosen for the
system. See the Configuration section for details. The electrical characteristics of the
device pins depend on both the target device family and the assignments made in the
Intel Quartus Prime software. Some device families support a wider range of electrical
standards, and therefore are capable of interfacing with a greater variety of SDRAM
chips. For details, refer to the device handbook for the target device family.

27.2.2.2 Synchronizing Clock and Data Signals

The clock for the SDRAM chip (SDRAM clock) must be driven at the same frequency as
the clock for the Avalon-MM interface on the SDRAM controller (controller clock). As in
all synchronous designs, you must ensure that address, data, and control signals at
the SDRAM pins are stable when a clock edge arrives. As shown in the above SDRAM
Controller with Avalon Interface block diagram, you can use an on-chip phase-
locked loop (PLL) to alleviate clock skew between the SDRAM controller core and the
SDRAM chip. At lower clock speeds, the PLL might not be necessary. At higher clock
rates, a PLL is necessary to ensure that the SDRAM clock toggles only when signals
are stable on the pins. The PLL block is not part of the SDRAM controller core. If a PLL
is necessary, you must instantiate it manually. You can instantiate the PLL core
interface or instantiate an ALTPLL IP core outside the Platform Designer system
module.

If you use a PLL, you must tune the PLL to introduce a clock phase shift so that
SDRAM clock edges arrive after synchronous signals have stabilized. See Clock, PLL
and Timing Considerations sections for details.

For more information about instantiating a PLL, refer to PLL Cores chapter. The Nios
II development tools provide example hardware designs that use the SDRAM
controller core in conjunction with a PLL, which you can use as a reference for your
custom designs.

The Nios II development tools are available free for download fromIntel FPGA website.

27.2.2.3 Clock Enable (CKE) not Supported

The SDRAM controller does not support clock-disable modes. The SDRAM controller
permanently asserts the CKE signal on the SDRAM.

27.2.2.4 Sharing Pins with other Avalon-MM Tri-State Devices

If an Avalon-MM tri-state bridge is present, the SDRAM controller core can share pins
with the existing tri-state bridge. In this case, the core’s addr, dq (data) and dqm
(byte-enable) pins are shared with other devices connected to the Avalon-MM tri-state
bridge. This feature conserves I/O pins, which is valuable in systems that have
multiple external memory chips (for example, flash, SRAM, and SDRAM), but too few
pins to dedicate to the SDRAM chip. See Performance Considerations section for
details about how pin sharing affects performance.

The SDRAM addresses must connect all address bits regardless of the size of the word
so that the low-order address bits on the tri-state bridge align with the low-order
address bits on the memory device. The Avalon-MM tristate address signal always
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presents a byte address. It is not possible to drop A0 of the tri-state bridge for
memories when the smallest access size is 16 bits or A0-A1 of the tri-state bridge
when the smallest access size is 32 bits.

27.2.3 Board Layout and Pinout Considerations

When making decisions about the board layout and device pinout, try to minimize the
skew between the SDRAM signals. For example, when assigning the device pinout,
group the SDRAM signals, including the SDRAM clock output, physically close together.
Also, you can use the Fast Input Register and Fast Output Register logic options
in the Intel Quartus Prime software. These logic options place registers for the SDRAM
signals in the I/O cells. Signals driven from registers in I/O cells have similar timing
characteristics, such as tCO, tSU, and tH.

27.2.4 Performance Considerations

Under optimal conditions, the SDRAM controller core’s bandwidth approaches one
word per clock cycle. However, because of the overhead associated with refreshing the
SDRAM, it is impossible to reach one word per clock cycle. Other factors affect the
core’s performance, as described in the following sections.

27.2.4.1 Open Row Management

SDRAM chips are arranged as multiple banks of memory, in which each bank is
capable of independent open-row address management. The SDRAM controller core
takes advantage of open-row management for a single bank. Continuous reads or
writes within the same row and bank operate at rates approaching one word per clock.
Applications that frequently access different destination banks require extra
management cycles to open and close rows.

27.2.4.2 Sharing Data and Address Pins

When the controller shares pins with other tri-state devices, average access time
usually increases and bandwidth decreases. When access to the tri-state bridge is
granted to other devices, the SDRAM incurs overhead to open and close rows.
Furthermore, the SDRAM controller has to wait several clock cycles before it is granted
access again.

To maximize bandwidth, the SDRAM controller automatically maintains control of the
tri-state bridge as long as back-to-back read or write transactions continue within the
same row and bank.

This behavior may degrade the average access time for other devices sharing the
Avalon-MM tri-state bridge.

The SDRAM controller closes an open row whenever there is a break in back-to-back
transactions, or whenever a refresh transaction is required. As a result:

• The controller cannot permanently block access to other devices sharing the tri-
state bridge.

• The controller is guaranteed not to violate the SDRAM’s row open time limit.

27 SDRAM Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
321



27.2.4.3 Hardware Design and Target Device

The target device affects the maximum achievable clock frequency of a hardware
design. Certain device families achieve higher fMAX performance than other families.
Furthermore, within a device family, faster speed grades achieve higher performance.
The SDRAM controller core can achieve 100 MHz in Intel FPGA high-performance
device families, such as Stratix series. However, the core might not achieve 100 MHz
performance in all Intel FPGA device families.

The fMAX performance also depends on the system design. The SDRAM controller clock
can also drive other logic in the system module, which might affect the maximum
achievable frequency. For the SDRAM controller core to achieve fMAX performance of
100 MHz, all components driven by the same clock must be designed for a 100 MHz
clock rate, and timing analysis in the Intel Quartus Prime software must verify that the
overall hardware design is capable of 100 MHz operation.

27.3 Configuration

The SDRAM controller MegaWizard has two pages: Memory Profile and Timing. This
section describes the options available on each page.

The Presets list offers several pre-defined SDRAM configurations as a convenience. If
the SDRAM subsystem on the target board matches one of the preset configurations,
you can configure the SDRAM controller core easily by selecting the appropriate preset
value. The following preset configurations are defined:

• Micron MT8LSDT1664HG module

• Four SDR100 8 MByte × 16 chips

• Single Micron MT48LC2M32B2-7 chip

• Single Micron MT48LC4M32B2-7 chip

• Single NEC D4564163-A80 chip (64 MByte × 16)

• Single Alliance AS4LC1M16S1-10 chip

• Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the Memory
Profile and Timing tabs to match the specific configuration. Altering a
configuration setting on any page changes the Preset value to custom.

27.3.1 Memory Profile Page

The Memory Profile page allows you to specify the structure of the SDRAM
subsystem such as address and data bus widths, the number of chip select signals,
and the number of banks.
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Table 256. Memory Profile Page Settings

Settings Allowed Values Default Values Description

Data Width 8, 16, 32, 64 32 SDRAM data bus width. This
value determines the width of
the dq bus (data) and the
dqm bus (byte-enable).

Architecture
Settings

Chip Selects 1, 2, 4, 8 1 Number of independent chip
selects in the SDRAM
subsystem. By using multiple
chip selects, the SDRAM
controller can combine
multiple SDRAM chips into
one memory subsystem.

Banks 2, 4 4 Number of SDRAM banks. This
value determines the width of
the ba bus (bank address)
that connects to the SDRAM.
The correct value is provided
in the data sheet for the
target SDRAM.

Address Width
Settings

Row 11, 12, 13, 14 12 Number of row address bits.
This value determines the
width of the addr bus. The
Row and Column values
depend on the geometry of
the chosen SDRAM. For
example, an SDRAM
organized as 4096 (212) rows
by 512 columns has a Row
value of 12.

Column >= 8, and less
than Row value

8 Number of column address
bits. For example, the SDRAM
organized as 4096 rows by
512 (29) columns has a
Column value of 9.

Share pins via tri-state bridge dq/dqm/addr
I/O pins

On, Off Off When set to No, all pins are
dedicated to the SDRAM chip.
When set to Yes, the addr,
dq, and dqm pins can be
shared with a tristate bridge
in the system. In this case,
select the appropriate tristate
bridge from the pull-down
menu.

Include a functional memory model in the
system testbench

On, Off On When on, Platform Designer
functional simulation model
for the SDRAM chip. This
default memory model
accelerates the process of
creating and verifying
systems that use the SDRAM
controller. See Hardware
Simulation Considerations
section.

Based on the settings entered on the Memory Profile page, the wizard displays the
expected memory capacity of the SDRAM subsystem in units of megabytes, megabits,
and number of addressable words. Compare these expected values to the actual size
of the chosen SDRAM to verify that the settings are correct.
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27.3.2 Timing Page

The Timing page allows designers to enter the timing specifications of the SDRAM
chip(s) used. The correct values are available in the manufacturer’s data sheet for the
target SDRAM.

Table 257. Timing Page Settings

Settings Allowed
Values

Default
Value

Description

CAS latency 1, 2, 3 3 Latency (in clock cycles) from a read command to data out.

Initialization refresh cycles 1–8 2 This value specifies how many refresh cycles the SDRAM
controller performs as part of the initialization sequence
after reset.

Issue one refresh
command every

— 15.625 µs This value specifies how often the SDRAM controller
refreshes the SDRAM. A typical SDRAM requires 4,096
refresh commands every 64 ms, which can be achieved by
issuing one refresh command every 64 ms / 4,096 = 15.625
μs.

Delay after power up,
before initialization

— 100 µs The delay from stable clock and power to SDRAM
initialization.

Duration of refresh
command (t_rfc)

— 70 ns Auto Refresh period.

Duration of precharge
command (t_rp)

— 20 ns Precharge command period.

ACTIVE to READ or WRITE
delay (t_rcd)

— 20 ns ACTIVE to READ or WRITE delay.

Access time (t_ac) — 17 ns Access time from clock edge. This value may depend on
CAS latency.

Write recovery time (t_wr,
No auto precharge)

— 14 ns Write recovery if explicit precharge commands are issued.
This SDRAM controller always issues explicit precharge
commands.

Regardless of the exact timing values you specify, the actual timing achieved for each
parameter is an integer multiple of the Avalon clock period. For the Issue one
refresh command every parameter, the actual timing is the greatest number of
clock cycles that does not exceed the target value. For all other parameters, the actual
timing is the smallest number of clock ticks that provides a value greater than or
equal to the target value.

27.4 Hardware Simulation Considerations

This section discusses considerations for simulating systems with SDRAM. Three major
components are required for simulation:

• A simulation model for the SDRAM controller.

• A simulation model for the SDRAM chip(s), also called the memory model.

• A simulation testbench that wires the memory model to the SDRAM controller
pins.

Some or all of these components are generated by Platform Designer at system
generation time.
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27.4.1 SDRAM Controller Simulation Model

The SDRAM controller design files generated by Platform Designer are suitable for
both synthesis and simulation. Some simulation features are implemented in the HDL
using “translate on/off” synthesis directives that make certain sections of HDL code
invisible to the synthesis tool.

The simulation features are implemented primarily for easy simulation of Nios and
Nios II processor systems using the ModelSim* simulator. The SDRAM controller
simulation model is not ModelSim specific. However, minor changes may be required
to make the model work with other simulators.

If you change the simulation directives to create a custom simulation flow, be aware
that Platform Designer overwrites existing files during system generation. Take
precautions to ensure your changes are not overwritten.

Refer to AN 351: Simulating Nios II Processor Designs for a demonstration of
simulation of the SDRAM controller in the context of Nios II embedded processor
systems.

27.4.2 SDRAM Memory Model

This section describes the two options for simulating a memory model of the SDRAM
chip(s).

27.4.2.1 Using the Generic Memory Model

If the Include a functional memory model the system testbench option is
enabled at system generation, Platform Designer generates an HDL simulation model
for the SDRAM memory. In the auto-generated system testbench, Platform Designer
automatically wires this memory model to the SDRAM controller pins.

Using the automatic memory model and testbench accelerates the process of creating
and verifying systems that use the SDRAM controller. However, the memory model is a
generic functional model that does not reflect the true timing or functionality of real
SDRAM chips. The generic model is always structured as a single, monolithic block of
memory. For example, even for a system that combines two SDRAM chips, the generic
memory model is implemented as a single entity.

27.4.2.2 Using the SDRAM Manufacturer's Memory Model

If the Include a functional memory model the system testbench option is not
enabled, you are responsible for obtaining a memory model from the SDRAM
manufacturer, and manually wiring the model to the SDRAM controller pins in the
system testbench.

27.5 Example Configurations

The following examples show how to connect the SDRAM controller outputs to an
SDRAM chip or chips. The bus labeled ctl is an aggregate of the remaining signals,
such as cas_n, ras_n, cke and we_n.

The address, data, and control signals are wired directly from the controller to the
chip. The result is a 128-Mbit (16-Mbyte) memory space.
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Figure 81. Single 128-Mbit SDRAM Chip with 32-Bit Data
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The address and control signals connect in parallel to both chips. The chips share the
chipselect (cs_n) signal. Each chip provides half of the 32-bit data bus. The result is a
logical 128-Mbit (16-Mbyte) 32-bit data memory.

Figure 82. Two 64-MBit SDRAM Chips Each with 16-Bit Data
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The address, data, and control signals connect in parallel to the two chips. The
chipselect bus (cs_n[1:0]) determines which chip is selected. The result is a logical
256-Mbit 32-bit wide memory.
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Figure 83. Two 128-Mbit SDRAM Chips Each with 32-Bit Data
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27.6 Software Programming Model

The SDRAM controller behaves like simple memory when accessed via the Avalon-MM
interface. There are no software-configurable settings and no memory-mapped
registers. No software driver routines are required for a processor to access the
SDRAM controller.

27.7 Clock, PLL and Timing Considerations

This section describes issues related to synchronizing signals from the SDRAM
controller core with the clock that drives the SDRAM chip. During SDRAM transactions,
the address, data, and control signals are valid at the SDRAM pins for a window of
time, during which the SDRAM clock must toggle to capture the correct values. At
slower clock frequencies, the clock naturally falls within the valid window. At higher
frequencies, you must compensate the SDRAM clock to align with the valid window.

Determine when the valid window occurs either by calculation or by analyzing the
SDRAM pins with an oscilloscope. Then use a PLL to adjust the phase of the SDRAM
clock so that edges occur in the middle of the valid window. Tuning the PLL might
require trial-and-error effort to align the phase shift to the properties of your target
board.

For details about the PLL circuitry in your target device, refer to the appropriate device
family handbook.

For details about configuring the PLLs in Intel devices, refer to the ALTPLL IP Core
User Guide.

27.7.1 Factors Affecting SDRAM Timing

The location and duration of the window depends on several factors:
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• Timing parameters of the device and SDRAM I/O pins — I/O timing parameters
vary based on device family and speed grade.

• Pin location on the device — I/O pins connected to row routing have different
timing than pins connected to column routing.

• Logic options used during the Intel Quartus Prime compilation — Logic options
such as the Fast Input Register and Fast Output Register logic affect the
design fit. The location of logic and registers inside the device affects the
propagation delays of signals to the I/O pins.

• SDRAM CAS latency

As a result, the valid window timing is different for different combinations of FPGA
and SDRAM devices. The window depends on the Intel Quartus Prime software
fitting results and pin assignments.

27.7.2 Symptoms of an Untuned PLL

Detecting when the PLL is not tuned correctly might be difficult. Data transfers to or
from the SDRAM might not fail universally. For example, individual transfers to the
SDRAM controller might succeed, whereas burst transfers fail. For processor-based
systems, if software can perform read or write data to SDRAM, but cannot run when
the code is located in SDRAM, the PLL is probably tuned incorrectly.

27.7.3 Estimating the Valid Signal Window

This section describes how to estimate the location and duration of the valid signal
window using timing parameters provided in the SDRAM datasheet and the Intel
Quartus Prime software compilation report. After finding the window, tune the PLL so
that SDRAM clock edges occur exactly in the middle of the window.

Calculating the window is a two-step process. First, determine by how much time the
SDRAM clock can lag the controller clock, and then by how much time it can lead.
After finding the maximum lag and lead values, calculate the midpoint between them.

These calculations provide an estimation only. The following delays can also affect
proper PLL tuning, but are not accounted for by these calculations.

• Signal skew due to delays on the printed circuit board — These calculations
assume zero skew.

• Delay from the PLL clock output nodes to destinations — These calculations
assume that the delay from the PLL SDRAM-clock output-node to the pin is the
same as the delay from the PLL controller-clock output-node to the clock inputs in
the SDRAM controller. If these clock delays are significantly different, you must
account for this phase shift in your window calculations.

Lag is a negative time shift, relative to the controller clock, and lead is a positive
time shift. The SDRAM clock can lag the controller clock by the lesser of the
maximum lag for a read cycle or that for a write cycle. In other words,
Maximum Lag = minimum(Read Lag, Write Lag). Similarly, the SDRAM clock can
lead by the lesser of the maximum lead for a read cycle or for a write cycle. In
other words, Maximum Lead = minimum(Read Lead, Write Lead).
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Figure 84. Calculating the Maximum SDRAM Clock Lag

Figure 85. Calculating the Maximum SDRAM Clock Lead

27.7.4 Example Calculation

This section demonstrates a calculation of the signal window for a Micron
MT48LC4M32B2-7 SDRAM chip and design targeting the Stratix II EP2S60F672C5
device. This example uses a CAS latency (CL) of 3 cycles, and a clock frequency of 50
MHz. All SDRAM signals on the device are registered in I/O cells, enabled with the
Fast Input Register and Fast Output Register logic options in the Intel Quartus
Prime software.
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Table 258. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device

Parameter Symbol Value (ns) in -7 Speed Grade

Min. Max.

Access time from CLK
(pos. edge)

CL = 3 tAC(3) — 5.5

CL = 2 tAC(2) — 8

CL = 1 tAC(1) — 17

Address hold time tAH 1 —

Address setup time tAS 2 —

CLK high-level width tCH 2.75 —

CLK low-level width tCL 2.75 —

Clock cycle time CL = 3 tCK(3) 7 —

CL = 2 tCK(2) 10 —

CL = 1 tCK(1) 20 —

CKE hold time tCKH 1 —

CKE setup time tCKS 2 —

CS#, RAS#, CAS#, WE#, DQM hold time tCMH 1 —

CS#, RAS#, CAS#, WE#, DQM setup time tCMS 2 —

Data-in hold time tDH 1

Data-in setup time tDS 2

Data-out high-
impedance time

CL = 3 tHZ(3) 5.5

CL = 2 tHZ(2) — 8

CL = 1 tHZ(1) — 17

Data-out low-impedance time tLZ 1 —

Data-out hold time tOH 2.5

The FPGA I/O Timing Parameters table below shows the relevant timing information,
obtained from the Timing Analyzer section of the Intel Quartus Prime Compilation
Report. The values in the table are the maximum or minimum values among all device
pins related to the SDRAM. The variance in timing between the SDRAM pins on the
device is small (less than 100 ps) because the registers for these signals are placed in
the I/O cell.

Table 259. FPGA I/O Timing Parameters

Parameter Symbol Value (ns)

Clock period tCLK 20

Minimum clock-to-output time tCO_MIN 2.399

Maximum clock-to-output time tCO_MAX 2.477

Maximum hold time after clock tH_MAX –5.607

Maximum setup time before clock tSU_MAX 5.936
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You must compile the design in the Intel Quartus Prime software to obtain the I/O
timing information for the design. Although Intel FPGA device family datasheets
contain generic I/O timing information for each device, the Intel Quartus Prime
Compilation Report provides the most precise timing information for your specific
design.

The timing values found in the compilation report can change, depending on fitting,
pin location, and other Intel Quartus Prime logic settings. When you recompile the
design in the Intel Quartus Prime software, verify that the I/O timing has not changed
significantly.

The following examples illustrate the calculations from figures Maximum SDRAM Clock
Lag and Maximum Lead also using the values from the Timing Parameters and FPGA
I/O Timing Parameters table.

The SDRAM clock can lag the controller clock by the lesser of Read Lag or Write Lag:

Read Lag = tOH(SDRAM) – tH_MAX(FPGA)

= 2.5 ns – (–5.607 ns) = 8.107 ns

or

Write Lag = tCLK – tCO_MAX(FPGA) – tDS(SDRAM)

= 20 ns – 2.477 ns – 2 ns = 15.523 ns

The SDRAM clock can lead the controller clock by the lesser of Read Lead or Write
Lead:

Read Lead = tCO_MIN(FPGA) – tDH(SDRAM)

= 2.399 ns – 1.0 ns = 1.399 ns

or

Write Lead = tCLK – tHZ(3)(SDRAM) – tSU_MAX(FPGA)

= 20 ns – 5.5 ns – 5.936 ns = 8.564 ns

Therefore, for this example you can shift the phase of the SDRAM clock from –
8.107 ns to 1.399 ns relative to the controller clock. Choosing a phase shift in the
middle of this window results in the value (–8.107 + 1.399)/2 = –3.35 ns.

27.8 Document Revision History

Table 260. SDRAM Controller Core Revision History

Date Version Changes

May 2016 2016.05.03 Maintenance release.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.
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Date Version Changes

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.

For previous versions of this chapter, refer to the Intel Quartus Prime Handbook
Archive.
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28 Tri-State SDRAM Core

28.1 Core Overview

The Intel SDRAM Tri-State Controller core with Avalon interface provides an Avalon
Memory-Mapped (Avalon-MM) interface to off-chip SDRAM. The SDRAM controller
allows designers to create custom systems in an Intel FPGA device that connect easily
to SDRAM chips. The SDRAM controller supports standard SDRAM defined by the
PC100 specification.

SDRAM is commonly used in cost-sensitive applications requiring large amounts of
volatile memory. While SDRAM is relatively inexpensive, control logic is required to
perform refresh operations, open-row management, and other delays and command
sequences. The SDRAM controller connects to one or more SDRAM chips, and handles
all SDRAM protocol requirements. The SDRAM controller core presents an Avalon-MM
slave port that appears as linear memory (flat address space) to Avalon-MM master
peripherals.

The Avalon-MM interface is latency-aware, allowing read transfers to be pipelined. The
core can optionally share its address and data buses with other off-chip Avalon-MM tri-
state devices. This feature is valuable in systems that have limited I/O pins, yet must
connect to multiple memory chips in addition to SDRAM.

The Intel SDRAM Tri-State Controller has the same functionality as the SDRAM
Controller Core with the addition of the Tri-State feature.

Related Links

Avalon Interface Specifications

28.2 Feature Description

The Intel SDRAM Tri-State controller core has the following features:

• Maximum frequency of 100-MHz

• Single clock domain design

• Sharing of dq/dqm/addr I/
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28.2.1 Block Diagram

Figure 86. Tri-State SDRAM Block Diagram
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28.3 Configuration Parameter

The following table shows the configuration parameters available for user to program
during generation time of the IP core.

28.3.1 Memory Profile Page

The Memory Profile page allows you to specify the structure of the SDRAM subsystem
such as address and data bus widths, the number of chip select signals, and the
number of banks.

Table 261. Configuration Parameters

Parameter GUI Legal Values Default Values Units

Data Width 8, 16, 32, 64 32 (Bit)s

Architecture Chip Selects 1, 2, 4, 8 1 (Bit)s

Banks 2, 4 4 (Bit)s

Address Widths Row 11:14 12 (Bit)s

Column 8:14 8 (Bit)s

28.3.2 Timing Page

The Timing page allows designers to enter the timing specifications of the Tri-State
SDRAM chip(s) used. The correct values are available in the manufacturer’s data sheet
for the target SDRAM.
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Table 262. Configuration Timing Parameters

Parameter GUI Legal Values Default Values Units

CAS latency cycles 1, 2, 3 3 Cycles

Initialization refresh cycles 1:8 2 Cycles

Issue one refresh command every 0.0:156.25 15.625 us

Delay after power up, before
initialization

0.0:999.0 100.00 us

Duration of refresh command (t_rfc) 0.0:700.0 70.0 ns

Duration of precharge command (t_rp) 0.0:200.0 20.0 ns

ACTIVE to READ or WRITE delay
(t_rcd)

0.0:200.0 20.0 ns

Access time (t_ac) 0.0:999.0 5.5 ns

Write recovery time (t_wr, no auto
precharge)

0.0:140.0 14.0 ns

28.4 Interface

The following are top level signals from core

Table 263. Clock and Reset Signals

Signal Width Direction Description

clk 1 Input System Clock

rst_n 1 Input System asynchronous reset. The signal is asserted
asynchronously, but is de-asserted synchronously after the
rising edge of ssi_clk. The synchronization must be
provided external to this component.

Table 264. Avalon-MM Slave Interface Signals

Signal Width Direction Description

avs_read 1 Input Avalon-MM read control. Asserted to indicate a
read transfer. If present, readdata is
required.

avs_write 1 Input Avalon-MM write control. Asserted to indicate
a write transfer. If present, writedata is
required.

avs_byteenable dqm_width Input Enables specific byte lane(s) during transfer.
Each bit corresponds to a byte in
avs_writedata and avs_readdata.

avs_address controller_addr_widt
h

Input Avalon-MM address bus.

avs_writedata sdram_data_width Input Avalon-MM write data bus. Driven by the bus
master (bridge unit) during write cycles.
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Signal Width Direction Description

avs_readdata sdram_data_width Output Avalon-MM readback data. Driven by the
altera_spi during read cycles.

avs_readdatavalid 1 Output Asserted to indicate that the avs_readdata
signals contains valid data in response to a
previous read request.

avs_waitrequest 1 Output Asserted when it is unable to respond to a
read or write request.

Table 265. Tristate Conduit Master / SDRAM Interface Signals

Signal Width Direction Description

tcm_grant 1 Input When asserted, indicates
that a tristate conduit
master has been granted
access to perform
transactions. tcm_grant is
asserted in response to the
tcm_request signal and
remains asserted until 1
cycle following the
deassertion of request.
Valid only when pin sharing
mode is enabled.

tcm_request 1 Output The meaning of
tcm_request depends on
the state of the tcm_grant
signal, as the following rules
dictate:
• When tcm_request is

asserted and tcm_grant
is deasserted,
tcm_request is
requesting access for the
current cycle.

• When tcm_request is
asserted and tcm_grant
is asserted,
tcm_request is
requesting access for the
next cycle; consequently,
tcm_request should be
deasserted on the final
cycle of an access.

Because tcm_request is
deasserted in the last cycle
of a bus access, it can be
reasserted immediately
following the final cycle of a
transfer, making both
rearbitration and continuous
bus access possible if no
other masters are
requesting access.
Once asserted,
tcm_request must remain
asserted until granted;
consequently, the shortest
bus access is 2 cycles.
Valid only when pin-sharing
mode is enabled.
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Signal Width Direction Description

sdram_dq_width sdram_data_width Output SDRAM data bus output.
Valid only when pin-sharing
mode is enabled

sdram_dq_in sdram_data_width Input SDRAM data bus output.
Valid only when pin-sharing
mode is enabled.

sdram_dq_oen 1 Output SDRAM data bus input.
Valid only when pin-sharing
mode is enabled.

sdram_dq sdram_data_width Input/Output SDRAM data bus.
Valid only when pin-sharing
mode is disabled.

sdram_addr sdram_addr_width Output SDRAM address bus.

sdram_ba sdram_bank_width Output SDRAM bank address.

sdram_dqm dqm_width Output SDRAM data mask. When
asserted, it indicates to the
SDRAM chip that the
corresponding data signal is
suppressed. There is one
DQM line per 8 bits data
lines

sdram_ras_n 1 Output Row Address Select. When
taken LOW, the value on the
tcm_addr_out bus is used
to select the bank and
activate the required row.

sdram_cas_n 1 Output Column Address Select.
When taken LOW, the value
on the tcm_addr_out bus
is used to select the bank
and required column. A read
or write operation will then
be conducted from that
memory location, depending
on the state of
tcm_we_out.

sdram_we_n 1 Output SDRAM Write Enable,
determins whether the
location addressed by
tcm_addr_out is written to
or read from.
0=Read
1=Write

sdram_cs_n Output SDRAM Chip Select. When
taken LOW, will enables the
SDRAM device.

sdram_cke 1 Output SDRAM Clock Enable. The
SDRAM controller does not
support clock-disable modes.
The SDRAM controller
permanently asserts the
tcm_sdr_cke_out signal
on the SDRAM.

Note: The SDRAM controller does not have any configurable control status registers (CSR).
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28.5 Reset and Clock Requirements

The main reset input signal to the SDRAM is treated as an asynchronous reset input
from the SDRAM core perspective. A reset synchronizer circuit, as typically
implemented for each reset domain in a complete SOC/ASIC system is not
implemented within the SDRAM core. Instead, this reset synchronizer circuit should be
implemented externally to the SDRAM, in a higher hierarchy within the complete
system design, so that the “asynchronous assertion, synchronous de-assertion” rule is
fulfilled.

The SDRAM core accepts an input clock at its clk input with maximum frequency of
100-MHz. The other requirements for the clock, such as its minimum frequency should
be similar to the requirement of the external SDRAM which the SDRAM is interfaced
to.

28.6 Architecture

The SDRAM Controller connects to one or more SDRAM chips, and handles all SDRAM
protocol requirements. Internal to the device, the core presents an Avalon-MM slave
ports that appears as a linear memory (flat address space) to Avalon-MM master
device.

The core can access SDRAM subsystems with:

• Various data widths (8-, 16-, 32- or 64-bits)

• Various memory sizes

• Multiple chip selects

The Avalon-MM interface is latency-aware, allowing read transfers to be pipelined. The
core can optionally share its address and data buses with other off-chip Avalon-MM tri-
state devices.

Note: Limitations: for now the arbitration control of this mode should be handled by the
host/master in the system to avoid a device monopolizing the shared buses.

Control logic within the SDRAM core responsible for the main functionality listed
below, among others:

• Refresh operation

• Open_row management

• Delay and command management

Use of the data bus is intricate and thus requires a complex DRAM controller circuit.
This is because data written to the DRAM must be presented in the same cycle as the
write command, but reads produce output 2 or 3 cycles after the read command. The
SDRAM controller must ensure that the data bus is never required for a read and a
write at the same time.

28.6.1 Avalon-MM Slave Interface and CSR

The host processor perform data read and write operation to the external SDRAM
devices through the Avalon-MM interface of the SDRAM core.
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Please refer to Avalon Interface Specifications for more information on the details of
the Avalon-MM Slave Interface.

Related Links

Avalon Interface Specifications

28.6.2 Block Level Usage Model

Figure 87. Shared-Bus System

28.7 Document Revision History

Table 266. Intel SDRAM Tri-State Controller Core Revision History

Date Version Changes

July 2014 2014.07.24 Initial release.
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29 Video Sync Generator and Pixel Converter Cores

29.1 Core Overview

The video sync generator core accepts a continuous stream of pixel data in RGB
format, and outputs the data to an off-chip display controller with proper timing. You
can configure the video sync generator core to support different display resolutions
and synchronization timings.

The pixel converter core transforms the pixel data to the format required by the video
sync generator. The Typical Placement in a System figure shows a typical
placement of the video sync generator and pixel converter cores in a system.

In this example, the video buffer stores the pixel data in 32-bit unpacked format. The
extra byte in the pixel data is discarded by the pixel converter core before the data is
serialized and sent to the video sync generator core.

Figure 88. Typical Placement in a System
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These cores are deployed in the Nios II Embedded Software Evaluation Kit (NEEK),
which includes an LCD display daughtercard assembly attached via an HSMC
connector.

29.2 Video Sync Generator

This section describes the hardware structure and functionality of the video sync
generator core.

29.2.1 Functional Description

The video sync generator core adds horizontal and vertical synchronization signals to
the pixel data that comes through its Avalon (Avalon-ST) input interface and outputs
the data to an off-chip display controller. No processing or validation is performed on
the pixel data.
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Figure 89. Video Sync Generator Block Diagram
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You can configure various aspects of the core and its Avalon-ST interface to suit your
requirements. You can specify the data width, number of bits required to transfer each
pixel and synchronization signals. See the Parameters section for more information
on the available options.

To ensure incoming pixel data is sent to the display controller with correct timing, the
video sync generator core must synchronize itself to the first pixel in a frame. The first
active pixel is indicated by an sop pulse.

The video sync generator core expects continuous streams of pixel data at its input
interface and assumes that each incoming packet contains the correct number of
pixels (Number of rows * Number of columns). Data starvation disrupts
synchronization and results in unexpected output on the display.

29.2.2 Parameters

Table 267. Video Sync Generator Parameters

Parameter Name Description

Horizontal Sync Pulse Pixels The width of the h-sync pulse in number of pixels.

Total Vertical Scan Lines The total number of lines in one video frame. The value is the sum of the following
parameters: Number of Rows, Vertical Blank Lines, and Vertical Front Porch
Lines.

Number of Rows The number of active scan lines in each video frame.

Horizontal Sync Pulse
Polarity

The polarity of the h-sync pulse; 0 = active low and 1 = active high.

Horizontal Front Porch
Pixels

The number of blanking pixels that follow the active pixels. During this period, there is
no data flow from the Avalon-ST sink port to the LCD output data port.

Vertical Sync Pulse Polarity The polarity of the v-sync pulse; 0 = active low and 1 = active high.

Vertical Sync Pulse Lines The width of the v-sync pulse in number of lines.

Vertical Front Porch Lines The number of blanking lines that follow the active lines. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.

Number of Columns The number of active pixels in each line.

continued...   
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Parameter Name Description

Horizontal Blank Pixels The number of blanking pixels that precede the active pixels. During this period, there is
no data flow from the Avalon-ST sink port to the LCD output data port.

Total Horizontal Scan Pixels The total number of pixels in one line. The value is the sum of the following parameters:
Number of Columns, Horizontal Blank Pixel, and Horizontal Front Porch Pixels.

bits Per Pixel The number of bits required to transfer one pixel. Valid values are 1 and 3. This
parameter, when multiplied by Data Stream Bit Width must be equal to the total
number of bits in one pixel. This parameter affects the operating clock frequency, as
shown in the following equation:
Operating clock frequency = (bits per pixel) * (Pixel_rate), where 
Pixel_rate (in MHz) = ((Total Horizontal Scan Pixels) * (Total Vertical Scan Lines)
* (Display refresh rate in Hz))/1000000.

Vertical Blank Lines The number of blanking lines that proceed the active lines. During this period, there is
no data flow from the Avalon-ST sink port to the LCD output data port.

Data Stream Bit Width The width of the inbound and outbound data.

29.2.3 Signals

Table 268. Video Sync Generator Core Signals  

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input System clock.

reset 1 Input System reset.

Avalon-ST Signals

data Variable-width Input Incoming pixel data. The datawidth is determined by the parameter
Data Stream Bit Width.

ready 1 Output This signal is asserted when the video sync generator is ready to
receive the pixel data.

valid 1 Input This signal is not used by the video sync generator core because the
core always expects valid pixel data on the next clock cycle after the
ready signal is asserted.

sop 1 Input Start-of-packet. This signal is asserted when the first pixel is received.

eop 1 Input End-of-packet. This signal is asserted when the last pixel is received.

LCD Output Signals

rgb_out Variable-width Output Display data. The datawidth is determined by the parameter Data
Stream Bit Width.

hd 1 Output Horizontal synchronization pulse for display.

vd 1 Output Vertical synchronization pulse for display.

den 1 Output This signal is asserted when the video sync generator core outputs
valid data for display.

29.2.4 Timing Diagrams

The horizontal and vertical synchronization timings are determined by the parameters
setting. The table below shows the horizontal synchronization timing when the
parameters Data Stream Bit Width and bits Per Pixel are set to 8 and 3,
respectively.
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Figure 90. Horizontal Synchronization Timing—8 Bits DataWidth and 3 bits Per Pixel
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The table below sho.ws the horizontal synchronization timing when the parameters
Data Stream Bit Width and bits Per Pixel are set to 24 and 1, respectively.

Figure 91. Horizontal Synchronization Timing—24 Bits DataWidth and 1 Beat Per Pixel
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Figure 92. Vertical Synchronization Timing—8 Bits DataWidth and 3 bits Per Pixel / 24
Bits DataWidth and 1 Beat Per Pixel
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29.3 Pixel Converter

This section describes the hardware structure and functionality of the pixel converter
core.

29.3.1 Functional Description

The pixel converter core receives pixel data on its Avalon-ST input interface and
transforms the pixel data to the format required by the video sync generator. The least
significant byte of the 32-bit wide pixel data is removed and the remaining 24 bits are
wired directly to the core's Avalon-ST output interface.
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29.3.2 Parameters

You can configure the following parameter:

• Source symbols per beat—The number of symbols per beat on the Avalon-ST
source interface.

29.3.3 Signals

Table 269. Pixel Converter Input Interface Signals

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input Not in use.

reset_n 1 Input

Avalon-ST Signals

data_in 32 Input Incoming pixel data. Contains four 8-bit symbols that are transferred in
1 beat.

data_out 24 Output Output data. Contains three 8-bit symbols that are transferred in 1
beat.

sop_in 1 Input Wired directly to the corresponding output signals.

eop_in 1 Input

ready_in 1 Input

valid_in 1 Input

empty_in 1 Input

sop_out 1 Output Wired directly from the input signals.

eop_out 1 Output

ready_out 1 Output

valid_out 1 Output

empty_out 1 Output

29.4 Hardware Simulation Considerations

For a typical 60 Hz refresh rate, set the simulation length for the video sync generator
core to at least 16.7 μs to get a full video frame. Depending on the size of the video
frame, simulation may take a very long time to complete.

29.5 Document Revision History

Table 270. Video Sync Generator and Pixel Converter Cores Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.
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Date Version Changes

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Added new parameters for both cores.
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30 Intel FPGA Interrupt Latency Counter Core

30.1 Core Overview

A processor running a program can be instructed to divert from its original execution
path by an interrupt signal generated either by peripheral hardware or the firmware
that is currently being executed. The processor now executes the portions of the
program code that handles the interrupt requests known as Interrupt Service Routines
(ISR) by moving to the instruction pointer to the ISR, and then continues operation.
Upon completion of the routine, the processor returns to the previous location.

Intel FPGA's Interrupt Latency Calculator (ILC) is developed in mind to measure the
time taken in terms of clock cycles to complete the interrupt service routine. Data
obtained from the ILC is utilized by other latency sensitive IPs in order for it to
maintain its proper operation. The data from the ILC can also be used to help the
general firmware debugging exercise.

The ILC sits as a parallel to any interrupt receiver that will consume and perform an
interrupt service routine. The following figure shows the orientation of a ILC in a
system design.

Figure 93. Usage model of Interrupt Latency Calculator
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30.2 Feature Description

The ILC is made up of three sub functional blocks. The top level interface is Avalon
Memory Mapped (Avalon-MM) protocol compliant. The interrupt detector block will be
activated by the rising edge of the interrupt signal or pulse, determined by a
parameter during component generation. The interrupt detector block determines
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when to start or stop the 32-bit internal counter, which is reset to zero every time it
begins operation without affecting previous stored latency data register value. The
latency data register is updated after the counter is stopped.

Each counter can be configured to host up to 32 identical counters to monitor separate
IRQ channels. Each counter only observes one interrupt input. The interrupt could be
level sensitive or pulse (edge) sensitive. In the case where more interrupt lines need
to be monitored, multiple counters could be instantiated in Platform Designer.

ILC only keeps track of the latest interrupt latency value. If multiple interrupts are
happening in series, only the last interrupt latency will be maintained. On the other
hand, every start of interrupt edge refreshes the internal counter from zero.

30.2.1 Avalon-MM Compliant CSR Registers

Each ILC has rows of status registers each being 32 bits in length. The last four rows
of CSR registers corresponding to address 0x20 to 0x23 are fixed regardless of the
number of IRQ port count configured through the Platform Designer GUI Stop Address
0x0 to 0x1F. The Platform Designer GUI Stop Address is reserved to store the latency
value which depends on the number of IRQ port configured. For example, if you
configure the instance to have only five counters, then only addressess 0x0 to 0x4
return a valid value when you try to read from it. When the IP user tries to read from
an invalid address, the IP returns binary ‘0’ value.”.

Table 271. ILC Register Mapping

Word Address Offset Register/ Queue Name Attribute

0x0 IRQ_0 Latency Data Registers Read access only

0x1 IRQ_1 Latency Data Registers Read access only

... ... ...

0x1F IRQ_31 Latency Data Registers Read access only

0x20 Control Registers Read and Write access on LSB and Read only
for the remaining bits

0x21 Frequency Registers Read access only

0x22 Counter Stop Registers Read and Write access

0x23 Read data Valid Registers Read access only

0x24 IRQ Active Registers Read access only

30.2.1.1 Control Register

Table 272. ILC Control Register Fields

Field Name ILC Version IRQ Port Count IRQ TYPE Global Enable

Bit Location 31 8 7 2 1 0

The control registers of the Interrupt Latency Counter is divided into four fields. The
LSB is the global enable bit which by default stores a binary ‘0’. To enable the IP to
work, it must be set to binary ‘1’. The next bit denotes the IRQ type the IP is
configured to measure, with binary ‘0’ indicating it is sensitive to level type IRQ signal;
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while binary ‘1’ means the IP is accepting pulse type interrupt signal. The next six bits
stores the number of IRQ port count configured through the Platform Designer GUI.
Bit 8 through bit 31 stores the revision value of the ILC instance.

30.2.1.2 Frequency Register

Table 273. Frequency Register

Field Name System Frequency

Bit Location 31 0

The frequency registers stores the clock frequency supplied to the IP. This 32-bit read
only register holds system frequency data in Hz. For example, a 50 MHz clock signal is
represented by hexadecimal 0x2FAF080.

30.2.1.3 Counter Stop Registers

Table 274. Counter Stop Registers

Field Name Counter Stop Registers

Bit Location 31 0

If the ILC is configured to support the pulse IRQ signal, then the counter stop
registers are utilized by running software to halt the counter. Each bit corresponds to
the IRQ port. For example, bit 0 controls IRQ_0 counter. To stop the counter you have
to write a binary ‘1’ into the register. Counter stop registers do not affect the operation
of the ILC in level mode.

Note: You need to clear the counter stop register to properly capture the next round of IRQ
delay.

30.2.1.4 Latency Data Registers

Table 275. Latency Data Registers

Field Name Latency Data Registers

Bit Location 31 0

The latency data registers holdthe latency value in terms of clock cycle from the
moment the interrupt signal is fired until the IRQ signal goes low for level
configuration or counter stop register being set for pulse configuration. This is a 32-bit
read only register with each address corresponding to one IRQ port. The latency data
registers can only be read three clock cycles after the IRQ signal goes low or when the
counter stop registers are set to high in the level and pulse operating mode,
respectively.

30.2.1.5 Data Valid Registers

Table 276. Data Valid Registers

Field Name Data Valid Registers

Bit Location 31 0
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The data valid registers indicate whether the data from the latency data regsters are
ready to be read or not. By default, these registers hold a binary value of ‘0’ out of
reset. Once the counter data is transfered to the latency data register, the
corresponding bit within the data valid register is set to binary '1'. It reverts back to
binary ‘0’ after a read operation has been consumed by the ILC.

30.2.2 32-bit Counter

The 32-bit positive edge triggered D-flop base up counter takes in a reset signal which
clears all the registers to zero. It also has an enable signal that determines when the
counter operation is turned on or off.

30.2.3 Interrupt Detector

The interrupt detector can be customized to detect either signal edges or pulse using
the Platform Designer interface. The interrupt detector generates an enable signal to
start and stop the 32-bit counter.

30.3 Component Interface

Intel FPGA Interrupt Latency Calculator has an Avalon-MM slave interface which
communicates with the Interrupt service routine initiator.

The table below shows the component interface that is available on the Intel FPGA
Interrupt Latency Counter IP.

Table 277. Available Component Interfaces

Interface Port Description Remarks

Avalon-MM Slave (address , write,
waitrequest , writedata[31:0], read,
readdata[31:0])

Avalon-MM Slave interface for
processor to talk to the IP.

This Avalon-MM slave interface
observes zero cycles read latency with
waitrequest signal. The waitrequest
signal defaults to binary ‘1’ if there is
no ongoing operation. If the Avalon-
MM Read or Write signal goes high, the
waitrequest signal only goes low if the
readdata_valid_register goes high.

Clock Clock input of component. Clock signal to feed the latecy counter
logics.

Reset_n Active LOW reset input/s. Support asynchronous reset assertion.
De-assertion of reset has to be
synchronized to the input clock.

IRQ IRQ signal from the interrupt signal
initiator

Interrupt assertion and deassertion is
synchronized to input clock.

30.4 Component Parameterization

The table below shows the configuration parameters available on the Intel FPGA
Interrupt Latency Counter IP.
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Table 278. Available Component Parameterizations

Parameter Name Description Default Value Allowable Range

INTERRUPT_TYPE Value 0: level sensitive
interrupt input
Value 1: edge/pulse
interrupt input

0 0,1

CLOCK_RATE Frequency of the clock signal
that is connected to the IP

0 0 – 2^32

IRQ_PORT_COUNT Configure number of IRQ
PORT to use

32 1 - 32

30.5 Software Access

Since the component supports two types of incoming interrupts - level and edge/
pulse, the software access routine for supporting each of the interrupt types has
slightly different expectations.

30.5.1 Routine for Level Sensitive Interrupts

The software access routine for level sensitive interrupts is as follows:

1. Upon completion of ISR, read the data valid bit to ensure that the data is "valid"
before reading the interrupt latency counter.

2. Read from the Latency Data Register to obtain the actual cycle spend for the
interrupt.
The value presented is in the amount of clock cycle associated with the clock
connected to Interrupt Latency Counter.

30.5.2 Routine for Edge/Pulse Sensitive Interrupts

The software access routine for edge/pulse sensitive interrupts is as follows:

1. Upon completion of ISR, or at the end of ISR, software needs to write binary ‘1’ to
one of the 32-bit registers of the Counter Stop Register to stop the internal
counter from counting. The LSB represents counter 0 and the MSB represents
counter 31. This is the same as the level sensitive interrupt. Data valid bit is
recommended to be read before reading the latency counter.

2. Read from Latency Data Register to obtain the actual cycle spend for the interrupt.
The counter stop bit only needs clearing when the IP is configured to accept pulse
IRQ. If level IRQ is employed. The counter stop bit is ignored.
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30.6 Implementation Details

30.6.1 Interrupt Latency Counter Architecture

Figure 94. Interrupt Latency Calculator Architecture

The interrupt latency calculator operates on a single clock domain which is determined
by which clock it is receiving at the CLK interface. The interrupt detector circuit is
made up of a positive-edge triggered flop which delays the IRQ signal to be XORed
with the original signal. The pulse resulted from the previous operation is then fed to
an enable register where it will switch its state from logic ‘low’ to ‘high’. This will
trigger the counter to start its operation. Prior to this, the reset signal is assumed to
be triggered through the firmware. Once the Interrupt service routine has been
completed, the IRQ signal drops to logic low. This causes another pulse to be
generated to stop the counter. Data from the counter is then duplicated into the
latency data register to be read out.

When the interrupt detector is configured to react to a pulse signal, the incoming
pulse is fed directly to enable the register to turn on the counter. In this mode, to halt
the counter’s operation, you have to write a Boolean ‘1’ to the counter stop bit. Only
the first IRQ pulse can trigger the counter to start counting and that subsequent pulse
will not cause the counter to reset until a Boolean ‘1’ is written into the counter stop
register. In ‘pulse’ mode, the latency measured by the IP is one clock cycle more than
actual latency.

30.7 IP Caveats

There are limitations in the Intel FPGA interrupt latency which the user needs to be
aware of. This limitation arises due to the nature of state machines which incurs a
period of clock cycle for state transitions.
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1. The data latency registers cannot be read before a first IRQ is fired in any of the
32 channels. This causes the Waitrequest signal to be perpetually high which
would lead to a system stall.

2. The data registers can only be read three clock cycles after the counter registers
stop counting. These three clock cycles originate from the state machine moving
from the start state to the stop/store state. It takes an additional clock cycle to
propagate the data from the counter registers to the data store registers.

3. In the pulse IRQ mode, there is an idle cycle present between two consecutive
write commands into the counter stop register. So, in the event that channel 1 is
halted immediately after channel 0 is halted, then the minimum difference you see
in the registered values is 2.

4. The interrupt latency counter will not notify you if an overflow occurs but the
counter can count up to very huge numbers before an overflow happens. The
magnitude of the delay numbers reported will suggest that the system has hung
indefinitely.

30.8 Document Revision History

Table 279. Altera Interrupt Latency Counter Core Revision History

Date Version Changes

June 2016 2016.06.17 Updated:
• Table 271 on page 347 Added word address offset 0x24
• Data Valid Registers on page 348 Updated description
• Table 278 on page 350 Parameter name change
• IP Caveats on page 351 Added limitation 4

July 2014 2014.07.24 Initial Release
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31 Performance Counter Unit Core

31.1 Core Overview

The performance counter core with Avalon interface enables relatively unobtrusive,
real-time profiling of software programs. With the performance counter, you can
accurately measure execution time taken by multiple sections of code. You need only
add a single instruction at the beginning and end of each section to be measured.

The main benefit of using the performance counter core is the accuracy of the profiling
results. Alternatives include the following approaches:

• GNU profiler, gprof—gprof provides broad low-precision timing information
about the entire software system. It uses a substantial amount of RAM, and
degrades the real-time performance. For many embedded applications, gprof
distorts real-time behavior too much to be useful.

• Interval timer peripheral—The interval timer is less intrusive than gprof. It can
provide good results for narrowly targeted sections of code.

The performance counter core is unobtrusive, requiring only a single instruction to
start and stop profiling, and no RAM. It is appropriate for high-precision
measurements of narrowly targeted sections of code.

For further discussion of all three profiling methods, refer to AN 391: Profiling
Nios II Systems.

The core is designed for use in Avalon-based processor systems, such as a Nios II
processor system. Intel FPGA device drivers enable the Nios II processor to use
the performance counters.

31.2 Functional Description

The performance counter core is a set of counters which track clock cycles, timing
multiple sections of your software. You can start and stop these counters in your
software, individually or as a group. You can read cycle counts from hardware
registers.

The core contains two counters for every section:

• Time: A 64-bit clock cycle counter.

• Events: A 32-bit event counter.

31.2.1 Section Counters

Each 64-bit time counter records the aggregate number of clock cycles spent in a
section of code. The 32-bit event counter records the number of times the section
executes.
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The performance counter core can have up to seven section counters.

31.2.2 Global Counter

The global counter controls all section counters. The section counters are enabled only
when the global counter is running.

The 64-bit global clock cycle counter tracks the aggregate time for which the counters
were enabled. The 32-bit global event counter tracks the number of global events,
that is, the number of times the performance counter core has been enabled.

31.2.3 Register Map

The performance counter core has an Avalon Memory-Mapped (Avalon-MM) slave
interface that provides access to memory-mapped registers. Reading from the
registers retrieves the current times and event counts. Writing to the registers starts,
stops, and resets the counters.

Table 280. Performance Counter Core Register Map

Offset Register Name Bit Description

Read Write

31 ... 0 31 ... 1 0

0 T[0]lo global clock cycle counter [31: 0] (1) 0 = STOP
1 = RESET

1 T[0]hi global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[1]lo section 1 clock cycle counter [31:0] (1) 1 = STOP

5 T[1]hi section 1 clock cycle counter [63:32] (1) 0 = START

6 Ev[1] section 1 event counter (1) (1)

7 — (1) (1) (1)

8 T[2]lo section 2 clock cycle counter [31:0] (1) 1 = STOP

9 T[2]hi section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

11 — (1) (1) (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4n + 0 T[n]lo section n clock cycle counter [31:0] (1) 1 = STOP

4n + 1 T[n]hi section n clock cycle counter [63:32] (1) 0 = START

4n + 2 Ev[n] section n event counter (1) (1)

4n + 3 — (1) (1) (1)

Note :
1. Reserved. Read values are undefined. When writing, set reserved bits to zero.
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31.2.4 System Reset

After a system reset, the performance counter core is stopped and disabled, and all
counters are set to zero.

31.3 Configuration

The following sections list the available options in the MegaWizard™ interface.

31.3.1 Define Counters

Choose the number of section counters you want to generate by selecting from the
Number of simultaneously-measured sections list. The performance counter core
may have up to seven sections. If you require more that seven sections, you can
instantiate multiple performance counter cores.

31.3.2 Multiple Clock Domain Considerations

If your Platform Designer system uses multiple clocks, place the performance counter
core in the same clock domain as the CPU. Otherwise, it is not possible to convert
cycle counts to seconds correctly.

31.4 Hardware Simulation Considerations

You can use this core in simulation with no special considerations.

31.5 Software Programming Model

The following sections describe the software programming model for the performance
counter core.

31.5.1 Software Files

Intel provides the following software files for Nios II systems. These files define the
low-level access to the hardware and provide control and reporting functions. Do not
modify these files.

• altera_avalon_performance_counter.h,
altera_avalon_performance_counter.c—The header and source code for
the functions and macros needed to control the performance counter core and
retrieve raw results.

• perf_print_formatted_report.c—The source code for simple profile
reporting.

31.5.2 Using the Performance Counter

In a Nios II system, you can control the performance counter core with a set of highly
efficient C macros, and extract the results with C functions.

API Summary
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The NNios II application program interface (API) for the performance counter core
consists of functions, macros and constants.

Table 281. Performance Counter Macros and Functions

Name Summary

PERF_RESET() Stops and disables all counters, resetting them to 0.

PERF_START_MEASURING() Starts the global counter and enables section counters.

PERF_STOP_MEASURING() Stops the global counter and disables section counters.

PERF_BEGIN() Starts timing a code section.

PERF_END() Stops timing a code section.

perf_print_formatted_report() Sends a formatted summary of the profiling results to
stdout.

perf_get_total_time() Returns the aggregate global profiling time in clock cycles.

perf_get_section_time() Returns the aggregate time for one section in clock cycles.

perf_get_num_starts() Returns the number of counter events.

alt_get_cpu_freq() Returns the CPU frequency in Hz.

For a complete description of each macro and function, see the Performance
counter API section.

Hardware Constants

You can get the performance counter hardware parameters from constants defined in
system.h. The constant names are based on the performance counter instance
name, specified on the System Contents tab in Platform Designer.

Table 282. Performance Counter Constants

Name (1) Meaning

PERFORMANCE_COUNTER_BASE Base address of core

PERFORMANCE_COUNTER_SPAN Number of hardware registers

PERFORMANCE_COUNTER_HOW_MANY_SECTIONS Number of section counters

Note :
1. Example based on instance name performance_counter.

Startup

Before using the performance counter core, invoke PERF_RESET to stop, disable and
zero all counters.

Global Counter Usage

Use the global counter to enable and disable the entire performance counter core. For
example, you might choose to leave profiling disabled until your software has
completed its initialization.

31 Performance Counter Unit Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
356



Section Counter Usage

To measure a section in your code, surround it with the macros PERF_BEGIN() and
PERF_END(). These macros consist of a single write to the performance counter core.

You can simultaneously measure as many code sections as you like, up to the number
specified in Platform Designer. See the Define Counters section for details. You can
start and stop counters individually, or as a group.

Typically, you assign one counter to each section of code you intend to profile.
However, in some situations you may wish to group several sections of code in a single
section counter. As an example, to measure general interrupt overhead, you can
measure all interrupt service routines (ISRs) with one counter.

To avoid confusion, assign a mnemonic symbol for each section number.

Viewing Counter Values

Library routines allow you to retrieve and analyze the results. Use
perf_print_formatted_report() to list the results to stdout, as shown below.

Table 283. Example 1:

perf_print_formatted_report(
     (void *)PERFORMANCE_COUNTER_BASE, // Peripheral's HW base address
     alt_get_cpu_freq(),               // defined in "system.h"
     3,                                // How many sections to print
     "1st checksum_test",              // Display-names of sections
     "pc_overhead",

     "ts_overhead");

The example below creates a table similar to this result.

Table 284. Example 2:

--Performance Counter Report--

Total Time: 2.07711 seconds (103855534 clock-cycles)

+-----------------+--------+-----------+---------------+-----------+

| Section         |    %   | Time (sec)| Time (clocks) |Occurrences|

+-----------------+--------+-----------+---------------+-----------+

|1st checksum_test|     50 |   1.03800 |      51899750 |         1 |

+-----------------+--------+-----------+---------------+-----------+

| pc_overhead     |1.73e-05|   0.00000 |            18 |         1 |

+-----------------+--------+-----------+---------------+-----------+

| ts_overhead     |4.24e-05|   0.00000 |            44 |         1 |

+-----------------+--------+-----------+---------------+-----------+

For full documentation of perf_print_formatted_report(), see the Performance and Counter API section.

31.5.3 Interrupt Behavior

The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance results, in an
interrupt service routine (ISR). Do not call the perf_print_formatted_report()
function from an ISR.
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If an interrupt occurs during the measurement of a section of code, the time taken by
the CPU to process the interrupt and return to the section is added to the
measurement time. The same applies to context switches in a multithreaded
environment. Your software must take appropriate measures to avoid or handle these
situations.

31.6 Performance Counter API

This section describes the application programming interface (API) for the
performance counter core.

For Nios II processor users, Intel provides routines to access the performance counter
core hardware. These functions are specific to the performance counter core and
directly manipulate low level hardware. The performance counter core cannot be
accessed via the HAL API or the ANSI C standard library.

31.6.1 PERF_RESET()

Prototype: PERF_RESET(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_RESET() stops and disables all counters, resetting them to 0.

31.6.2 PERF_START_MEASURING()

Prototype: PERF_START_MEASURING(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_START_MEASURING() starts the global counter, enabling the performance counter core.
The behavior of individual section counters is controlled by PERF_BEGIN() and PERF_END().
PERF_START_MEASURING() defines the start of a global event, and increments the global event
counter. This macro is a single write to the performance counter core.

31.6.3 PERF_STOP_MEASURING()

Prototype: PERF_STOP_MEASURING(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>
continued...   
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Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_STOP_MEASURING() stops the global counter, disabling the performance counter core.
This macro is a single write to the performance counter core.

31.6.4 PERF_BEGIN()

Prototype: PERF_BEGIN(p,n)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.
n—counter section number. Section counter numbers start at 1. Do not refer to counter 0 in this macro.

Returns: —

Description: Macro PERF_BEGIN() starts the timer for a code section, defining the beginning of a section event, and
incrementing the section event counter. If you subsequently use PERF_STOP_MEASURING() and
PERF_START_MEASURING() to disable and re-enable the core, the section counter will resume. This
macro is a single write to the performance counter core.

31.6.5 PERF_END()

Prototype: PERF_END(p,n)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.
n—counter section number. Section counter numbers start at 1. Do not refer to counter 0 in this macro.

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not run, regardless whether
the core is enabled or not. This macro is a single write to the performance counter core.

31.6.6 perf_print_formatted_report()

Prototype: int perf_print_formatted_report (

    void* perf_base,

    alt_u32 clock_freq_hertz,

    int num_sections,

    char* section_name_1, ...

    char* section_name_n)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_performance_counter.h>

Parameters: perf_base—Performance counter core base address.

continued...   
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clock_freq_hertz—Clock frequency.
num_sections—The number of section counters to display. This must not exceed
<instance_name>_HOW_MANY_SECTIONS.
section_name_1 ... section_name_n—The section names to display. The number of section
names varies depending on the number of sections to display.

Returns: 0

Description: Function perf_print_formatted_report() reads the profiling results from the performance counter
core, and prints a formatted summary table.
This function disables all counters. However, for predictable results in a multi-threaded or interrupt
environment, invoke PERF_STOP_MEASURING() when you reach the end of the code to be measured,
rather than relying on perf_print_formatted_report().

31.6.7 perf_get_total_time()

Prototype: alt_u64 perf_get_total_time(void* hw_base_address)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—base address of performance counter core.

Returns: Aggregate global time in clock cycles.

Description: Function perf_get_total_time() reads the raw global time. This is the aggregate time, in clock
cycles, that the performance counter core has been enabled. This function has the side effect of
stopping the counters.

31.6.8 perf_get_section_time()

Prototype: alt_u64 perf_get_section_time

    (void* hw_base_address, int which_section)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.
which_section—counter section number.

Returns: Aggregate section time in clock cycles.

Description: Function perf_get_section_time() reads the raw time for a given section. This is the time, in clock
cycles, that the section has been running. This function has the side effect of stopping the counters.

31.6.9 perf_get_num_starts()

Prototype: alt_u32 perf_get_num_starts

    (void* hw_base_address, int which_section)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>
continued...   
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Parameters: hw_base_address—performance counter core base address.
which_section—counter section number.

Returns: Number of counter events.

Description: Function perf_get_num_starts() retrieves the number of counter events (or times a counter has
been started). If which_section = 0, it retrieves the number of global events (times the performance
counter core has been enabled). This function does not stop the counters.

31.6.10 alt_get_cpu_freq()

Prototype: alt_u32 alt_get_cpu_freq()

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz.

Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.

31.7 Document Revision History

Table 285. Performance Counter Core Revision History

Date Version Changes

June 2015 2015.06.12 Updated "Performance Counter Core Register Map" table.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 Updated perf_print_formatted_report() to remove the restriction
on using small C library.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Updated the parameter description of the function
perf_print_formatted_report().
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32 Vectored Interrupt Controller Core

32.1 Core Overview

The ability to process interrupt events quickly and to handle large numbers of
interrupts can be critical to many embedded systems. The Vectored Interrupt
Controller (VIC) is designed to address these requirements. The VIC can provide
interrupt performance four to five times better than the Nios II processor’s default
internal interrupt controller (IIC). The VIC also allows expansion to a virtually
unlimited number of interrupts, through daisy chaining.

The vectored interrupt controller (VIC) core serves the following main purposes:

• Provides an interface to the interrupts in your system

• Reduces interrupt overhead

• Manages large numbers of interrupts

The VIC offers high-performance, low-latency interrupt handling. The VIC
prioritizes interrupts in hardware and outputs information about the highest-
priority pending interrupt. When external interrupts occur in a system containing a
VIC, the VIC determines the highest priority interrupt, determines the source that
is requesting service, computes the requested handler address (RHA), and
provides information, including the RHA, to the processor.

The VIC core contains the following interfaces:

• Up to 32 interrupt input ports per VIC core

• One Avalon Memory-Mapped (Avalon-MM) slave interface to access the internal
control status registers (CSR)

• One Avalon Streaming (Avalon-ST) interface output interface to pass information
about the selected interrupt

• One optional Avalon-ST interface input interface to receive the Avalon-ST output in
systems with daisy-chained VICs

The Sample System Layout Figure below outlines the basic layout of a system
containing two VIC components.
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Figure 95. Sample System Layout

The VIC core provides the following features:
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To use the VIC, the processor in your system needs to have a matching Avalon-ST
interface to accept the interrupt information, such as the Nios II processor's external
interrupt controller interface.

The characteristics of each interrupt port are configured via the Avalon-MM slave
interface. When you need more than 32 interrupt ports, you can daisy chain multiple
VICs together.

• Separate programmable requested interrupt level (RIL) for each interrupt

• Separate programmable requested register set (RRS) for each interrupt, to tell the
interrupt handler which processor register set to use

• Separate programmable requested non-maskable interrupt (RNMI) flag for each
interrupt, to control whether each interrupt is maskable or non-maskable

• Software-controlled priority arbitration scheme

The VIC core is Platform Designer ready and integrates easily into any Platform
Designer generated system. For the Nios II processor, Intel provides Hardware
Abstraction Layer (HAL) driver routines for the VIC core. Refer to to Intel FPGA
HAL Software Programming Model section for HAL support details.

32.2 Functional Description

Figure 96. VIC Block Diagram
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32.2.1 External Interfaces

The following sections describe the external interfaces for the VIC core.

32.2.1.1 clk

clk is a system clock interface. This interface connects to your system’s main clock
source. The interface’s signals are clk and reset_n.

32.2.1.2 irq_input

irq_input comprises up to 32 single-bit, level-sensitive Avalon interrupt receiver
interfaces. These interfaces connect to interrupt sources. There is one irq signal for
each interface.

32.2.1.3 interrupt_controller_out

interrupt_controller_out is an Avalon-ST output interface, as defined in the
VIC Avalon-ST Interface Fields, configured with a ready latency of 0 cycles. This
interface connects to your processor or to the interrupt_controller_in interface
of another VIC. The interface’s signals are valid and data.

Table 286. interrupt_controller_out and interrupt_controller_in Parameters

Parameter Value

Symbol width 45 bits

Ready latency 0 cycles

32.2.1.4 interrupt_controller_in

interrupt_controller_in is an optional Avalon-ST input interface, as defined in
VIC Avalon-ST Interface Fields, configured with a ready latency of 0 cycles.
Include this interface in the second, third, etc, VIC components of a daisy-chained
multiple VIC system. This interface connects to the interrupt_controller_out
interface of the immediately-preceding VIC in the chain. The interface’s signals are
valid and data.

The interrupt_controller_out and interrupt_controller_in interfaces
have identical Avalon-ST formats so you can daisy chain VICs together in Platform
Designer when you need more than 32 interrupts. interrupt_controller_out
always provides valid data and cannot be back-pressured.

Table 287. VIC Avalon-ST Interface Fields

44 ... ... 13 12-7 6 5-0

RHA(18) RRS #iga1401399661499/
fn6868

RNMI #i
ga14013
9966149
9/
fn6868

RIL#iga1401399661499/fn6868

(18) RHA contains the 32-bit address of the interrupt handling routine.
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32.2.1.5 csr_access

csr_access is a VIC CSR interface consisting of an Avalon-MM slave interface. This
interface connects to the data master of your processor. The interface’s signals are
read, write, address, readdata, and writedata.

Table 288. csr_access Parameters

Parameter Value

Read wait 1 cycle

Write wait 0 cycles

Ready latency 1 cycles

For information about the Avalon-MM slave and Avalon-ST interfaces, refer to the
Avalon Interface Specifications.

Related Links

Avalon Interface Specifications

32.2.2 Functional Blocks

The following main design blocks comprise the VIC core:

• Interrupt request block

• Priority processing block

• Vector generation block

32.2.2.1 Interrupt Request Block

The interrupt request block controls the input interrupts, providing functionality such
as setting interrupt levels, setting the per-interrupt programmable registers, masking
interrupts, and managing software-controlled interrupts. You configure the number of
interrupt input ports when you create the component. Refer to Parameters section
for configuration options.

This block contains the majority of the VIC CSRs. The CSRs are accessed via the
Avalon-MM slave interface.

Optional output from another VIC core can also come into the interrupt request block.
Refer to the Daisy Chaining VIC Cores section for more information.

Each interrupt can be driven either by its associated irq_input signal (connected to
a component with an interrupt source) or by a software trigger controlled by a CSR
(even when there is no interrupt source connected to the irq_input signal).

(19) Refer to The INT_CONFIG Register Map Table for a description of this field.
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Figure 97. Interrupt Request Block
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32.2.2.2 Priority Processing Block

The priority processing block chooses the interrupt with the highest priority. The block
receives information for each interrupt from the interrupt request block and passes
information for the highest priority interrupt to the vector generation block.

The interrupt request with the numerically-largest requested interrupt level field (RIL)
has priority. If multiple interrupts are pending with the same numerically-largest RIL,
the numerically-lowest IRQ index of those interrupts has priority.

The RIL is a programmable interrupt level per port. An RIL value of zero disables the
interrupt. You configure the bit width of the RIL when you create the component.
Refer to the Parameters section for configuration options.

For more information about the RIL, refer to the INT_CONFIG register in the "Register
Map" section of this chapter.

Related Links

Register Maps on page 367

32.2.2.3 Vector Generation Block

The vector generation block receives information for the highest priority interrupt from
the priority processing block. The vector generation block uses the port identifier
passed from the priority processing block along with the vector base address and
bytes per vector programmed in the CSRs during software initialization to compute the
RHA.

Table 289. RHA Calculation

RHA = (port identifier x bytes per vector) + vector base address

The information then passes out of the vector generation block and the VIC using the
Avalon-ST interface. Refer to the VIC Avalon-ST Interface Fields table for details
about the outgoing information. The output from the VIC typically connects to a
processor or another VIC, depending on the design.
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32.2.3 Daisy Chaining VIC Cores

You can create a system with more than 32 interrupts by daisy chaining multiple VIC
cores together. This is done by connecting the interrupt_controller_out
interface of one VIC to the optional interrupt_controller_in interface of another
VIC. For information about enabling the optional input interface, refer to the
Parameters section.

For performance reasons, always directly connect VIC components. Do not include
other components between VICs.

When daisy chain input comes into the VIC, the priority processing block considers the
daisy chain input along with the hardware and software interrupt inputs from the
interrupt request block to determine the highest priority interrupt. If the daisy chain
input has the highest RIL value, then the vector generation block passes the daisy
chain port values unchanged directly out of the VIC.

You can daisy chain VICs with fewer than 32 interrupt ports. The number of daisy
chain connections is only limited to the hardware and software resources. Refer to the
Latency Information section for details about the impact of multiple VICs.

Intel recommends setting the RIL width to the same value in all daisy-chained VIC
components. If your RIL widths are different, wider RILs from upstream VICs are
truncated.

32.2.4 Latency Information

The latency of an interrupt request traveling through the VIC is the sum of the delay
through each of the blocks. Clock delays in the interrupt request block and the vector
generation block are constants. The clock delay in the priority processing block varies
depending on the total number of interrupt ports.

Table 290. Default Interrupt Latencies

Number of Interrupt
Ports

Interrupt Request
Block Delay

Priority Processing
Block Delay

Vector Generation
Block Delay

Total Interrupt
Latency

1 1 cycle 0 cycles 1 cycle 2 cycles

2 – 4 1 cycle 1 cycle 1 cycle 3 cycles

5 – 16 1 cycle 2 cycles 1 cycle 4 cycles

17 – 32 1 cycle 3 cycles 1 cycle 5 cycles

When daisy-chaining multiple VICs, interrupt latency increases as you move through
the daisy chain away from the processor. For best performance, assign interrupts with
the lowest latency requirements to the VIC connected directly to the processor.

32.3 Register Maps

The VIC core CSRs are accessible through the Avalon-MM interface. Software can
configure the core and determine current status by accessing the registers.

Each register has a 32-bit interface that is not byte-enabled. You must access these
registers with a master that is at least 32 bits wide.
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Table 291. Control Status Registers

Offset Register Name Access Reset
Value

Description

0 – 31 INT_CONFIG<n> R/W 0 There are 32 interrupt configuration registers
(INT_CONFIG0 – INT_CONFIG31). Each register contains
fields to configure the behavior of its corresponding
interrupt. If an interrupt input does not exist, reading the
corresponding register always returns zero, and writing is
ignored. Refer to the INT_CONFIG Register Map table
for the INT_CONFIG register map.

32 INT_ENABLE R/W 0 The interrupt enable register. INT_ENABLE holds the
enabled status of each interrupt input. The 32 bits of the
register map to the 32 interrupts available in the VIC core.
For example, bit 5 corresponds to IRQ5. (20)

Interrupt that are not enabled are never considered by the
priority processing block, even when the interrupt input is
asserted. This applies to both maskable and non-maskable
interrupts.

33 INT_ENABLE_SET W 0 The interrupt enable set register. Writing a 1 to a bit in
INT_ENABLE_SET sets the corresponding bit in
INT_ENABLE. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (20)

34 INT_ENABLE_CLR W 0 The interrupt enable clear register. Writing a 1 to a bit in
INT_ENABLE_CLR clears corresponding bit in
INT_ENABLE. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (20)

35 INT_PENDING R 0 The interrupt pending register. INT_PENDING shows the
pending interrupts. Each bit corresponds to one interrupt
input.
If an interrupt does not exist, reading its corresponding
INT_PENDING bit always returns 0, and writing is ignored.
Bits in INT_PENDING are set in the following ways:
An external interrupt is asserted at the VIC interface and
the corresponding INT_ENABLE bit is set.
An SW_INTERRUPT bit is set and the corresponding
INT_ENABLE bit is set.
INT_PENDING bits remain set as long as either condition
applies. Refer to the Interrupt Request Block for
details. (20)

36 INT_RAW_STATUS R 0 The interrupt raw status register. INT_RAW_STATUS shows
the unmasked state of the interrupt inputs.
If an interrupt does not exist, reading the corresponding
INT_RAW_STATUS bit always returns 0, and writing is
ignored.
A set bit indicates an interrupt is asserted at the interface
of the VIC. The interrupt is asserted to the processor only
when the corresponding bit in the interrupt enable register
is set. (20)

37 SW_INTERRUPT R/W 0 The software interrupt register. SW_INTERRUPT drives the
software interrupts. Each interrupt is ORed with its
external hardware interrupt and then enabled with
INT_ENABLE. Refer to the Interrupt Request Block for
details. (20)

38 SW_INTERRUPT_SET W 0 The software interrupt set register. Writing a 1 to a bit in
SW_INTERRUPT_SET sets the corresponding bit in
SW_INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (20)

continued...   
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Offset Register Name Access Reset
Value

Description

39 SW_INTERRUPT_CLR W 0 The software interrupt clear register. Writing a 1 to a bit in
SW_INTERRUPT_CLR clears the corresponding bit in
SW_INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. 

40 VIC_CONFIG R/W 0 The VIC configuration register. VIC_CONFIG allows
software to configure settings that apply to the entire VIC.
Refer to the VIC_CONFIG Register Map table for the
VIC_CONFIG register map.

41 VIC_STATUS R 0 The VIC status register. VIC_STATUS shows the current
status of the VIC. Refer to the VIC_STATUS Register
Map table for the VIC_STATUS register map.

42 VEC_TBL_BASE R/W 0 The vector table base register. VEC_TBL_BASE holds the
base address of the vector table in the processor’s
memory space. Because the table must be aligned on a 4-
byte boundary, bits 1:0 must always be 0.

43 VEC_TBL_ADDR R 0 The vector table address register. VEC_TBL_ADDR
provides the RHA for the IRQ value with the highest
priority pending interrupt. If no interrupt is active, the
value in this register is 0.
If daisy chain input is enabled and is the highest priority
interrupt, the vector table address register contains the
RHA value from the daisy chain input interface.

Table 292. The INT_CONFIG Register Map

Bits Field Name Access Reset
Value

Description

0:5 RIL R/W 0 The requested interrupt level field. RIL contains the interrupt level of
the interrupt requesting service. The processor can use the value in
this field to determine if the interrupt is of higher priority than what
the processor is currently doing.

6 RNMI R/W 0 The requested non-maskable interrupt field. RNMI contains the non-
maskable interrupt mode of the interrupt requesting service. When
0, the interrupt is maskable. When 1, the interrupt is non-maskable.

7:12 RRS R/W 0 The requested register set field. RRS contains the number of the
processor register set that the processor should use for processing
the interrupt. Software must ensure that only register values
supported by the processor are used.

13:31 Reserved

For expanded definitions of the terms in the INT_CONFIG Register Map table, refer
to the Exception Handling chapter of the Nios II Software Developer’s Handbook.

(20) This register contains a 1-bit field for each of the 32 interrupt inputs. When the VIC is
configured for less than 32 interrupts, the corresponding 1-bit field for each unused interrupts
is tied to zero. Reading these locations always returns 0, and writing is ignored. To determine
which interrupts are present, write the value 0xffffffff to the register and then read the
register contents. Any bits that return zero do not have an interrupt present.
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Table 293. The VIC_CONFIG Register Map

Bits Field Name Access Reset
Value

Description

0:2 VEC_SIZE R/W 0 The vector size field. VEC_SIZE specifies the number of bytes in each
vector table entry. VEC_SIZE is encoded as log2 (number of words) - 2.
Namely:
0—4 bytes per vector table entry
1—8 bytes per vector table entry
2—16 bytes per vector table entry
3—32 bytes per vector table entry
4—64 bytes per vector table entry
5—128 bytes per vector table entry
6—256 bytes per vector table entry
7—512 bytes per vector table entry

3 DC R/W 0 The daisy chain field. DC serves the following purposes:
Enables and disables the daisy chain input interface, if present. Write a 1
to enable the daisy chain interface; write a 0 to disable it.
Detects the presence of the daisy chain input interface. To detect, write a
1 to DC and then read DC. A return value of 1 means the daisy chain
interface is present; 0 means the daisy chain interface is not present.

4:31 Reserved

Table 294. The VIC_STATUS Register Map

Bits Field
Name

Access Reset
Value

Description

0:5 HI_PRI_
IRQ

R 0 The highest priority interrupt field. HI_PRI_IRQ contains the IRQ number of the
active interrupt with the highest RIL. When there is no active interrupt (IP is 0),
reading from this field returns 0.
When the daisy chain input is enabled and it is the highest priority interrupt, then
the value read from this field is 32.
Bit 5 always reads back 0 when the daisy chain input is not present.

6:30 Reserved

31 IP R 0 The interrupt pending field. IP indicates when there is an interrupt ready to be
serviced. A 1 indicates an interrupt is pending; a 0 indicates no interrupt is
pending.

Related Links

• Exception Handling

• Priority Processing Block on page 366
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32.4 Parameters

Generation-time parameters control the features present in the hardware.The table
below lists and describes the parameters you can configure.

Table 295. Parameters for VIC Core

Parameter Legal Values Defaul
t

Description

Number of interrupts 1 – 32 8 Specifies the number of irq_input interrupt interfaces.

RIL width 1 – 6 4 Specifies the bit width of the requested interrupt level.

Daisy chain enable True / False False Specifies whether or not to include an input interface for
daisy chaining VICs together.

Override Default
Interrupt Signal
Latency

True/False False Allows manual specification of the interrupt signal latency.

Manual Interrupt Signal
Latency

2 – 5 2 Specifies the number of cycles it takes to process incoming
interrupt signals.

Because multiple VICs can exist in a single system, Platform Designer assigns a
unique interrupt controller identification number to each VIC generated.

Keep the following considerations in mind when connecting the core in your Platform
Designer system:

• The CSR access interface (csr_access) connects to a data master port on your
processor.

• The daisy chain input interface (interrupt_controller_in) is only visible
when the daisy chain enable option is on.

• The interrupt controller output interface (interrupt_controller_out)
connects either to the EIC port of your processor, or to another VIC’s daisy chain
input interface (interrupt_controller_in).

• For Platform Designer interoperability, the VIC core includes an Avalon-MM master
port. This master interface is not used to access memory or peripherals. Its
purpose is to allow peripheral interrupts to connect to the VIC in Platform
Designer. The port must be connected to an Avalon-MM slave to create a valid
Platform Designer system. Then at system generation time, the unused master
port is removed during optimization. The most simple solution is to connect the
master port directly into the CSR access interface (csr_access).

• Platform Designer automatically connects interrupt sources when instantiating
components. When using the provided HAL device driver for the VIC, daisy
chaining multiple VICs in a system requires that each interrupt source is
connected to exactly one VIC. You need to manually remove any extra
connections.
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32.5 to Intel FPGA HAL Software Programming Model

The Intel-provided driver implements a HAL device driver that integrates with a HAL
board support package (BSP) for Nios II systems. HAL users should access the VIC
core via the familiar HAL API.

32.5.1 Software Files

The VIC driver includes the following software files. These files provide low-level
access to the hardware and drivers that integrate with the Nios II HAL BSP. Application
developers should not modify these files.

• altera_vic_regs.h—Defines the core’s register map, providing symbolic
constants to access the low-level hardware.

• altera_vic_funnel.h, altera_vic_irq.h, altera_vic_irq.h,
altera_vic_irq_init.h—Define the prototypes and macros necessary for the
VIC driver.

• altera_vic.c, altera_vic_irq_init.c, altera_vic_isr_register.c,
altera_vic_sw_intr.c, altera_vic_set_level.c,
altera_vic_funnel_non_preemptive_nmi.S,
altera_vic_funnel_non_preemptive.S, and altera_vic_funnel_preemptive.S
—Provide the code that implements the VIC driver.

• altera_<name>_vector_tbl.S—Provides a vector table file for each VIC in the
system. The BSP generator creates these files.

32.5.2 Macros

Macros to access all of the registers are defined in altera_vic_regs.h. For example,
this file includes macros to access the INT_CONFIG register, including the following
macros:

#define IOADDR_ALTERA_VIC_INT_CONFIG(base, irq)
   __IO_CALC_ADDRESS_NATIVE(base, irq)
#define IORD_ALTERA_VIC_INT_CONFIG(base, irq) IORD(base, irq)
#define IOWR_ALTERA_VIC_INT_CONFIG(base, irq, data) IOWR(base, irq,
data)
#define ALTERA_VIC_INT_CONFIG_RIL_MSK (0x3f)
#define ALTERA_VIC_INT_CONFIG_RIL_OFST (0)
#define ALTERA_VIC_INT_CONFIG_RNMI_MSK (0x40)
#define ALTERA_VIC_INT_CONFIG_RNMI_OFST (6)
#define ALTERA_VIC_INT_CONFIG_RRS_MSK (0x1f80)
#define ALTERA_VIC_INT_CONFIG_RRS_OFST (7)

For a complete list of predefined macros and utilities to access the VIC hardware, refer
to the following files:

• <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\inc
\altera_vic_regs.h

• <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc
\altera_vic_funnel.h

• <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc
\altera_vic_irq.h
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32.5.3 Data Structure

Example 10. Device Data Structure

#define ALT_VIC_MAX_INTR_PORTS          (32)

typedef struct alt_vic_dev
{
   void       *base;                   /* Base address of VIC */
   alt_u32    intr_controller_id;      /* Interrupt controller ID */
   alt_u32    num_of_intr_ports;       /* Number of interrupt ports */
   alt_u32    ril_width;               /* RIL width */
   alt_u32    daisy_chain_present;     /* Daisy-chain input present */
   alt_u32    vec_size;                /* Vector size */
   void       *vec_addr;               /* Vector table base address */
   alt_u32    int_config[ALT_VIC_MAX_INTR_PORTS]; /* INT_CONFIG settings
                                                     for each interrupt */

} alt_vic_dev;

32.5.4 VIC API

The VIC device driver provides all the routines required of an to Intel FPGA HAL
external interrupt controller (EIC) device driver. The following functions are required
by the Nios II enhanced HAL interrupt API:

• alt_ic_isr_register ()

• alt_ic_irq_enable()

• alt_ic_irq_disable()

• alt_ic_irq_enabled()

These functions write to the register map to change the setting or read from the
register map to check the status of the VIC component thru a memory-mapped
address.

For detailed descriptions of these functions, refer to the to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

The table below lists the API functions specific to the VIC core and briefly
describes each. Details of each function follow the table.

Table 296. Function List

Name Description

alt_vic_sw_interrupt_set() Sets the corresponding bit in the SW_INTERRUPT register to
enable a given interrupt via software.

alt_vic_sw_interrupt_clear() Clears the corresponding bit in the SW_INTERRUPT register
to disable a given interrupt via software.

alt_vic_sw_interrupt_status() Reads the status of the SW_INTERRUPT register for a given
interrupt.

alt_vic_irq_set_level() Sets the interrupt level for a given interrupt.

Related Links

HAL API Reference
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32.5.4.1 alt_vic_sw_interrupt_set()

Prototype: int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from
ISR:

No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in system.h
irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or more of the following reasons:
The value in ic_id is invalid
The value in irq is invalid

Description: Triggers a single software interrupt

32.5.4.2 alt_vic_sw_interrupt_clear()

Prototype: int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from
ISR:

Yes; if interrupt preemption is enabled, disable global interrupts before calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in system.h
irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or more of the following reasons:
The value in ic_id is invalid
The value in irq is invalid

Description: Clears a single software interrupt

32.5.4.3 alt_vic_sw_interrupt_status()

Prototype: alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from
ISR:

Yes; if interrupt preemption is enabled, disable global interrupts before calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in system.h
irq—the interrupt value as defined in system.h

Returns: Returns non-zero if the corresponding software trigger interrupt is active; otherwise zero for one or
more of the following reasons:
The corresponding software trigger interrupt is disabled
The value in ic_id is invalid
The value in irq is invalid

Description: Checks the software interrupt status for a single interrupt
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32.5.4.4 alt_vic_irq_set_level()

Prototype: int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level)

Thread-safe: No

Available from
ISR:

No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in system.h
irq—the interrupt value as defined in system.h
level—the interrupt level to set

Returns: Returns zero if successful; otherwise non-zero for one or more of the following reasons:
The value in ic_id is invalid
The value in irq is invalid
The value in level is invalid

Description: Sets the interrupt level for a single interrupt.
Intel recommends setting the interrupt level only to zero to disable the interrupt or to the original
value specified in your BSP. Writing any other value could violate the overlapping register set,
priority level, and other design rules. Refer to the VIC BSP Design Rules for to Intel FPGA HAL
Implementation section for more information.

32.5.5 Run-time Initialization

During system initialization, software configures the each VIC instance's control
registers using settings specified in the BSP. The RIL, RRS, and RNMI fields are written
into the interrupt configuration register of each interrupt port in each VIC. All
interrupts are disabled until other software registers a handler using the
alt_ic_isr_register() API.

32.5.6 Board Support Package

The BSP you generate for your Nios II system provides access to the hardware in your
system, including the VIC. The VIC driver includes scripts that the BSP generator calls
to get default interrupt settings and to validate settings during BSP generation. The
Nios II BSP Editor provides a mechanism to edit these settings and generate a BSP for
your Platform Designer design.

The generator produces a vector table file for each VIC in the system, named
altera_<name>_vector_tbl.S. The vector table's source path is added to the BSP
Makefile for compilation along with other VIC driver source code. Its contents are
based on the BSP settings for each VIC's interrupt ports.

The VIC does not support runtime stack checking feature
(hal.enable_runtime_stack_checking) in the BSP setting.

VIC BSP Settings

The VIC driver scripts provide settings to the BSP. The number and naming of these
settings depends on your hardware system's configuration, specifically, the number of
optional shadow register sets in the Nios II processor, the number of VIC controllers in
the system, and the number of interrupt ports each VIC has.

32 Vectored Interrupt Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
375



Certain settings apply to all VIC instances in the system, while others apply to a
specific VIC instance. Settings that apply to each interrupt port apply only to the
specified interrupt port number on that VIC instance.

The remainder of this section lists details and descriptions of each VIC BSP setting.

32.5.6.1 altera_vic_driver.enable_preemption

Identifier: ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED

Type: BooleanDefineOnly

Default value: 1 when all components connected to the VICs support
preemption. 0 when any of the connected components don’t
support preemption.

Destination file: system.h

Description: Enables global interrupt preemption (nesting). When
enabled (set to 1), the macro
ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED is
defined in system.h.
Two types of ISR preemption are available. This setting
must be enabled along with other settings to enable specific
types of preemption.
All preemption settings are dependant on whether the
device drivers in your BSP support interrupt preemption. For
more information about preemption, refer to the Exception
Handling chapter of the Nios II Software Developer’s
Handbook.

Occurs: Once per VIC

32.5.6.2 altera_vic_driver.enable_preemption_into_new_register_set

Identifier: ALTERA_VIC_DRIVER_PREEMPTION_INTO_NEW_REGISTER
_SET_ENABLED

Type: BooleanDefineOnly

Default value: 0

Destination file: system.h

Description: Enables interrupt preemption (nesting) if a higher priority
interrupt is asserted while a lower priority ISR is executing,
and that higher priority interrupt uses a different register
set than the interrupt currently being serviced.
When this setting is enabled (set to 1), the macro
ALTERA_VIC_DRIVER_ISR_PREEMPTION_INTO_NEW_REG
ISTER_SET_ENABLED is defined in system.h and the Nios
II config.ANI (automatic nested interrupts) bit is asserted
during system software initialization.
Use this setting to limit interrupt preemption to higher
priority (RIL) interrupts that use a different register set than
a lower priority interrupt that might be executing. This
setting allows you to support some preemption while
maintaining the lowest possible interrupt response time.
However, this setting does not allow an interrupt at a higher
priority (RIL) to preempt a lower priority interrupt if the
higher priority interrupt is assigned to the same register set
as the lower priority interrupt.

Occurs: Once per VIC
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32.5.6.3 altera_vic_driver.enable_preemption_rs_<n>

Identifier: ALTERA_VIC_DRIVER_ENABLE_PREEMPTION_RS_<n>

Type: Boolean

Default value: 0

Destination file: system.h

Description: Enables interrupt preemption (nesting) if a higher priority
interrupt is asserted while a lower priority ISR is executing,
for all interrupts that target the specified register set
number.
When this setting is enabled (set to 1), the vector table for
each VIC utilizes a special interrupt funnel that manages
preemption. All interrupts on all VIC instances assigned to
that register set then use this funnel.
When a higher priority interrupt preempts a lower priority
interrupt running in the same register set, the interrupt
funnel detects this condition and saves the processor
registers to the stack before calling the higher priority ISR.
The funnel code restores registers and allows the lower
priority ISR to continue running once the higher priority ISR
completes.
Because this funnel contains additional overhead, enabling
this setting increases interrupt response time substantially
for all interrupts that target a register set where this type of
preemption is enabled.
Use this setting if you must guarantee that a higher priority
interrupt preempts a lower priority interrupt, and you
assigned multiple interrupts at different priorities to the
same Nios II shadow register set.

Occurs: Per register set; <n> refers to the register set number.

32.5.6.4 altera_vic_driver.linker_section

Identifier: ALTERA_VIC_DRIVER_LINKER_SECTION

Type: UnquotedString

Default value: .text

Destination file: system.h

Description: Specifies the linker section that each VIC's generated vector
table and each interrupt funnel link to. The memory device
that the specified linker section is mapped to must be
connected to both the Nios II instruction and data masters
in your Platform Designer system.
Use this setting to link performance-critical code into faster
memory. For example, if your system's code is in DRAM and
you have an on-chip or tightly-coupled memory interface for
interrupt handling code, assigning the VIC driver linker
section to a section in that memory improves interrupt
response time.
For more information about linker sections and the Nios II
BSP Editor, refer to the Getting Started with the
Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Occurs: Once per VIC
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32.5.6.5 altera_vic_driver.<name>.vec_size

Identifier: <name>_VEC_SIZE

Type: DecimalNumber

Default value: 16

Destination file: system.h

Description: Specifies the number of bytes in each vector table entry.
Legal values are 16, 32, 64, 128, 256, and 512.
The generated VIC vector tables in the BSP require a
minimum of 16 bytes per entry.
If you intend to write your own vector table or locate your
ISR at the vector address, you can use a larger size.
The vector table's total size is equal to the number of
interrupt ports on the VIC instance multiplied by the vector
table entry size specified in this setting.

Occurs: Per instance; <name> refers to the component name you
assign in Platform Designer.

32.5.6.6 altera_vic_driver.<name>.irq<n>_rrs

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RRS

Type: DecimalNumber

Default value: Refer to the Default Settings for RRS and RIL section.

Destination file: system.h

Description: Specifies the RRS for the interrupt connected to the
corresponding port. Legal values are 1 to the number of
shadow register sets defined for the processor.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and
<n> refers to the IRQ number that you assign in Platform
Designer. Refer to Platform Designer to determine which
IRQ numbers correspond to which components in your
design.

32.5.6.7 altera_vic_driver.<name>.irq<n>_ril

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RIL

Type: DecimalNumber

Default value: Refer to Default Settings for RRS and RIL section.

Destination file: system.h

Description: Specifies the RIL for the interrupt connected to the
corresponding port. Legal values are 0 to 2RIL width -1.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and
<n> refers to the IRQ number that you assign in Platform
Designer. Refer to Platform Designer to determine which
IRQ numbers correspond to which components in your
design.
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32.5.6.8 altera_vic_driver.<name>.irq<n>_rnmi

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RNMI

Type: Boolean

Default value: 0

Destination file: system.h

Description: Specifies whether the interrupt port is a maskable or non-
maskable interrupt (NMI). Legal values are 0 and 1. When
set to 0, the port is maskable. NMIs cannot be disabled in
hardware and there are several restrictions imposed for the
RIL and RRS settings associated with any interrupt with NNI
enabled.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and
<n> refers to the IRQ number that you assign in Platform
Designer. Refer to Platform Designer to determine which
IRQ numbers correspond to which components in your
design.

32.5.6.9 Default Settings for RRS and RIL

The default assignment of RRS and RIL values for each interrupt assumes interrupt
port 0 on the VIC instance attached to your processor is the highest priority interrupt,
with successively lower priorities as the interrupt port number increases. Interrupt
ports on other VIC instances connected through the first VIC's daisy chain interface
are assigned successively lower priorities.

To make effective use of the VIC interrupt setting defaults, assign your highest priority
interrupts to low interrupt port numbers on the VIC closest to the processor. Assign
lower priority interrupts and interrupts that do not need exclusive access to a shadow
register set, to higher interrupt port numbers, or to another daisy-chained VIC.

The following steps describe the algorithm for default RIL assignment:

1. The formula 2RIL width -1 is used to calculate the maximum RIL value.

2. interrupt port 0 on the VIC connected to the processor is assigned the highest
possible RIL.

3. The RIL value is decremented and assigned to each subsequent interrupt port in
succession until the RIL value is 1.

4. The RILs for all remaining interrupt ports on all remaining VICs in the chain are
assigned 1.

The following steps describe the algorithm for default RRS assignment:

5. The highest register set number is assigned to the interrupt with the highest
priority.

6. Each subsequent interrupt is assigned using the same method as the default RIL
assignment.

For example, consider a system with two VICs, VIC0 and VIC1. Each VIC has an
RIL width of 3, and each has 4 interrupt ports. VIC0 is connected to the processor
and VIC1 to the daisy chain interface on VIC0. The processor has 3 shadow
register sets.
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Table 297. Default RRS and RIL Assignment Example

VIC IRQ RRS RIL

0 0 3 7

0 1 2 6

0 2 1 5

0 3 1 4

1 0 1 3

1 1 1 2

1 2 1 1

1 3 1 1

32.5.6.10 VIC BSP Design Rules for to Intel FPGA HAL Implementation

The VIC BSP settings allow for a large number of combinations. This list describes
some basic design rules to follow to ensure a functional BSP:

• Each component’s interrupt interface in your system should only be connected to
one VIC instance per processor.

• The number of shadow register sets for the processor must be greater than zero.

• RRS values must always be greater than zero and less than or equal to the
number of shadow register sets.

• RIL values must always be greater than zero and less than or equal to the
maximum RIL.

• All RILs assigned to a register set must be sequential to avoid a higher priority
interrupt overwriting contents of a register set being used by a lower priority
interrupt.

Note: The Nios II BSP Editor uses the term “overlap condition” to refer to nonsequential RIL
assignments.

• NMIs cannot share register sets with maskable interrupts.

• NMIs must have RILs set to a number equal to or greater than the highest RIL of
any maskable interrupt. When equal, the NMIs must have a lower logical interrupt
port number than any maskable interrupt.

• The vector table and funnel code section's memory device must connect to a data
master and an instruction master.

• NMIs must use funnels with preemption disabled.

• When global preemption is disabled, enabling preemption into a new register set
or per-register-set preemption might produce unpredictable results. Be sure that
all interrupt service routines (ISR) used by the register set support preemption.

• Enabling register set preemption for register sets with peripherals that don't
support preemption might result in unpredictable behavior.
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32.5.6.11 RTOS Considerations

BSPs configured to use a real time operating system (RTOS) might have additional
software linked into the HAL interrupt funnel code using the ALT_OS_INT_ENTER and
ALT_OS_INT_EXIT macros. The exact nature and overhead of this code is RTOS-
specific. Additional code adds to interrupt response and recovery time. Refer to your
RTOS documentation to determine if such code is necessary.

32.6 Implementing the VIC in Platform Designer

This section describes how to incorporate one or more VICs in your Platform Designer
system, and how to support the VIC in software.

32.6.1 Adding VIC Hardware

When you add a VIC to your Platform Designer system, you must perform the
following high-level tasks:

1. Add the EIC interface to your Nios II processor core

2. Optionally add shadow register sets to your Nios II processor core (required if you
intend to use HAL interrupt support)

3. Add and parameterize one or more VIC components

4. Connect interrupt sources to the VIC component(s)

32.6.1.1 Adding the EIC Interface Shadow Register Set

This section describes how to add the EIC interface and shadow register sets to a Nios
II processor core in Platform Designer, through the parameter editor interface.

1. In Platform Designer, double-click the Nios II processor to open the parameter
editor interface.

2. Enable the EIC interface on the Nios II processor by selecting it in the Interrupt
Controller list in the Advanced Features tab, as shown in the figure below.

There are two options for Interrupt Controller: Internal and External. If you
select Internal, the processor is implemented with the internal interrupt
controller. Select External to implement the processor with an EIC interface.

Note: When you implement the EIC interface, you must connect an EIC, such as
the VIC. Failure to connect an EIC results in a Platform Designer error.

3. Select the desired number of shadow register sets. In the Number of shadow
register sets list, select the number of register sets that matches your system
performance goals.

4. Click Finish to exit from the Nios II parameter editor interface . Notice that the
processor shows an unconnected interrupt_controller_in Avalon-ST sink,
as shown in the figure below.
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Figure 98. Configuring the Interrupt Controller and Shadow Register Sets

Figure 99. Nios II Processor with EIC Interface

Shadow register sets reduce the context switching overhead associated with saving
and restoring registers, which can otherwise be significant. If possible, add one
shadow register set for each interrupt that requires high performance.
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32.6.1.2 VIC Instantiation, Parameterization, and Connection

After you add the EIC interface and shadow register set(s) to the Nios II processor,
you must instantiate and parameterize the VIC in your Platform Designer system.

32.6.1.2.1 Instantiation

To instantiate a VIC in your Platform Designer system, execute the following steps:

1. Browse to the IP Catalog window in Platform Designer.

2. Type "vector" in the search box. The interface hides all components except the
VIC, as shown in the figure below.

3. Double click the Vectored Interrupt Controller component to add this component
to your Platform Designer System.

Figure 100. Vectored Interrupt Controller Component
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32.6.1.2.2 Parameterization

When you add the VIC to your system, the Vectored Interrupt Controller interface
appears as shown below.

Figure 101. Vectored Interrupt Controller Parameterization

The VIC interface allows you to specify the following options:

• Number of Interrupts—The number of interrupts your VIC must support.

• Requested Interrupt Level (RIL) Width—The number of bits allocated to
represent the interrupt level for each interrupt.

• DAISY_CHAIN_ENABLE—Allows the VIC to daisy chain to another EIC. Turn on
this option if you want to support multiple VICs in your system.

Note: Study the VIC Daisy-Chain example that accompanies this document for a
usage example.

• Override Default Interrupt Signal Latency—Allows manual specification of the
interrupt signal latency.

• Manual Interrupt Signal Latency—Specifies the number of cycles it takes to
process the incoming interrupt signals.

When you have finished parameterizing the VIC, click Finish to instantiate the
component in your Platform Designer system.
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32.6.1.2.3 VIC Connections

When you have added the VIC to your system, it appears in Platform Designer as
shown below.

Note: If you have enabled daisy chaining, Platform Designer adds an Avalon-ST sink, called
interrupt_controller_in, to the VIC.

Figure 102. VIC Interfaces

After adding a VIC to the Platform Designer system, you must parameterize the VIC
and the EIC interface at the system level. Immediately after you add the VIC, several
error messages appear. Resolve these error messages by executing the following
actions in any order:

• Connect the VIC’s interrupt_controller_out Avalon-ST source to the
interrupt_controller_in Avalon-ST sink on either the Nios II processor or
the next VIC in a daisy-chained configuration.

• Connect the Nios II processor's data_master Avalon-MM ports to the
csr_access Avalon-MM slave port.

• Assign an interrupt number for each interrupt-based component in the system, as
shown below. This step connects each component to an interrupt port on the VIC.

Note: If your system contains more than one EIC connected to a single processor, you must
ensure that each component is connected to an interrupt port on only one EIC.

Figure 103. Assigning Interrupt Numbers
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When you use the HAL VIC driver, the driver makes a default assignment from register
sets to interrupts. The default assignment makes some assumptions about interrupt
priorities, based on how devices are connected to the VIC.

Note: To make effective use of the VIC interrupt setting defaults, assign your highest priority
interrupts to low interrupt port numbers on the VIC closest to the processor.

32.6.2 Software for VIC

If you write an interrupt handler for a system based on the VIC component, you must
use the HAL enhanced interrupt API to register the handler and control its runtime
environment. The enhanced interrupt API provides a number of functions for use with
EICs, including the VIC. This section describes a subset of the functions in the
enhanced interrupt API.

For information about the enhanced interrupt API, refer to “Interrupt Service
Routines” in the Exception Handling chapter of the Nios II Software Developer’s
Handbook.

In particular, this section shows how to code a driver so that it supports both the
enhanced API and the legacy API. This must include testing for the presence of the
enhanced API, and conditionally calling the appropriate function.

Related Links

Interrupt Service Routines

32.6.2.1 alt_ic_isr_register() versus alt_irq_register()

The enhanced API function alt_ic_isr_register() is very similar to the legacy
function alt_irq_register(), with a few important differences. The differences
between these two functions are best understood by examining the code in 
Registering an ISR with Both APIs on page 386. This example registers a timer
interrupt in either the legacy API or the enhanced API, whichever is implemented in
the board support package (BSP). The example is taken directly from the example
code accompanying this document.

Example 11. Registering an ISR with Both APIs

#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
void timer_interrupt_latency_init (void* base, alt_u32 irq_controller_id, 
alt_u32 irq)
{
  /* Register the interrupt */
  alt_ic_isr_register(irq_controller_id, irq, timer_interrupt_latency_irq, 
base, NULL);
  /* Start timer */
  IOWR_ALTERA_AVALON_TIMER_CONTROL(base, ALTERA_AVALON_TIMER_CONTROL_ITO_MSK
  | ALTERA_AVALON_TIMER_CONTROL_START_MSK);
}
#else
void timer_interrupt_latency_init (void* base, alt_u32 irq)
{
  /* Register the interrupt */
  alt_irq_register(irq, base, timer_interrupt_latency_irq);
  /* Start timer */
  IOWR_ALTERA_AVALON_TIMER_CONTROL(base, ALTERA_AVALON_TIMER_CONTROL_ITO_MSK
  | ALTERA_AVALON_TIMER_CONTROL_START_MSK);
}
#endif
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The first line of Registering an ISR with Both APIs on page 386 detects whether the
BSP implements the enhanced interrupt API. If the enhanced API is implemented, the
timer_interrupt_latency_init() function calls the enhanced function. If not,
timer_interrupt_latency_init() reverts to the legacy interrupt API function.

For an explanation of how the Nios II Software Build Tools select which API to
implement in a BSP, refer to “Interrupt Service Routines” in the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

Enhanced Function alt_ic_isr_register() on page 387 shows the function prototype for
alt_ic_isr_register(), which registers an ISR in the enhanced API. The interrupt
controller identifier (for argument ic_id) and the interrupt port number (for
argument irq) are defined in system.h.

Example 12. Enhanced Function alt_ic_isr_register()

extern int alt_ic_isr_register(alt_u32 ic_id,
  alt_u32 irq,
  alt_isr_func isr,
  void *isr_context,
  void *flags);

For comparison, Legacy Function alt_irq_register() on page 387 shows the function
prototype for alt_irq_register(), which registers an ISR in the legacy API.

Example 13. Legacy Function alt_irq_register()

extern int alt_irq_register (alt_u32 id,
  void* context,
  alt_isr_func handler);

The arguments passed into alt_ic_isr_register() are slightly different from
those passed into alt_irq_register(). The table below compares the arguments
to the two functions.

Table 298. Arguments to alt_ic_isr_register() versus alt_irq_register()

alt_ic_isr_register() Argument Purpose alt_irq_register() Argument

alt_u32 ic_id Unique interrupt controller ID as
defined in system.h.

—

alt_u32 irq Interrupt request (IRQ) number as
defined in system.h.

alt_u32 id

alt_isr_func isr Interrupt service routine (ISR) function
pointer

handler

void* isr_context Optional pointer to a component-
specific data structure.

context

void* flags Reserved. Other EIC implementations
might use this argument.

None

There are other significant differences between the legacy interrupt API and the
enhanced interrupt API. Some of these differences impact the ISR body itself. Notably,
the two APIs employ completely different interrupt preemption models. The example
code accompanying this document illustrates many of the differences.
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For further information about the other functions in the HAL interrupt APIs, refer to
the Exception Handling and HAL API Reference chapters of the Nios II Software
Developer’s Handbook.

Related Links

• Exception Handling

• HAL API Reference

32.7 Example Designs

This section provides a brief description of the example designs provided with this
document to demonstrate the usage of the VIC. Additionally, this section provides
instructions for running the software examples on the Cyclone V SoC development kit.

Related Links

VIC_collateral_cv.zip

32.7.1 Example Description

The example designs are provided in a file called VIC_collateral_cv.zip.
VIC_collateral_cv.zip is available on the Documentation: Nios II Processor page
of the Intel FPGA website under Vectored Interrupt Controller Design Files.

Table 299. Example Designs in VIC_collateral_cv.zip

Example Name Folder Name Description

VIC Basic VIC_Example A single VIC

VIC Daisy-Chain VIC_DaisyChain_Example Two daisy-chained VICs

VIC Table-Resident VIC_ISRnVectorTable_Example VIC with ISR located in vector table

IIC VIC_noVIC_Example IIC example, for comparison with the
VIC examples

The top-level folder in VIC_collateral_cv.zip, called VIC_collateral_cv, contains
the following files:

• run_sw.sh—Shell script to run one, several or all of the examples

• README.txt—Describes the .zip file contents
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Figure 104. VIC Basic Example

Figure 105. VIC Daisy-Chain Example

The IIC design is the same as the VIC Basic design, with the VIC and the EIC interface
replaced by the IIC. The VIC Table-Resident design is identical to the VIC Basic design.

In each example, the software uses timers in conjunction with performance counters
to measure the interrupt performance. Each example’s software calculates the
performance and sends the results to stdout.

VIC_collateral_cv.zip includes a script, run_sw.sh, to run one, several, or all of the
example. run_sw.sh downloads the SRAM Object File (.sof) and the Executable and
Linkable Format File (.elf) for each example, and executes the code on the Cyclone V
SoC, for the examples that you specify on the command line.
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Note: run_sw.sh assumes that you have only one JTAG download cable connected to your
host computer. If you have multiple JTAG cables, you must modify run_sw.sh to
specify the cable connected to your Cyclone V SoC development kit.

Related Links

• Documentation: Nios II Processor

• VIC_collateral_cv.zip

32.7.2 Example Usage

Initially, Intel recommends that you run each example design as distributed, to see
the example’s performance on your own hardware. Thereafter, you can modify any of
the examples to investigate the VIC’s performance options, or customize the code for
you application.

Execute the following steps to run each example design:

1. Power up your Cyclone V SoC board.

2. Connect the USB cable.

3. Unzip the VIC_collateral_cv.zip file to a working directory, expanding folder
names.

Note: The path name to your working directory must not contain any spaces.

4. In a Nios II Command Shell, change to the top-level directory,
VIC_collateral_cv.

5. At the command prompt, type the following command:

./run_sw.sh

The script shows a list of options.

6. Run run_sw.sh again, using a command-line option that specifies the example
you would like to run, or to run all of the examples. VIC Example on page 392
shows a sample session.

The run_sw.sh script performs the following steps:

a. Parses the command line argument(s) to determine which example(s) to run

b. Downloads the .sof for the selected example

c. Downloads the .elf for the selected example

d. Starts nios2-terminal to capture the software’s output

32.7.3 Software Description

The software for the various example designs is very similar. For example, the
difference between the software for the VIC Basic example and the software for the
IIC example is the printf() call that generates the output to the terminal.
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All of the software performs the following steps:

1. Configures the timer used for measurement purposes

2. Registers an interrupt service routine (ISR)

3. Sets a global variable to 0xfeedface

4. Starts the performance counter to measure the interrupt time

5. Waits for the ISR to set the global variable to 0xfacefeed

6. Stops the performance counter and computes the interrupt time

The VIC Daisy-Chain example performs the measurement for both VICs connected in
the daisy chain, shown in Figure 105 on page 389.

In all these design examples, the GCC compiler in Nios II SBT tool is set to
optimization level 2. Also, some settings are modified during BSP generation in order
to reduce the code size. All these setting can be found in the create-this-bsp script
included in the design example. Note that the number of clock cycles shows in these
design examples will be differ from this document if the setting is different.

For details about how the VIC Table-Resident example code works, refer to
“Positioning the ISR in the Vector Table”. For details about performance counter usage
in the example software, refer to “Latency Measurement with the Performance
Counter”.
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Example 14. VIC Example

Related Links

• Positioning the ISR in Vector Table on page 392

• Latency Measurement with the Performance Counter on page 394

32.7.4 Positioning the ISR in Vector Table

If have a critical ISR of small size, you can achieve the best performance by
positioning the ISR code directly in the vector table. In this way, you eliminate the
overhead of branching from the vector table through the HAL funnel to your ISR.This
section describes how to modify the VIC Basic example software to create the VIC
Table-Resident example. Use this example to ensure that you understand the steps.
Then you can make the equivalent changes in your custom code.

Positioning an ISR in a vector table is an advanced and error-prone technique, not
directly supported by the HAL. You must exercise great caution to ensure that the ISR
code fits in the vector table entry. If your ISR overflows the vector table entry, it
corrupts other entries in the vector table, and your entire interrupt handling system.
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When locate your ISR in the vector table, it does not need to be registered. Do not call
alt_ic_isr_register(), because it overwrites the contents of the vector table.

When the ISR is in the vector table, the HAL does not provide funnel code. Therefore,
the ISR code must perform any context-switching actions normally handled by the
funnel. Funnel context switching can include some or all of the following actions:

• Saving and restoring registers

• Managing preemption

• Managing the stack pointer

To create the fastest possible ISR, minimize or eliminate the context-switching actions
your ISR must perform by conforming to the following guidelines:

• Write the ISR in assembly language

• Assign a shadow register set for the ISR’s use

• Ensure that the ISR cannot be preempted by another ISR using the same register
set. By default, preemption within a register set is disabled on the Nios II
processor. You can also ensure this condition by giving the ISR exclusive access to
its register set.

The VIC Table-Resident example requires modifying a BSP-generated file,
altera_vic1_vector_tbl.S. If you regenerate the BSP after making these
modifications, the Nios II Software Build Tools regenerate altera_vic1_vector_tbl.S,
and your changes are overwritten.

Related Links

Software Description on page 390

32.7.4.1 Increase the Vector Table Entry Size

To insert the ISR in the vector table, you must increase the size of the vector entries
so that your entire ISR fits in a vector table entry. Use the
altera_vic_driver.<vic_instance>.vec_size BSP setting to adjust the vector
table entry size. On the Nios II Software Build Tools command line, you can
manipulate this setting with the --set command-line option. You can also modify this
setting in the Nios II BSP Editor.

In the VIC Table-Resident example, <vic_instance> is VIC1 and <size> is set to
256 bytes.

32.7.4.2 Do Not Register the ISR

Remove the call to alt_ic_isr_register() for the interrupt that you place in the
vector table. Replace it with an alt_ic_irq_enable() call. You must not call
alt_ic_isr_register(), because it overwrites the contents of the vector table,
destroying the body of your ISR.

32.7.4.3 Insert ISR in Vector Table

In the VIC Table-Resident example included with this document, the ISR code is in a
file called vector.h in the BSP folder.
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To insert this code in the vector table, execute the following steps:

1. Generate the BSP by running the create-this-bsp script.

2. Modify altera_vic1_vector_tbl.S as shown in the example below.

Example 15. Modifications to Intel FPGA_vic1_vector_tbl.S

#include "altera_vic_funnel.h"
#include "vector.h"                  /* ADD THIS LINE MANUALLY */
    .section .text
    .align 2
    .globl VIC1_VECTOR_TABLE
VIC1_VECTOR_TABLE:
    MY_ISR 256                     /* THIS LINE REPLACES THE FIRST VECTOR 
TABLE ENTRY */
    ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
    ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
    ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
    ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256

After completion of these steps, build the software, run it, and observe the reported
interrupt time. This example is about 18 clock cycles faster than the unmodified VIC
Basic example.

Some variation is likely for reasons discussed in “Real-Time Latency Concerns”.

Related Links

Real Time Latency Concerns on page 395

32.7.5 Latency Measurement with the Performance Counter

The Intel Quartus Prime enables you to make fast, accurate performance
measurements. All examples included with this document use the Performance
Counter component to measure interrupt latency.

The examples execute the following steps to measure the total time spent to service
an interrupt:

1. Initialize a global variable, interrupt_watch_value, to a known value,
0xfeedface.

2. Set up a timer interrupt, registering an ISR that sets interrupt_watch_value
to 0xfacefeed.

3. Start the timer.

4. Wait in a while() loop until interrupt_watch_value becomes 0xfacefeed.

5. Immediately after exiting the while() loop, stop the performance counter,
compute clock cycles and display the calculated value on stdout.

You can use similar methods to determine the real-time interrupt latencies in your
system.

Related Links

• Software Description on page 390

• Real Time Latency Concerns on page 395

32 Vectored Interrupt Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
394



32.8 Advanced Topics

This section presents several topics that are useful for advanced interrupt handling.

32.8.1 Real Time Latency Concerns

This section presents an overview of interrupt latency, the elements that combine to
determine interrupt latency, and methods for measuring it. The following elements
comprise interrupt latency:

• Pipeline latency

• Cause latency

• Selection latency

• Funnel latency

• Compiler-related latency

Figure 106. The Elements of Interrupt Latency
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ISR Code
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This section summarizes each element of latency and describes how to measure
latency. The accompanying example designs use the performance counter core to
capture all of the timing measurements. Performance counter core usage is described
in “Latency Measurement with the Performance Counter”.

Related Links

• Insert ISR in Vector Table on page 393
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• Latency Measurement with the Performance Counter on page 394

32.8.1.1 Pipeline Latency

Pipeline latency is defined as the number of clock cycles between an interrupt signal
being asserted and the execution of the first instruction at the exception vector. It can
vary widely, depending on the type of memory the processor is executing from and
the impact of other master ports in your hardware. Theoretically, this time could be
infinite if an ill-behaved master port blocks the processor from accessing memory,
freezing the processor.

32.8.1.2 Cause Latency

Cause latency is the time required for the processor to identify an exception as a
hardware interrupt. With an EIC, such as the VIC, the cause latency is zero because
each hardware interrupt has a dedicated interrupt vector address, separate from the
software exception vector address.

32.8.1.3 Selection Latency

Selection latency is the time required for the system to transfer control to the correct
interrupt vector, depending on which interrupt is triggered. The selection latency with
the VIC component depends on the number of interrupts that it services. The table
below outlines selection latency on a single VIC as a function of the number of
interrupts.

Table 300. The Components of VIC Latency

Total Number of
Interrupts

Interrupt Request
Clock Delay (clocks)

Priority Processing
Clock Delay (clocks)

Vector Generation
Clock Delay (clocks)

Total Interrupt
Latency (clocks)

1 2 0 1 3

2—4 2 1 1 4

5—16 2 2 1 5

17—32 2 3 1 6

32.8.1.4 Funnel Latency

Funnel latency is the time required for the interrupt funnel to switch context. Funnel
latency can include saving and restoring registers, managing preemption, and
managing the stack pointer. Funnel latency depends on the following factors:

• Whether a separate interrupt stack is used

• The number of clock cycles required for load and store instructions

• Whether the interrupt requires switching to a different register set

• Whether the interrupt is preempting another interrupt within the same register set

• Whether preemption within the register set is allowed

Preemption within the register set requires special attention. The HAL VIC driver
provides special funnel code if an interrupt is allowed to preempt another interrupt
assigned to the same register set. In this case, the funnel incurs additional overhead
to save and restore the register contents. When creating the BSP, you can control
preemption within the register set by using the VIC driver’s
altera_vic_driver_enable_preemption_rs_<n> setting.

32 Vectored Interrupt Controller Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
396



Note: With tightly-coupled memory, the Nios II processor can execute a load or store
instruction in 1 clock cycle. With onchip memory, not tightly-coupled, the processor
requires two clock cycles.

Table 301. Single Stack HAL latency

Funnel Type Clock Cycles Required for Load or Store

1 2

Shadow register set, preemption within
the register set disabled

10 13

Shadow register set, preemption within
the register set enabled

42
Same register set (sstatus.SRS=0)

64
Same register set (sstatus.SRS=0)

26
Different register set
(sstatus.SRS=1)

32
Different register set
(sstatus.SRS=1)

Table 302. Separate Interrupt Stack HAL Latency

Funnel Type Clock Cycles Required for Load or Store

1 2

Shadow register set, preemption within
the register set disabled

11
Not preempting another interrupt
(sstatus.IH=0)

14
Not preempting another interrupt
(sstatus.IH=0)

12
Preempting another interrupt
(sstatus.IH=1)

15
Preempting another interrupt
(sstatus.IH=1)

Shadow register set, preemption within
the register set enabled

42
Same register set (sstatus.SRS=0)

64
Same register set (sstatus.SRS=0)

27
• Different register set

(sstatus.SRS=1)

• Not preempting another interrupt
(sstatus.IH=0)

33
• Different register set

(sstatus.SRS=1)

• Not preempting another interrupt
(sstatus.IH=0)

28
• Different register set

(sstatus.SRS=1)

• Preempting another interrupt
(sstatus.IH=1)

34
• Different register set

(sstatus.SRS=1)

• Preempting another interrupt
(sstatus.IH=1)

In the tables above, notice that the lowest latencies occur under the following
conditions:

• A different register set—Shadow register set switch; the ISR runs in a different
register set from the interrupted task, eliminating any need to save or restore
registers.

• Preemption (nesting) within the register set disabled.

Conversely, the highest latencies occur under the following conditions:

• The same register set—No shadow register set switch; the ISR runs in the same
register set as the interrupted task, requiring the funnel code to save and restore
registers.

• Preemption within the register set enabled.
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Of these two important factors, preemption makes the largest difference in latencies.
With preemption disabled, much lower latencies occur regardless of other factors.

32.8.1.5 Compiler-Related Latency

The GNU C compiler creates a prologue and epilogue for many C functions, including
ISRs. The prologue and epilogue are code sequences that take care of housekeeping
tasks, such as saving and restoring context for the C runtime environment. The time
required for the prologue and epilogue is called compiler-related latency.

The C compiler generates a prologue and epilogue as needed. If compiler optimization
is enabled, and the routine is compact, with few local variables, the prologue and
epilogue are usually omitted. You can determine whether a prologue and epilogue are
generated by examining the function’s assembly code.

Compiler latency normally has only a minor impact on overall interrupt servicing
performance. If you are concerned about compiler latency, you have two options:

• Enable compiler optimizations, and simplify your ISR, minimizing local variables.

• Write your ISR in assembly language.

32.8.2 Software Interrupt

Software can trigger any VIC interrupt by writing to the appropriate VIC control and
status register (CSR). Software can trigger the interrupt connected to any hardware
interrupt source, as well as interrupts that are not connected to hardware (software-
only interrupts).

Triggering an interrupt from software is useful for debugging. Software can control
exactly when an interrupt is triggered, and measure the system’s interrupt response.

You can use a software-only interrupt to reprioritize an interrupt. An ISR that responds
to a high-priority hardware interrupt can perform the minimum processing required by
the hardware, and then trigger a software-only interrupt at a lower priority level to
complete the interrupt processing.

The following functions are available for managing software interrupts:

• alt_vic_sw_interrupt_set()

• alt_vic_sw_interrupt_clear()

• alt_vic_sw_interrupt_status()

The implementations of these functions are in bsp/hal/drivers/src/
altera_vic_sw_intr.c after you generate the BSP.

Note: You must define a value for the interrupt number in SOFT_IRQ.

Example 16. Registering a Software Interrupt

alt_ic_isr_register(
  VIC1_INTERRUPT_CONTROLLER_ID,
  SOFT_IRQ,
  soft_interrupt_latency_irq,
  NULL, NULL)
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Example 17. Registering a Timer Interrupt (for Comparison)

alt_ic_isr_register(
  LATENCY_TIMER_IRQ_INTERRUPT_CONTROLLER_ID,
  LATENCY_TIMER_IRQ,
  timer_interrupt_latency_irq,
  LATENCY_TIMER_BASE,
  NULL);

The following code generates a software interrupt:
alt_vic_sw_interrupt_set(VIC1_INTERRUPT_CONTROLLER_ID, SOFT_IRQ);

32.9 Document Revision History

Table 303. Vectored Interrupt Controller Core History

Date Version Changes

May 2016 2016.05.03 Sections Added:
• Implementing VIC in Platform Designer
• Example Designs
• Advanced Topics

Novemeber 2015 2015.11.06 Updated:
• Table 288 on page 365
• Table 290 on page 367
• Table 295 on page 371

December 2013 v13.1.0 Updated the INT_ENABLE register description.

December 2010 v10.1.0 Added a note to to state that the VIC does not support the runtime stack
checking feature in BSP setting.
Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Initial release.
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33 Intel FPGA Avalon Data Pattern Generator and Checker
Cores

33.1 Core Overview

The data generation and monitoring solution for Avalon Streaming (Avalon-ST)
interfaces consists of two components: a data pattern generator core that generates
data patterns and sends it out on an Avalon-ST interface, and a data pattern checker
core that receives the same data and checks it for correctness.

33.2 Data Pattern Generator

This section describes the hardware structure and functionality of the data pattern
generator core.

33.2.1 Functional Description

The data pattern generator core accepts commands to generate and drive data onto a
parallel Avalon-ST source interface.

Figure 107. Data Pattern Generator Core Block Diagram
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You can configure the width of the output data signal to either 32-bit or 40-bit when
instantiating the core.

You can configure this core to output 8-bit or 10-bit wide symbols. By default, the core
generates 4 symbols per beat, which outputs 32-bit or 40-bit wide data to the Avalon-
ST interfaces, respectively. The core’s data format endianness is the most significant
symbol first within a beat and the most significant bit first within a symbol. For
example, when you configure the output data to 32-bit, bit 31 is the first data bit,
followed by bit 30, and so forth. This interface’s endianness may change in future
versions of the core.
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For smaller data widths, you can use the Avalon-ST Data Format Adapter for data
width adaptation. The Avalon-ST Data Format Adapter converts the output from 4
symbols per beat, to 2 or 1 symbol per beat. In this way, the 32-bit output of the core
can be adapted to a 16-bit or 8-bit output and the 40-bit output can be adapted to a
20-bit or 10-bit output.

For more information about the Avalon-ST Data Format Adapter, refer to Platform
Designer User Guide.

Control and Status Interface

The control and status interface is an Avalon-MM slave that allows you to enable or
disable the data generation. This interface also provides the run-time ability to choose
data pattern and inject an error into the data stream.

Output Interface

The output interface is a parallel Avalon-ST interface. You can configure the data width
at the output interface to suit your requirements.

Supported Data Patterns

The following data patterns are supported in the following manner, per beat. When the
core is disabled or in idle state, the default pattern generated on the data output is
0×5555 (for 32-bit data width) or 0×55555 (for 40-bit data width).

Table 304. Supported Data Patterns (Binary Encoding)

Pattern 32-bit 40-bit

PRBS-7 PRBS in parallel PRBS in parallel

PRBS-15 PRBS in parallel PRBS in parallel

PRBS-23 PRBS in parallel PRBS in parallel

PRBS-31 PRBS in parallel PRBS in parallel

High Frequency 10101010 x 4 1010101010 x 4

Low Frequency 11110000 x 4 1111100000 x 4

Note to Table 29–1 :
1. All PRBS patterns are seeded with 11111111.

This core does not support custom data patterns.

Inject Error

Errors can be injected into the data stream by controlling the Inject Error register
bits in the register map (refer to the Inject Error Field Descriptions table). When
the inject error bit is set, one bit of error is produced by inverting the LSB of the next
data beat.

If the inject error bit is set before the core starts generating the data pattern, the
error bit is inserted in the first output cycle.

The Inject Error register bit is automatically reset after the error is introduced in
the pipeline, so that the next error can be injected.
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Preamble Mode

The preamble mode is used for synchronization or word alignment. When the
preamble mode is set, the preamble control register sends the preamble character a
specified number of times before the selected pattern is generated, so the word
alignment block in the receiver can determine the word boundary in the bit stream.

The number of bits (Numbits) determines the number of cycles to output the
preamble character in the preamble mode. You can set the number of bits (Numbits)
in the preamble control register. The default setting is 0 and the maximum value is
255 bits. This mode can only be set when the data pattern generation core is disabled.

33.2.2 Configuration

You can configure your core by setting the following parameters in the Platform
Designer:

• You can configure the input interface of the data pattern generator core using the
following parameter:

ST_DATA_W — The width of the input data signal that the data pattern checker
core supports. Valid values are 32, 40, 50, 64, 66, 80, and 128.

• You can add a bypass interface to register and output the input data through a
bypass port using the following parameter:

Enable Bypass Interface — Select this option to enable this interface. By
default, this interface is disabled.

• The data pattern generator core supports two types of interface: Avalon-ST and
Conduit interface. You can select either of them using the following parameter:

Enable Avalon Interface — Select this option to enable Avalon interface. By
default this interface is enabled. Deselect this option to enable Conduit interface.

• You can enable frequency counter by selecting the following parameter:

Enable Frequency Counter

• The following parameter determines the synchronization depth for clock crossing
from Avalon-MM clock domain to Avalon-ST clock domain:

CROSS_CLK_SYNC_DEPTH — Default value is 2. Valid values are => 2.

33.3 Data Pattern Checker

This section describes the hardware structure and functionality of the data pattern
checker core.

33.3.1 Functional Description

The data pattern checker core accepts data via an Avalon-ST sink interface, checks it
for correctness against the same predetermined pattern used by the data pattern
generator core or other PRBS generators to produce the data, and reports any
exceptions to the control interface.
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Figure 108. Data Pattern Checker
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You can configure the width of the output data signal to either 32-bit or 40-bit when
instantiating the core. The chosen data width is not configurable during run time.

You can configure this core to output 8-bit or 10-bit wide symbols. By default, the core
generates 4 symbols per beat, which outputs 32-bit or 40-bit wide data to the Avalon-
ST interfaces, respectively. The core’s data format endianness is the most significant
symbol first within a beat and the most significant bit first within a symbol. For
example, when you configure the output data to 32-bit, bit 31 is the first data bit,
followed by bit 30, and so forth. This interface’s endianness may change in future
versions of the core.

If you configure the width of the output data to 32-bit, the core inputs four 8-bit wide
symbols per beat. To achieve an 8-bit and 16-bit data width, you can use the Avalon-
ST Data Format Adapter component to convert 4 symbols per beat to 1 or 2 symbols
per beat.

Similarly, if you configure the width of the output data to 40-bit, the core inputs four
10-bit wide symbols per beat. The 10-bit and 20-bit input can be achieved by
switching from 4 symbols per beat to 1 and 2 symbols per beat.

Control and Status Interface

The control and status interface is an Avalon-MM slave that allows you to enable or
disable the pattern checking. This interface also provides the run-time ability to
choose the data pattern and read the status signals.

Input Interface

The input interface is a parallel Avalon-ST interface. You can configure the data width
at this interface to suit your requirements.

Supported Data Patterns

The following data patterns are supported in the following manner, per beat. When the
core is disabled or in idle state, the default pattern generated on the data output is
0×5555 (for 32-bit data width) or 0×55555 (for 40-bit data width).

Table 305. Supported Data Patterns (Binary Encoding)

Pattern 32-bit 40-bit

PRBS-7 PRBS in parallel PRBS in parallel

PRBS-15 PRBS in parallel PRBS in parallel

continued...   
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Pattern 32-bit 40-bit

PRBS-23 PRBS in parallel PRBS in parallel

PRBS-31 PRBS in parallel PRBS in parallel

High Frequency 10101010 x 4 1010101010 x 4

Low Frequency 11110000 x 4 1111100000 x 4

Lock

The lock bit in the status register is asserted when 40 consecutive bits of correct data
are received. The lock bit is deasserted and the receiver loses the lock when 40
consecutive bits of incorrect data are received.

Bit and Error Counters

The core has two 64-bit internal counters to keep track of the number of bits and
number of error bits received. A snapshot has to be executed to update the NumBits
and NumErrors registers with the current value from the internal counters.

A counter reset can be executed to reset both the registers and internal counters. If
the counters are not being reset and the core is enabled, the internal counters
continues the increment base on their current value.

The internal counters only start to increment after a lock has been acquired.

33.3.2 Configuration

You can configure your core by setting the following parameters in the Platform
Designer:

• You can configure the input interface of the data pattern checker core using the
following parameter:

ST_DATA_W — The width of the input data signal that the data pattern checker
core supports. Valid values are 32, 40, 50, 64, 66, 80, and 128.

• You can add a bypass interface to register and output the input data through a
bypass port using the following parameter:

Enable Bypass Interface — Select this option to enable this interface. By
default, this interface is disabled.

• The data pattern checker core supports two types of interface: Avalon-ST and
Conduit interface. You can select either of them using the following parameter:

Enable Avalon Interface — Select this option to enable Avalon interface. By
default this interface is enabled. Deselect this option to enable Conduit interface.

• You can enable frequency counter by selecting the following parameter:

Enable Frequency Counter

• The following parameter determines the synchronization depth for clock crossing
from Avalon-MM clock domain to Avalon-ST clock domain:

CROSS_CLK_SYNC_DEPTH — Default value is 2. Valid values are => 2.
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33.4 Hardware Simulation Considerations

The data pattern generator and checker cores do not provide a simulation testbench
for simulating a stand-alone instance of the component. However, you can use the
standard Platform Designer simulation flow to simulate the component design files
inside an Platform Designer system.

33.5 Software Programming Model

This section describes the software programming model for the data pattern generator
and checker cores.

33.5.1 Register Maps

This section describes the register maps for the data pattern generator and checker
cores.

Data Pattern Generator Control Registers

Table 306. Data Pattern Generator Register Map

Offset Register Name

base + 0 Enable

base + 1 Pattern Select

base + 2 Inject Error

base + 3 Preamble Control

base + 4 Preamble Character (Lower Bits)

base + 5 Preamble Character (Higher Bits)

Table 307. Enable Field Descriptions

Bit(s) Name Access Description

[0] EN RW Setting this bit to 1 enables the data pattern generator core.

[31:1] Reserved

Note to Table 29–4 :
1. When the core is enabled, only the Enable register and the Inject Error register have write access. Write access to

all other registers are ignored.The first valid data is observed from the Avalon-ST Source interface at the fourth cycle
after the Enable bit is set. When the core is disabled, the final output is observed at the next clock cycle.

Table 308. Pattern Select Field Descriptions

Bit(s) Name Access Description

[0] PRBS7 RW Setting this bit to 1 outputs a PRBS 7 pattern with T [7, 6].

[1] PRBS15 RW Setting this bit to 1 outputs a PRBS 15 pattern with T [15, 14].

[2] PRBS23 RW Setting this bit to 1 outputs a PRBS 23 pattern with T [23, 18].

[3] PRBS31 RW Setting this bit to 1 outputs a PRBS 31 pattern with T [31, 28].

[4] HF RW Setting this bit to 1 outputs a constant pattern of 0101010101… bits.

continued...   
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Bit(s) Name Access Description

[5] LF RW Setting this bit to 1 outputs a constant word pattern of 1111100000
for 10-bit words, or 11110000 for 8-bit words.

[31:8] Reserved

Note to Table 29–5 :
1. This register is one-hot encoded where only one of the pattern selector bits should be set to 1. For all other settings,

the behaviors are undefined.

This register allows you to set the error inject bit and insert one bit of error into the
stream.

Table 309. Inject Error Field Descriptions  (Note 1)

Bit(s) Name Access Description

[0] IJ RW Setting this bit to 1 injects error into the stream. If the IJ bit is set to
1 when the core is enabled, the bit resets itself to 0 at the next clock
cycle when the error is injected.

[31:1] Reserved

Note to Table 29–6 :
1. The LSB of the data beat is flipped at the fourth clock cycle after the IJ bit is set (if not being backpressured by the

sink when it is valid). The data beat that is injected with error might not be observed from the source if the core is
disabled within the next two cycles after IJ bit is set to 1.

This register enables preamble and set the number of cycles to output the preamble
character.

Table 310. Preamble Control Field Descriptions

Bit(s) Name Access Description

[0] EP RW Setting this bit to 1, at the start of pattern generation, enables the
preamble character to be sent for Numbits cycles before switching
over to the selected pattern.

[7:1] Reserved

[15:8] Numbits RW The number of bits to repeat the preamble character.

[31:16] Reserved

This register is for the user-defined preamble character (bit 0-31).

Table 311. Preamble Character Low Bits Field Descriptions

Bit(s) Name Access Description

[31:0] Preamble Character
(Lower Bits)

RW Sets bit 31-0 for the preamble character to output.

This register is for the user-defined preamble character (bit 32-39) but is ignored if
the ST_DATA_W value is set to 32.
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Table 312. Preamble Character High Bits Field Descriptions

Bit(s) Name Access Description

[7:0] Preamble Character
(Higher Bits)

RW Sets bit 39-32 for the preamble character. This is ignored
when the ST_DATA_W value is set to 32.

[31:8] Reserved

Data Pattern Checker Control and Status Registers

Table 313. Data Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 Status

base + 1 Pattern Set

base + 2 Counter Control

base + 3 NumBits (Lower Bits)

base + 4 NumBits (Higher Bits)

base + 5 NumErrors (Lower Bits)

base + 6 NumErrors (Higher Bits)

Table 314. Status Field Descriptions

Bit(s) Name Access Description

[0] EN RW Setting this bit to 1 enables pattern checking.

[1] LK R Indicate lock status (writing to this bit has no effect).

[31:2] Reserved

Note to Table 29–11 :
1. When the core is enabled, only the Status register’s EN bit and the counter control register have write access.

Write access to all other registers are ignored.

Table 315. Pattern Select Field Descriptions

Bit(s) Name Access Description

[0] PRBS7 RW Setting this bit to 1 compares the data to a PRBS 7 pattern with T [7, 6].

[1] PRBS15 RW Setting this bit to 1 compares the data to a PRBS 15 pattern with T
[15, 14].

[2] PRBS23 RW Setting this bit to 1 compares the data to a PRBS 23 pattern with T
[23, 18].

[3] PRBS31 RW Setting this bit to 1 compares the data to a PRBS 31 pattern with T
[31, 28].

[4] HF RW Setting this bit to 1 compares the data to a constant pattern of
0101010101… bits.

[5] LF RW Setting this bit to 1 compares the data to a constant word pattern of
1111100000 for 10-bit words, or 11110000 for 8-bit words.

[31:8] Reserved

Note to Table 29–12 :
continued...   
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Bit(s) Name Access Description

1. This register is one-hot encoded where only one of the pattern selector bits should be set to 1. For all other settings,
the behaviors are undefined.

This register snapshots and resets the NumBits, NumErrors, and also the internal
counters.

Table 316. Counter Control Field Descriptions

Bit(s) Name Access Description

[0] SN W Writing this bit to 1 captures the number of bits received and number
of error bits received from the internal counters to the respective
NumBits and NumErrors registers within the same clock cycle.
Writing this bit to 1 after disabling the core will still capture the correct
values from the internal counters to the NumBits and NumErrors
registers.

[17] RST W Writing this bit to 1 resets all internal counters and statistics. This bit
resets itself automatically after the reset process. Re-enabling the core
does not automatically reset the number of bits received and number
of error bits received in the internal counter.

[31:18] Reserved

This register is the lower word of the 64-bit bit counter snapshot value. The register is
reset when the component-reset is asserted or when the RST bit is set to 1.

Table 317. NumBits (Lower Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumBits (Lower
Bits)

R Sets bit 31-0 for the NumBits (number of bits received).

This register is the higher word of the 64-bit bit counter snapshot value. The register
is reset when the component-reset is asserted or when the RST bit is set to 1.

Table 318. NumBits (Higher Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumBits (Higher
Bits)

R Sets bit 63-32 for the NumBits (number of bits received).

This register is the lower word of the 64-bit error counter snapshot value. The register
is reset when the component-reset is asserted or when the RST bit is set to 1.

Table 319. NumErrors (Lower Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumErrors (Lower
Bits)

R Sets bit 31-0 for the NumErrors (number of error bits received).

This register is the higher word of the 64-bit error counter snapshot value. The
register is reset when the component-reset is asserted or when the RST bit is set to 1.
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Table 320. NumErrors (Higher Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumErrors
(Higher Bits)

R Sets bit 63-32 for the NumErrors (number of error bits received).

33.6 Document Revision History

Table 321. Avalon Streaming Data Pattern Generator and Checker Cores Revision History

Date Version Changes

November 2017 2017.11.06 Updated the configuration information for both Data Pattern Generator and
Checker.

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

January 2010 v9.1.1 Initial release.
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34 Avalon-ST Test Pattern Generator and Checker Cores

34.1 Core Overview

The data generation and monitoring solution for Avalon Streaming (Avalon-ST)
consists of two components: a test pattern generator core that generates packetized
or non-packetized data and sends it out on an Avalon-ST data interface, and a test
pattern checker core that receives the same data and checks it for correctness.

The test pattern generator core can insert different error conditions, and the test
pattern checker reports these error conditions to the control interface, each via an
Avalon Memory-Mapped (Avalon-MM) slave.

34.2 Resource Utilization and Performance

Resource utilization and performance for the test pattern generator and checker cores
depend on the data width, number of channels, and whether the streaming data uses
the optional packet protocol.

Table 322. Test Pattern Generator Estimated Resource Utilization and Performance

No. of
Channel

s

Datawid
th (No.
of 8-bit
Symbol
s Per
Beat)

Packet
Support

Stratix II and Stratix II GX Cyclone II Stratix

fMAX
(MHz)

ALM
Count

Memory
(bits)

fMAX
(MHz)

Logic
Cells

Memory
(bits)

fMAX
(MHz)

Logic
Cells

Memory
(bits)

1 4 Yes 284 233 560 206 642 560 202 642 560

1 4 No 293 222 496 207 572 496 245 561 496

32 4 Yes 276 270 912 210 683 912 197 707 912

32 4 No 323 227 848 234 585 848 220 630 848

1 16 Yes 298 361 560 228 867 560 245 896 560

1 16 No 340 330 496 230 810 496 228 845 496

32 16 Yes 295 410 912 209 954 912 224 956 912

32 16 No 269 409 848 219 842 848 204 912 848
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Table 323. Test Pattern Checker Estimated Resource Utilization and Performance

No. of
Channel

s

Datawid
th (No.
of 8-bit
Symbol
s Per
Beat)

Packet
Support

Stratix II and Stratix II GX Cyclone II Stratix

fMAX
(MHz)

ALM
Count

Memory
(bits)

fMAX
(MHz)

Logic
Cells

Memory
(bits)

fMAX
(MHz)

Logic
Cells

Memory
(bits)

1 4 Yes 270 271 96 179 940 0 174 744 96

1 4 No 371 187 32 227 628 0 229 663 32

32 4 Yes 185 396 3616 111 875 3854 105 795 3616

32 4 No 221 363 3520 133 686 3520 133 660 3520

1 16 Yes 253 462 96 185 1433 0 166 1323 96

1 16 No 277 306 32 218 1044 0 192 1004 32

32 16 Yes 182 582 3616 111 1367 3584 110 1298 3616

32 16 No 218 473 3520 129 1143 3520 126 1074 3520

34.3 Test Pattern Generator

This section describes the hardware structure and functionality of the test pattern
generator core.

34.3.1 Functional Description

The test pattern generator core accepts commands to generate data via an Avalon-MM
command interface, and drives the generated data to an Avalon-ST data interface. You
can parameterize most aspects of the Avalon-ST data interface such as the number of
error bits and data signal width, thus allowing you to test components with different
interfaces.

Test Pattern Generator Core Block Diagram
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The data pattern is determined by the following equation: 
Symbol Value = Symbol Position in Packet XOR Data Error Mask. Non-packetized data
is one long stream with no beginning or end.
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The test pattern generator core has a throttle register that is set via the Avalon-MM
control interface. The value of the throttle register is used in conjunction with a
pseudo-random number generator to throttle the data generation rate.

Command Interface

The command interface is a 32-bit Avalon-MM write slave that accepts data generation
commands. It is connected to a 16-element deep FIFO, thus allowing a master
peripheral to drive a number of commands into the test pattern generator core.

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is written to.
When the FIFO is full, the command interface asserts the waitrequest signal. You
can create errors by writing to the register cmd_hi (address 1). The errors are only
cleared when 0 is written to this register or its respective fields. See page the Test
Pattern Generator Command Registers section for more information on the
register fields.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable the data generation as well as set the throttle.

This interface also provides useful generation-time information such as the number of
channels and whether or not packets are supported.

Output Interface

The output interface is an Avalon-ST interface that optionally supports packets. You
can configure the output interface to suit your requirements.

Depending on the incoming stream of commands, the output data may contain
interleaved packet fragments for different channels. To keep track of the current
symbol’s position within each packet, the test pattern generator core maintains an
internal state for each channel.

34.3.2 Configuration

The following sections list the available options in the MegaWizard™ interface.

Functional Parameter

The functional parameter allows you to configure the test pattern generator as a
whole: Throttle Seed—The starting value for the throttle control random number
generator. Intel recommends a value which is unique to each instance of the test
pattern generator and checker cores in a system.
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Output Interface

You can configure the output interface of the test pattern generator core using the
following parameters:

• Number of Channels—The number of channels that the test pattern generator
core supports. Valid values are 1 to 256.

• Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1 to 256. Example—For typical systems that carry 8-bit
bytes, set this parameter to 8.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat. Valid values are 1 to 256.

• Include Packet Support—Indicates whether or not packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Error Signal Width (bits)—The width of the error signal on the output
interface. Valid values are 0 to 31. A value of 0 indicates that the error signal is
not used.

34.4 Test Pattern Checker

This section describes the hardware structure and functionality of the test pattern
checker core.

34.4.1 Functional Description

The test pattern checker core accepts data via an Avalon-ST interface, checks it for
correctness against the same predetermined pattern used by the test pattern
generator core to produce the data, and reports any exceptions to the control
interface. You can parameterize most aspects of the test pattern checker's Avalon-ST
interface such as the number of error bits and the data signal width, thus allowing you
to test components with different interfaces.

The test pattern checker has a throttle register that is set via the Avalon-MM control
interface. The value of the throttle register controls the rate at which data is accepted.

Figure 109. Test Pattern Checker
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The test pattern checker core detects exceptions and reports them to the control
interface via a 32-element deep internal FIFO. Possible exceptions are data error,
missing start-of-packet (SOP), missing end-of-packet (EOP) and signalled error.
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As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

Input Interface

The input interface is an Avalon-ST interface that optionally supports packets. You can
configure the input interface to suit your requirements.

Incoming data may contain interleaved packet fragments. To keep track of the current
symbol’s position, the test pattern checker core maintains an internal state for each
channel.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable data acceptance as well as set the throttle. This interface provides useful
generation-time information such as the number of channels and whether the test
pattern checker supports packets.

The control and status interface also provides information on the exceptions detected
by the test pattern checker core. The interface obtains this information by reading
from the exception FIFO.

34.4.2 Configuration

The following sections list the available options in the MegaWizard™ interface.

Functional Parameter

The functional parameter allows you to configure the test pattern checker as a whole:
Throttle Seed—The starting value for the throttle control random number generator.
Intel recommends a unique value to each instance of the test pattern generator and
checker cores in a system.

Input Parameters

You can configure the input interface of the test pattern checker core using the
following parameters:

• Data Bits Per Symbol—The number of bits per symbol for the input interface.
Valid values are 1 to 256.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat. Valid values are 1 to 32.

• Include Packet Support—Indicates whether or not packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Number of Channels—The number of channels that the test pattern checker core
supports. Valid values are 1 to 256.

• Error Signal Width (bits)—The width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.
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34.5 Hardware Simulation Considerations

The test pattern generator and checker cores do not provide a simulation testbench
for simulating a stand-alone instance of the component. However, you can use the
standard Platform Designer simulation flow to simulate the component design files
inside an Platform Designer system.

34.6 Software Programming Model

This section describes the software programming model for the test pattern generator
and checker cores.

34.6.1 HAL System Library Support

For Nios II processor users, Intel provides HAL system library drivers that enable you
to initialize and access the test pattern generator and checker cores. Intel
recommends you to use the provided drivers to access the cores instead of accessing
the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders
to your software application directory:

• <IP installation directory> /ip /sopc_builder_ip /
altera_avalon_data_source/HAL

• <IP installation directory>/ip/sopc_builder_ip/
altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.

34.6.2 Software Files

The following software files define the low-level access to the hardware, and provide
the routines for the HAL device drivers. Application developers should not modify
these files.

• Software files provided with the test pattern generator core:

— data_source_regs.h—The header file that defines the test pattern
generator's register maps.

— data_source_util.h, data_source_util.c—The header and source
code for the functions and variables required to integrate the driver into the
HAL system library.

• Software files provided with the test pattern checker core:

— data_sink_regs.h—The header file that defines the core’s register maps.

— data_sink_util.h, data_sink_util.c—The header and source code for
the functions and variables required to integrate the driver into the HAL
system library.

34.6.3 Register Maps

This section describes the register maps for the test pattern generator and checker
cores.
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Test Pattern Generator Control and Status Registers

The table below shows the offset for the test pattern generator control and status
registers. Each register is 32 bits wide.

Table 324. Test Pattern Generator Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 325. Status Field Descriptions

Bit(s) Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 326. Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern generator core.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively.
This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.
Setting THROTTLE to 0 stops the test pattern generator core. Setting it
to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

[31:18] Reserved

Table 327. Fill Field Descriptions

Bit(s) Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

Test Pattern Generator Command Registers

The table below shows the offset for the command registers. Each register is 32 bits
wide.
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Table 328. Test Pattern Command Register Map

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

The command is pushed into the FIFO only when the cmd_lo register is written to.

Table 329. cmd_lo Field Descriptions

Bit(s) Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a packet, the
size of all segments must be a multiple of the configured number of
symbols per beat. If this condition is not met, the test pattern generator
core inserts additional symbols to the segment to ensure the condition is
fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than
14 bits wide, the low order bits of this register are used to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is
ignored when packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is
ignored when packets are not supported.

Table 330. cmd_hi Field Descriptions

Bit(s) Name Access Description

[15:0] SIGNALLED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates
a signalled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create
data errors. To stop creating data errors, set this register to 0.

[24] SUPRESS SOP RW Set this bit to 1 to suppress the assertion of the startofpacket
signal when the first segment in a packet is sent.

[25] SUPRESS EOP RW Set this bit to 1 to suppress the assertion of the endofpacket signal
when the last segment in a packet is sent.

Test Pattern Checker Control and Status Registers

The table below shows the offset for the control and status registers. Each register is
32 bits wide.

Table 331. Test Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 Reserved

base + 3

base + 4

continued...   
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Offset Register Name

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 332. Status Field Descriptions

Bit(s) Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 333. Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern checker.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively.
This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.
Setting THROTTLE to 0 stops the test pattern generator core. Setting it
to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

[31:18] Reserved

The table below describes the exception_descriptor register bits. If there is no
exception, reading this register returns 0.

Table 334. exception_descriptor Field Descriptions

Bit(s) Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.
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Table 335. indirect_select Field Descriptions

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT
registers.

[15:8] Reserved

[31:16] INDIRECT ERROR RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

Table 336. indirect_count Field Descriptions

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET COUNT

RO The number of packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL COUNT

RO The number of symbols received on the channel specified by
INDIRECT CHANNEL.

34.7 Test Pattern Generator API

This section describes the application programming interface (API) for the test pattern
generator core. All API functions are currently not available from the interrupt service
routine (ISR).

34.7.1 data_source_reset()

Prototype: void data_source_reset(alt_u32 base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void.

Description: This function resets the test pattern generator core including all internal counters and FIFOs. The control
and status registers are not reset by this function.

34.7.2 data_source_init()

Prototype: int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
command_base—The base address of the command slave.

Returns: 1—Initialization is successful.
0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize the test pattern generator core:
Resets and disables the test pattern generator core.
Sets the maximum throttle.
Clears all inserted errors.
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34.7.3 data_source_get_id()

Prototype: int data_source_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern generator core’s identifier.

Description: This function retrieves the test pattern generator core’s identifier.

34.7.4 data_source_get_supports_packets()

Prototype: int data_source_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.
0—Packets are not supported.

Description: This function checks if the test pattern generator core supports packets.

34.7.5 data_source_get_num_channels()

Prototype: int data_source_get_num_channels(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported by the test pattern generator core.

34.7.6 data_source_get_symbols_per_cycle()

Prototype: int data_source_get_symbols(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols transferred in a beat.

Description: This function retrieves the number of symbols transferred by the test pattern generator core in each
beat.
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34.7.7 data_source_set_enable()

Prototype: void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
value—The ENABLE bit is set to the value of this parameter.

Returns: void.

Description: This function enables or disables the test pattern generator core. When disabled, the test pattern
generator core stops data transmission but continues to accept commands and stores them in the FIFO.

34.7.8 data_source_get_enable()

Prototype: int data_source_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

34.7.9 data_source_set_throttle()

Prototype: void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
value—The throttle value.

Returns: void.

Description: This function sets the throttle value, which can be between 0–256 inclusively. The throttle value, when
divided by 256 yields the rate at which the test pattern generator sends data.

34.7.10 data_source_get_throttle()

Prototype: int data_source_get_throttle(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the current throttle value.
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34.7.11 data_source_is_busy()

Prototype: int data_source_is_busy(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—The test pattern generator core is busy.
0—The core is not busy.

Description: This function checks if the test pattern generator is busy. The test pattern generator core is busy when it
is sending data or has data in the command FIFO to be sent.

34.7.12 data_source_fill_level()

Prototype: int data_source_fill_level(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of commands in the command FIFO.

Description: This function retrieves the number of commands currently in the command FIFO.

34.7.13 data_source_send_data()

Prototype: int data_source_send_data(alt_u32 cmd_base, alt_u16 channel, alt_u16 size,
alt_u32 flags, alt_u16 error, alt_u8 data_error_mask);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: cmd_base—The base address of the command slave.
channel—The channel to send the data on.
size—The data size.
flags—Specifies whether to send or suppress SOP and EOP signals. Valid values are
DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP, DATA_SOURCE_SEND_SUPRESS_SOP and
DATA_SOURCE_SEND_SUPRESS_EOP.
error—The value asserted on the error signal on the output interface.
data_error_mask—This parameter and the data are XORed together to produce erroneous data.

Returns: Always returns 1.

Description: This function sends a data fragment to the specified channel.
If packets are supported, user applications must ensure the following conditions are met:
SOP and EOP are used consistently in each channel.
Except for the last segment in a packet, the length of each segment is a multiple of the data width.
If packets are not supported, user applications must ensure the following conditions are met:
No SOP and EOP indicators in the data.
The length of each segment in a packet is a multiple of the data width.
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34.8 Test Pattern Checker API

This section describes the API for the test pattern checker core. The API functions are
currently not available from the ISR.

34.8.1 data_sink_reset()

Prototype: void data_sink_reset(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void.

Description: This function resets the test pattern checker core including all internal counters.

34.8.2 data_sink_init()

Prototype: int data_source_init(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Initialization is successful.
0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize the test pattern checker core:
Resets and disables the test pattern checker core.
Sets the throttle to the maximum value.

34.8.3 data_sink_get_id()

Prototype: int data_sink_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern checker core’s identifier.

Description: This function retrieves the test pattern checker core’s identifier.

34.8.4 data_sink_get_supports_packets()

Prototype: int data_sink_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.

continued...   
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0—Packets are not supported.

Description: This function checks if the test pattern checker core supports packets.

34.8.5 data_sink_get_num_channels()

Prototype: int data_sink_get_num_channels(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported by the test pattern checker core.

34.8.6 data_sink_get_symbols_per_cycle()

Prototype: int data_sink_get_symbols(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols received in a beat.

Description: This function retrieves the number of symbols received by the test pattern checker core in each beat.

34.8.7 data_sink_set enable()

Prototype: void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
value—The ENABLE bit is set to the value of this parameter.

Returns: void.

Description: This function enables the test pattern checker core.

34.8.8 data_sink_get_enable()

Prototype: int data_sink_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.
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34.8.9 data_sink_set_throttle()

Prototype: void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
value—The throttle value.

Returns: void.

Description: This function sets the throttle value, which can be between 0–256 inclusively. The throttle value, when
divided by 256 yields the rate at which the test pattern checker receives data.

34.8.10 data_sink_get_throttle()

Prototype: int data_sink_get_throttle(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the throttle value.

34.8.11 data_sink_get_packet_count()

Prototype: int data_sink_get_packet_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of packets received on the given channel.

Description: This function retrieves the number of packets received on a given channel.

34.8.12 data_sink_get_symbol_count()

Prototype: int data_sink_get_symbol_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of symbols received on the given channel.

Description: This function retrieves the number of symbols received on a given channel.
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34.8.13 data_sink_get_error_count()

Prototype: int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of errors received on the given channel.

Description: This function retrieves the number of errors received on a given channel.

34.8.14 data_sink_get_exception()

Prototype: int data_sink_get_exception(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The first exception descriptor in the exception FIFO.
0—No exception descriptor found in the exception FIFO.

Description: This function retrieves the first exception descriptor in the exception FIFO and pops it off the FIFO.

34.8.15 data_sink_exception_is_exception()

Prototype: int data_sink_exception_is_exception(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns: 1—Indicates an exception.
0—No exception.

Description: This function checks if a given exception descriptor describes a valid exception.

34.8.16 data_sink_exception_has_data_error()

Prototype: int data_sink_exception_has_data_error(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Data has errors.
0—No errors.

Description: This function checks if a given exception indicates erroneous data.
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34.8.17 data_sink_exception_has_missing_sop()

Prototype: int data_sink_exception_has_missing_sop(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing SOP.
0—Other exception types.

Description: This function checks if a given exception descriptor indicates missing SOP.

34.8.18 data_sink_exception_has_missing_eop()

Prototype: int data_sink_exception_has_missing_eop(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing EOP.
0—Other exception types.

Description: This function checks if a given exception descriptor indicates missing EOP.

34.8.19 data_sink_exception_signalled_error()

Prototype: int data_sink_exception_signalled_error(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The signalled error value.

Description: This function retrieves the value of the signalled error from the exception.

34.8.20 data_sink_exception_channel()

Prototype: int data_sink_exception_channel(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The channel number on which the given exception occurred.

Description: This function retrieves the channel number on which a given exception occurred.
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34.9 Document Revision History

Table 337. Avalon Streaming Test Pattern Generator and Checker Cores Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Updated the section on HAL System Library Support.
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35 SPI Slave/JTAG to Avalon Master Bridge Cores

35.1 Core Overview

The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge cores
provide a connection between host systems and Platform Designer systems via the
respective physical interfaces. Host systems can initiate Avalon Memory-Mapped
(Avalon-MM) transactions by sending encoded streams of bytes via the cores’ physical
interfaces. The cores support reads and writes, but not burst transactions.

35.2 Functional Description

Figure 110. System with a SPI Slave to Avalon Master Bridge Core
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Figure 111. System with a JTAG to Avalon Master Bridge Core

Note: System clock must be at least 2X faster than the JTAG clock.
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The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge cores
accept encoded streams of bytes with transaction data on their respective physical
interfaces and initiate Avalon-MM transactions on their Avalon-MM interfaces. Each
bridge consists of the following cores, which are available as stand-alone components
in Platform Designer:

• Avalon-ST Serial Peripheral Interface and Avalon-ST JTAG Interface—
Accepts incoming data in bits and packs them into bytes.

• Avalon-ST Bytes to Packets Converter—Transforms packets into encoded
stream of bytes, and a likewise encoded stream of bytes into packets.

• Avalon-ST Packets to Transactions Converter—Transforms packets with data
encoded according to a specific protocol into Avalon-MM transactions, and encodes
the responses into packets using the same protocol.

• Avalon-ST Single Clock FIFO—Buffers data from the Avalon-ST JTAG Interface
core. The FIFO is only used in the JTAG to Avalon Master Bridge.

For the bridges to successfully transform the incoming streams of bytes to Avalon-
MM transactions, the streams of bytes must be constructed according to the
protocols used by the cores.

Note: When you connect the JTAG Avalon Master Bridge component to a slave that back-
pressures the master interface on this component, then using the SystemConsole
master_write_from_file command may result in data loss at the master interface
or hung command in SystemConsole.

The following example shows how a bytestream changes as it is transferred through
the different layers in the bridges.

Figure 112. Bits to Avalon-MM Transaction (Write)

00 00 00 047A 7C 00 02 4B 5A 407D 6A FF 03 5F7B4A 4A 4A 4D

00 00 00 04 02 4B 7A 40 4A FF 03 5F

Command Address Data

Writes four bytes of data (4A, FF, 03 and 
5F) to address 0x024B7A40

Packet Layer
Input:    Bytes
Output: Avalon-ST
             Packets

Transaction Layer
Input:    Avalon-ST 
             Packets
Output: Avalon-MM
             Transaction

00 00 00 047A 7C 00 02 4B 5A 407D 4A FF 03 5F7B

LSB MSB

Idle Idle Idle Escape

Dropped

Escape is dropped. 
Next byte is XORed 
with 0x20.

Physical Layer
Input:    Bits
Output: Bytes

SOP Ch 0 Escape

Escape is dropped.
Next byte is XORed 
with 0x20.

EOP

Bytes carried over
the physical interface
after idles and escapes 
have been inserted. 

The packet encoded 
as bytes.

The transaction 
encapsulated as a 
packet.

The Avalon-MM
transaction.

...

When the transaction is complete, the bridges send a response to the host system
using the same protocol.
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Figure 113. Bits to Avalon-MM Transaction (Read)

00 00 00 047A 7C 00 02 4B 5A 407D 6A FF 03 5F7B4A 4A 4A 4D

10 00 00 04 02 4B 7A 40 4A FF 03 5F

Command Address Data

Reads four bytes of data (4A, FF, 03 and 
5F) to address 0x024B7A40

Packet Layer
Input:    Bytes
Output: Avalon-ST
             Packets

Transaction Layer
Input:    Avalon-ST 
             Packets
Output: Avalon-MM
             Transaction

00 00 00 047A 7C 00 02 4B 5A 407D 4A FF 03 5F7B

LSB MSB

Idle Idle Idle Escape

Dropped

Escape is dropped. 
Next byte is XORed 
with 0x20.

Physical Layer
Input:    Bits
Output: Bytes

SOP Ch 0 Escape

Escape is dropped.
Next byte is XORed 
with 0x20.

EOP

Bytes carried over
the physical interface
after idles and escapes 
have been inserted. 

The packet encoded 
as bytes.

The transaction 
encapsulated as a 
packet.

The Avalon-MM
transaction.

...

Related Links

• Avalon-ST Serial Peripheral Interface Core on page 32

• Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores on page 447

• Avalon Packets to Transactions Converter Core on page 436

• Avalon-ST Single-Clock and Dual-Clock FIFO Cores on page 26

35.3 Parameters

For the SPI Slave to Avalon Master Bridge core, the parameter Number of
synchronizer stages: Depth allows you to specify the length of synchronization
register chains. These register chains are used when a metastable event is likely to
occur and the length specified determines the meantime before failure. The register
chain length, however, affects the latency of the core.

For more information on metastability in Intel FPGA devices, refer to AN 42:
Metastability in Intel FPGA devices.

For more information on metastability analysis and synchronization register chains,
refer to the Area and Timing Optimization chapter in volume 2 of the Intel Quartus
Prime Handbook.
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35.4 Document Revision History

Table 338. SPI Slave/JTAG to Avalon Master Bridge Cores Revision History

Date Version Changes

May 2017 2017.05.08 Read operation added: Figure 113 on page 431

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 Added description of a new parameter Number of synchronizer stages:
Depth.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.
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36 System ID Peripheral Core

36.1 Core Overview

The system ID core with Avalon interface is a simple read-only device that provides
Platform Designer systems with a unique identifier. Nios II processor systems use the
system ID core to verify that an executable program was compiled targeting the
actual hardware image configured in the target FPGA. If the expected ID in the
executable does not match the system ID core in the FPGA, it is possible that the
software will not execute correctly.

36.2 Functional Description

The system ID core provides a read-only Avalon Memory-Mapped (Avalon-MM) slave
interface. This interface has two 32-bit registers, as shown in the table below. The
value of each register is determined at system generation time, and always returns a
constant value.

Table 339. System ID Core Register Map

Offset Register Name R/W Description

0 id R A unique 32-bit value that is based on the contents of the
Platform Designer system. The id is similar to a check-sum
value; Platform Designer systems with different
components, different configuration options, or both,
produce different id values.

1 timestamp R A unique 32-bit value that is based on the system
generation time. The value is equivalent to the number of
seconds after Jan. 1, 1970.

There are two basic ways to use the system ID core:

• Verify the system ID before downloading new software to a system. This method
is used by software development tools, such as the Nios II integrated development
environment (IDE). There is little point in downloading a program to a target
hardware system, if the program is compiled for different hardware. Therefore, the
Nios II IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or debug.

• Check system ID after reset. If a program is running on hardware other than the
expected Platform Designer system, the program may fail to function altogether. If
the program does not crash, it can behave erroneously in subtle ways that are
difficult to debug. To protect against this case, a program can compare the
expected system ID against the system ID core, and report an error if they do not
match.
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36.3 Configuration

The id and timestamp register values are determined at system generation time
based on the configuration of the Platform Designer system and the current time. You
can add only one system ID core to an Platform Designer system, and its name is
always sysid.

After system generation, you can examine the values stored in the id and
timestamp registers by opening the MegaWizard™ interface for the System ID core.

Since a unique timestamp value is added to the System ID HDL file each time you
generate the Platform Designer system, the Intel Quartus Prime software recompiles
the entire system if you have added the system as a design partition.

Note: In Intel Quartus Prime Pro Edition, the Platform Designer generation procress needs
an additional TCL script for manual execution to have a unique timestamp value.

36.4 Software Programming Model

This section describes the software programming model for the system ID core. For
Nios II processor users, Intel provides the HAL system library header file that defines
the System ID core registers.

The System ID core comes with the following software files. These files provide low-
level access to the hardware. Application developers should not modify these files.

• alt_avalon_sysid_regs.h—Defines the interface to the hardware registers.

• alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files
defining the hardware access functions.

Intel provides one access routine, alt_avalon_sysid_test(), that returns a
value indicating whether the system ID expected by software matches the system
ID core.

36.4.1 alt_avalon_sysid_test()

Prototype: alt_32 alt_avalon_sysid_test(void)

Thread-safe: No.

Available from
ISR:

Yes.

Include: <altera_avalon_sysid.h>

Description: Returns 0 if the values stored in the hardware registers match the values expected by software.
Returns 1 if the hardware timestamp is greater than the software timestamp. Returns -1 if the
software timestamp is greater than the hardware timestamp.
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36.5 Document Revision History

Table 340. System ID Core Revision History

Date Version Changes

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform Designer

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 Added description to the Instantiating the Core in SOPC Builder section.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.

36 System ID Peripheral Core

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
435



37 Avalon Packets to Transactions Converter Core

37.1 Core Overview

The Avalon Packets to Transactions Converter core receives streaming data from
upstream components and initiates Avalon Memory-Mapped (Avalon-MM) transactions.
The core then returns Avalon-MM transaction responses to the requesting
components.

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples
of how this core is used.

For more information on the bridge, refer to “SPI Slave/JTAG to Avalon Master Bridge
Cores” on page 18–1

37.2 Functional Description

Figure 114. Avalon Packets to Transactions Converter Core
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37.2.1 Interfaces

Table 341. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.
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The Avalon-MM master interface supports read and write transactions. The data width
is set to 32 bits and burst transactions are not supported.

For more information about Avalon-ST interfaces, refer to Avalon Interface
Specifications.

37.2.2 Operation

The Avalon Packets to Transactions Converter core receives streams of packets on its
Avalon-ST sink interface and initiates Avalon-MM transactions. Upon receiving
transaction responses from Avalon-MM slaves, the core transforms the responses to
packets and returns them to the requesting components via its Avalon-ST source
interface. The core does not report Avalon-ST errors.

Packet Formats

The core expects incoming data streams to be in the format shown in the table below.
A response packet is returned for every write transaction. The core also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the core simply returns the data
read.

Table 342. Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction. See Properties of Avalon-ST Interfaces table.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size indicates the
size of the data field. For read transactions, the size indicates the total
number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[3:2] Size Total number of bytes read/written successfully.

Supported Transactions

The table below lists the Avalon-MM transactions supported by the core.

Table 343. Transaction Supported

Transaction
Code

Avalon-MM Transaction Description

0x00 Write, non-incrementing address. Writes data to the given address until the total number of bytes written to
the same word address equals to the value specified in the size field.

0x04 Write, incrementing address. Writes transaction data starting at the given address.

continued...   
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Transaction
Code

Avalon-MM Transaction Description

0x10 Read, non-incrementing address. Reads 32 bits of data from the given address until the total number of
bytes read from the same address equals to the value specified in the
size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size field starting from the
given address.

0x7f No transaction. No transaction is initiated. You can use this transaction type for testing
purposes. Although no transaction is initiated on the Avalon-MM interface,
the core still returns a response packet for this transaction code.

The core can handle only a single transaction at a time. The ready signal on the
core's Avalon-ST sink interface is asserted only when the current transaction is
completely processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST
interface is forwarded directly to the Avalon-MM interface and vice-versa. Asserting
the waitrequest signal on the Avalon-MM interface backpressures the Avalon-ST
sink interface. In the opposite direction, if the Avalon-ST source interface is
backpressured, the read signal on the Avalon-MM interface is not asserted until the
backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a
read could result in data loss. In such cases, the core returns the data that is
successfully received.

A transaction is considered complete when the core receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
field. Whether or not both values agree, the core always uses the EOP to determine
the end of data.

Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction.
If an SOP is received in the middle of a transaction, the core drops the current
transaction without returning a response packet for the transaction, and initiates a
new transaction. This effectively handles packets without an end of packet(EOP).

• Unsupported transaction codes—The core treats unsupported transactions as a no
transaction.

37.3 Document Revision History

Table 344. Avalon Packets to Transactions Converter Core Revision History

Date Version Changes

November 2017 2017.11.06 Corrected the Size field for Response Packet Format in the Table: Packet
Formats.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys.

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.
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Date Version Changes

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.
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38 Avalon ST Multiplexer and Demultiplexer Cores

38.1 Core Overview

The Avalon streaming (Avalon-ST) channel multiplexer core receives data from a
number of input interfaces and multiplexes the data into a single output interface,
using the optional channel signal to indicate which input the output data is from. The
Avalon-ST channel demultiplexer core receives data from a channelized input interface
and drives that data to multiple output interfaces, where the output interface is
selected by the input channel signal.

The multiplexer and demultiplexer can transfer data between interfaces on cores that
support the unidirectional flow of data. The multiplexer and demultiplexer allow you to
create multiplexed or de-multiplexer datapaths without having to write custom HDL
code to perform these functions. The multiplexer includes a round-robin scheduler.
Both cores are Platform Designer-ready and integrate easily into any Platform
Designer-generated system. This chapter contains the following sections:

38.1.1 Resource Usage and Performance

Resource utilization for the cores depends upon the number of input and output
interfaces, the width of the datapath and whether the streaming data uses the
optional packet protocol. For the multiplexer, the parameterization of the scheduler
also effects resource utilization.

Table 345. Multiplexer Estimated Resource Usage and Performance

No. of
Inputs

Data Width Scheduling
Size

(Cycles)

Stratix II and
Stratix II GX

(Approximate LEs)

Cyclone II Stratix

fMAX
(MHz)

ALM
Count

fMAX
(MHz)

Logic Cells fMAX
(MHz)

Logic Cells

2 Y 1 500 31 420 63 422 80

2 Y 2 500 36 417 60 422 58

2 Y 32 451 43 364 68 360 49

8 Y 2 401 150 257 233 228 298

8 Y 32 356 151 219 207 211 123

16 Y 2 262 333 174 533 170 284

16 Y 32 310 337 161 471 157 277

2 N 1 500 23 400 48 422 52
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No. of
Inputs

Data Width Scheduling
Size

(Cycles)

Stratix II and
Stratix II GX

(Approximate LEs)

Cyclone II Stratix

fMAX
(MHz)

ALM
Count

fMAX
(MHz)

Logic Cells fMAX
(MHz)

Logic Cells

2 N 9 500 30 420 52 422 56

11 N 9 292 275 197 397 182 287

16 N 9 262 295 182 441 179 224

The core operating frequency varies with the device, the number of interfaces and the
size of the datapath.

Table 346. Demultiplexer Estimated Resource Usage

No. of Inputs Data Width
(Symbols per

Beat)

Stratix II
(Approximate LEs)

Cyclone II Stratix II GX
(Approximate LEs)

fMAX
(MHz)

ALM Count fMAX
(MHz)

Logic Cells fMAX
(MHz)

Logic Cells

2 1 500 53 400 61 399 44

15 1 349 171 235 296 227 273

16 1 363 171 233 294 231 290

2 2 500 85 392 97 381 71

15 2 352 247 213 450 210 417

16 2 328 280 218 451 222 443

38.2 Multiplexer

This section describes the hardware structure and functionality of the multiplexer
component.

38.2.1 Functional Description

The Avalon-ST multiplexer takes data from a number of input data interfaces, and
multiplexes the data onto a single output interface. The multiplexer includes a simple,
round-robin scheduler that selects from the next input interface that has data. Each
input interface has the same width as the output interface, so that all other input
interfaces are backpressured when the multiplexer is carrying data from a different
input interface.

The multiplexer includes an optional channel signal that enables each input interface
to carry channelized data. When the channel signal is present on input interfaces,
the multiplexer adds log2 (num_input_interfaces) bits to make the output channel
signal, such that the output channel signal has all of the bits of the input channel plus
the bits required to indicate which input interface each cycle of data is from. These
bits are appended to either the most or least significant bits of the output channel
signal as specified in the Platform Designer MegaWizard™ interface.
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Figure 115. Multiplexer
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The internal scheduler considers one input interface at a time, selecting it for transfer.
Once an input interface has been selected, data from that input interface is sent until
one of the following scenarios occurs:

• The specified number of cycles have elapsed.

• The input interface has no more data to send and valid is deasserted on a ready
cycle.

• When packets are supported, endofpacket is asserted.

Input Interfaces

Each input interface is an Avalon-ST data interface that optionally supports packets.
The input interfaces are identical; they have the same symbol and data widths, error
widths, and channel widths.

Output Interface

The output interface carries the multiplexed data stream with data from all of the
inputs. The symbol, data, and error widths are the same as the input interfaces. The
width of the channel signal is the same as the input interfaces, with the addition of
the bits needed to indicate the input each datum was from.

38.2.2 Parameters

The following sections list the available options in the MegaWizard™ interface.
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Functional Parameters

You can configure the following options for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer
supports. Valid values are 2–16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single
channel before changing to the next channel.

• Use Packet Scheduling—When this option is on, the multiplexer only switches
the selected input interface on packet boundaries. Hence, packets on the output
interface are not interleaved.

• Use high bits to indicate source port—When this option is on, the high bits of
the output channel signal are used to indicate the input interface that the data
came from. For example, if the input interfaces have 4-bit channel signals, and the
multiplexer has 4 input interfaces, the output interface has a 6-bit channel signal.
If this parameter is true, bits [5:4] of the output channel signal indicate the input
interface the data is from, and bits [3:0] are the channel bits that were presented
at the input interface.

Output Interface

You can configure the following options for the output interface:

• Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1–32 bits.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1–32.

• Include Packet Support—Indicates whether or not packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Channel Signal Width (bits)—The number of bits used for the channel signal
for input interfaces. A value of 0 indicates that input interfaces do not have
channels. A value of 4 indicates that up to 16 channels share the same input
interface. The input channel can have a width between 0–31 bits. A value of 0
means that the optional channel signal is not used.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not used.

38.3 Demultiplexer

This section describes the hardware structure and functionality of the demultiplexer
component.

38.3.1 Functional Description

That Avalon-ST demultiplexer takes data from a channelized input data interface and
provides that data to multiple output interfaces, where the output interface selected
for a particular transfer is specified by the input channel signal. The data is delivered
to the output interfaces in the same order it was received at the input interface,
regardless of the value of channel, packet, frame, or any other signal. Each of the
output interfaces has the same width as the input interface, so each output interface
is idle when the demultiplexer is driving data to a different output interface. The
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demultiplexer uses log2 (num_output_interfaces) bits of the channel signal to select
the output to which to forward the data; the remainder of the channel bits are
forwarded to the appropriate output interface unchanged.

Figure 116. Demultiplexer
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Input Interface

Each input interface is an Avalon-ST data interface that optionally supports packets.

Output Interfaces

Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that were used to select the output interface.

38.3.2 Parameters

The following sections list the available options in the MegaWizard Interface.

Functional Parameters

You can configure the following options for the demultiplexer as a whole:

• Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2–16.

• High channel bits select output—When this option is on, the high bits of the
input channel signal are used by the de-multiplexing function and the low order
bits are passed to the output. When this option is off, the low order bits are used
and the high order bits are passed through.

The following example illustrates the significance of the location of these signals.
In the Select Bits for Demltiplexer figure below there is one input interface and
two output interfaces. If the low-order bits of the channel signal select the output
interfaces, the even channels goes to channel 0 and the odd channels goes to
channel 1. If the high-order bits of the channel signal select the output interface,
channels 0–7 goes to channel 0 and channels 8–15 goes to channel 1.
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Figure 117. Select Bits for Demultiplexer
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Input Interface

You can configure the following options for the input interface:

• Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1 to 32 bits.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether or not packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Channel Signal Width (bits)—The number of bits used for the channel signal
for output interfaces. A value of 0 means that output interfaces do not use the
optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not unused.

38.4 Hardware Simulation Considerations

The multiplexer and demultiplexer components do not provide a simulation testbench
for simulating a stand-alone instance of the component. However, you can use the
standard Platform Designer simulation flow to simulate the component design files
inside an Platform Designer system.

38.5 Software Programming Model

The multiplexer and demultiplexer components do not have any user-visible control or
status registers. Therefore, software cannot control or configure any aspect of the
multiplexer or de-multiplexer at run-time. The components cannot generate
interrupts.
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38.6 Document Revision History

Table 347. Avalon Streaming Channel Multiplexer and Demultiplexer Cores Revision
History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. Added parameter Include Packet
Support.

May 2008 v8.0.0 No change from previous release.
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39 Avalon-ST Bytes to Packets and Packets to Bytes
Converter Cores

39.1 Core Overview

The Avalon Streaming (Avalon-ST) Bytes to Packets and Packets to Bytes Converter
cores allow an arbitrary stream of packets to be carried over a byte interface, by
encoding packet-related control signals such as startofpacket and endofpacket
into byte sequences.The Avalon-ST Packets to Bytes Converter core encodes packet
control and payload as a stream of bytes. The Avalon-ST Bytes to Packets Converter
core accepts an encoded stream of bytes, and converts it into a stream of packets.

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples
of how the cores are used.

For more information about the bridge, refer to SPI Slave/JTAG to Avalon Master
Bridge Cores

39.2 Functional Description

The following two figures show block diagrams of the Avalon-ST Bytes to Packets and
Packets to Bytes Converter cores.

Figure 118. Avalon-ST Bytes to Packets Converter Core
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Figure 119. Avalon-ST Packets to Bytes Converter Core
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39.2.1 Interfaces

Table 348. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Supported, up to 255 channels.

Error Not used.

Packet Supported only on the Avalon-ST Bytes to Packet Converter core’s source interface and the Avalon-
ST Packet to Bytes Converter core’s sink interface.

For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

39.2.2 Operation—Avalon-ST Bytes to Packets Converter Core

The Avalon-ST Bytes to Packets Converter core receives streams of bytes and
transforms them into packets. When parsing incoming bytestreams, the core decodes
special characters in the following manner, with higher priority operations listed first:

• Escape (0x7d)—The core drops the byte. The next byte is XOR'ed with 0x20.

• Start of packet (0x7a)—The core drops the byte and marks the next payload byte
as the start of a packet by asserting the startofpacket signal on the Avalon-ST
source interface.

• End of packet (0x7b)—The core drops the byte and marks the following byte as
the end of a packet by asserting the endofpacket signal on the Avalon-ST source
interface. For single beat packets, both the startofpacket and endofpacket
signals are asserted in the same clock cycle.

There are two possible cases if the payload is a special character:

— The byte sent after end of packet is ESC'ed and XOR'ed with 0x20.

— The byte sent after end of packet is assumed to be the last byte regardless of
whether or not it is a special character.

Note: The escape character should be used after an end of packet if the next
character requires it.

• Channel number indicator (0x7c)—The core drops the byte and takes the next
non-special character as the channel number.

Figure 120. Examples of Bytestreams
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39.2.3 Operation—Avalon-ST Packets to Bytes Converter Core

The Avalon-ST Packets to Bytes Converter core receives packetized data and
transforms the packets to bytestreams. The core constructs outgoing bytestreams by
inserting appropriate special characters in the following manner and sequence:

• If the startofpacket signal on the core's source interface is asserted, the core
inserts the following special characters:

— Channel number indicator (0x7c).

— Channel number, escaping it if required.

— Start of packet (0x7a).

• If the endofpacket signal on the core's source interface is asserted, the core
inserts an end of packet (0x7b) before the last byte of data.

• If the channel signal on the core’s source interface changes to a new value within
a packet, the core inserts a channel number indicator (0x7c) followed by the new
channel number.

• If a data byte is a special character, the core inserts an escape (0x7d) followed by
the data XORed with 0x20.

39.3 Document Revision History

Table 349. Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores Revision
History

Date Version Changes

November 2015 2015.11.06 Updated "Operation-Avalon-ST Bytes to Packets Converter
Core" section.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Platform
Designer.

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in
SOPC Builder”, and “Referenced Documents” sections.
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Date Version Changes

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.

39 Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
450



40 Avalon-ST Delay Core

40.1 Core Overview

The Avalon Streaming (Avalon-ST) Delay core provides a solution to delay Avalon-ST
transactions by a constant number of clock cycles. This core supports up to 16 clock
cycle delays.

The Avalon-ST Delay core is Platform Designer-ready and integrates easily into any
Platform Designer-generated system.

40.2 Functional Description

Figure 121. Avalon-ST Delay Core
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The Avalon-ST Delay core adds a delay between the input and output interfaces. The
core accepts all transactions presented on the input interface and reproduces them on
the output interface N cycles later without changing the transaction.

The input interface delays the input signals by a constant (N) number of clock cycles
to the corresponding output signals of the Avalon-ST output interface. The Number
Of Delay Clocks parameter defines the constant (N) number, which must be between
0 and 16. The change of the In_Valid signal is reflected on the Out_Valid signal
exactly N cycles later.

40.2.1 Reset

The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal.
When the core asserts the reset signal, the output signals are held at 0. After the
reset signal is deasserted, the output signals are held at 0 for N clock cycles. The
delayed values of the input signals are then reflected at the output signals after N
clock cycles.
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40.2.2 Interfaces

The Avalon-ST Delay core supports packetized and non-packetized interfaces with
optional channel and error signals. This core does not support backpressure.

Table 350. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

40.3 Parameters

Table 351. Configurable Parameters

Parameter Legal Values Default
Value

Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the core introduces, in clock cycles.
The value of 0 is supported for some cases of
parameterized systems in which no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and output
interfaces. For example, byte-oriented interfaces have 8-
bit symbols.

Use Packets 0 or 1 0 Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket,
endofpacket, and empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data interfaces.
This parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data interface
can support. This parameter is disabled when Use
Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is set to 0.

Use packets 0 or 1 Setting this parameter to 1 enables packet support on the
Avalon-ST data interfaces.

Use fill level 0 or 1 Setting this parameter to 1 enables the Avalon-MM status
interface.
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Parameter Legal Values Default
Value

Description

Number of almost-full thresholds 0 to 2 The number of almost-full thresholds to enable. Setting
this parameter to 1 enables Use almost-full threshold
1. Setting it to 2 enables both Use almost-full threshold
1 and Use almost-full threshold 2.

Number of almost-empty
thresholds

0 to 2 The number of almost-empty thresholds to enable. Setting
this parameter to 1 enables Use almost-empty
threshold 1. Setting it to 2 enables both Use almost-
empty threshold 1 and Use almost-empty threshold
2.

Section available threshold 0 to 2
Address
Width

Specify the amount of data to be delivered to the output
interface. This parameter applies only when packet
support is disabled.

Packet buffer mode 0 or 1 Setting this parameter to 1 causes the core to deliver only
full packets to the output interface. This parameter applies
only when Use packets is set to 1.

Drop on error 0 or 1 Setting this parameter to 1 causes the core to drop
packets at the Avalon-ST data sink interface if the error
signal on that interface is asserted. Otherwise, the core
accepts the packet and sends it out on the Avalon-ST data
source interface with the same error. This parameter
applies only when packet buffer mode is enabled.

Use almost-full threshold 1 0 or 1 This threshold indicates that the FIFO is almost full. It is
enabled when the parameter Number of almost-full
threshold is set to 1 or 2.

Use almost-full threshold 2 0 or 1 This threshold is an initial indication that the FIFO is
getting full. It is enabled when the parameter Number of
almost-full threshold is set to 2.

Use almost-empty threshold 1 0 or 1 This threshold indicates that the FIFO is almost empty. It
is enabled when the parameter Number of almost-
empty threshold is set to 1 or 2.

Use almost-empty threshold 2 0 or 1 This threshold is an initial indication that the FIFO is
getting empty. It is enabled when the parameter Number
of almost-empty threshold is set to 2.

40.4 Document Revision History

Table 352. Avalon-ST Delay Core Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

January 2010 v9.1.1 Initial release.
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41 Avalon-ST Round Robin Scheduler Core

41.1 Core Overview

Avalon Streaming (Avalon-ST) components in Platform Designer provide a channel
interface to stream data from multiple channels into a single component. In a multi-
channel Avalon-ST component that stores data, the component can store data either
in the sequence that it comes in (FIFO) or in segments according to the channel.
When data is stored in segments according to channels, a scheduler is needed to
schedule the read operations from that particular component. The most basic of the
schedulers is the Avalon-ST Round Robin Scheduler core.

The Avalon-ST Round Robin Scheduler core is Platform Designer-ready and can
integrate easily into any Platform Designer-generated systems.

41.2 Performance and Resource Utilization

This section lists the resource utilization and performance data for various Intel FPGA
device families. The estimates are obtained by compiling the core using the Intel
Quartus Prime software.

The table below shows the resource utilization and performance data for a Stratix II
GX device (EP2SGX130GF1508I4).

Table 353. Resource Utilization and Performance Data for Stratix II GX Devices

Number of Channels ALUTs Logic Registers Memory M512/M4K/
M-RAM

fMAX
(MHz)

4 7 7 0/0/0 > 125

12 25 17 0/0/0 > 125

24 62 30 0/0/0 > 125

The table below shows the resource utilization and performance data for a Stratix III
device (EP3SL340F1760C3). The performance of the IP Core in Stratix IV devices is
similar to Stratix III devices.

Table 354. Resource Utilization and Performance Data for Stratix III Devices

Number of Channels ALUTs Logic Registers Memory M9K/
M144K/ MLAB

fMAX
(MHz)

4 7 7 0/0/0 > 125

12 25 17 0/0/0 > 125

24 67 30 0/0/0 > 125
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The table below shows the resource utilization and performance data for a Cyclone III
device (EP3C120F780I7).

Table 355. Resource Utilization and Performance Data for Cyclone III Devices

Number of Channels Total Logic Elements Total Registers Memory M9K fMAX
(MHz)

4 12 7 0 > 125

12 32 17 0 > 125

24 71 30 0 > 125

41.3 Functional Description

The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-
channel Avalon-ST component that buffers data by channels. It reads the almost-full
threshold values from the multiple channels in the multi-channel component and
issues the read request to the Avalon-ST source according to a round-robin scheduling
algorithm.

Figure 122. Avalon-ST Round Robin Scheduler Block Diagram
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41.3.1 Interfaces

The following interfaces are available in the Avalon-ST Round Robin Scheduler core:

• Almost-Full Status Interface

• Request Interface

Almost-Full Status Interface

The Almost-Full Status interface is an Avalon-ST sink interface.

Table 356. Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1
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Feature Property

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

The interface collects the almost-full status from the sink components for all the
channels in the sequence provided.

Request Interface

The Request Interface is an Avalon Memory-Mapped (MM) Write Master interface. This
interface requests data from a specific channel. The Avalon-ST Round Robin Scheduler
core cycles through all of the channels it supports and schedules data to be read.

41.3.2 Operations

If a particular channel is almost full, the Avalon-ST Round Robin Scheduler will not
schedule data to be read from that channel in the source component.

The Avalon-ST Round Robin Scheduler only requests 1 beat of data from a channel at
each transaction. To request 1 beat of data from channel n, the scheduler writes the
value 1 to address (4 ×n). For example, if the scheduler is requesting data from
channel 3, the scheduler writes 1 to address 0xC.

At every clock cycle, the Avalon-ST Round Robin Scheduler requests data from the
next channel. Therefore, if the Avalon-ST Round Robin Scheduler starts requesting
from channel 1, at the next clock cycle, it requests from channel 2. The Avalon-ST
Round Robin Scheduler does not request data from a particular channel if the almost-
full status for the channel is asserted. In this case, one clock cycle is used without a
request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component
is able to service the request transaction. The component asserts waitrequest when
it cannot accept new requests.

Table 357. Ports for the Avalon-ST Round Robin Scheduler

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address used to signal the channel the request is
for.

request_write Out Write enable signal.

request_writedata Out The amount of data requested from the particular channel.
This value is always fixed at 1.

request_waitrequest In Wait request signal, used to pause the scheduler when the
slave cannot accept a new request.
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Signal Direction Description

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is almost
full.

41.4 Parameters

Table 358. Parameters for Avalon-ST Round Robin Scheduler Component

Parameters Values Description

Number of channels 2–32 Specifies the number of channels the Avalon-ST Round Robin Scheduler
supports.

Use almost-full status 0–1 Specifies whether the almost-full interface is used. If the interface is not used,
the core always requests data from the next channel at the next clock cycle.

41.5 Document Revision History

Table 359. Avalon-ST Round Robin Scheduler Core Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 v9.1.0 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.
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42 Avalon-ST Splitter Core

42.1 Core Overview

The Avalon Streaming (Avalon-ST) Splitter core allows you to replicate transactions
from an Avalon-ST source interface to multiple Avalon-ST sink interfaces. This core
can support from 1 to 16 outputs.

The Avalon-ST Splitter core is Platform Designer-ready and integrates easily into any
Platform Designer-generated system.

42.2 Functional Description

Figure 123. Avalon-ST Splitter Core
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The Avalon-ST Splitter core copies all input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This include all signals except for the ready signal.

The Avalon-ST Splitter core includes a clock signal used by Platform Designer to
determine the Avalon-ST interface and clock domain that this core resides in. Because
the clock signal is unused internally, no latency is introduced when using this core.

42.2.1 Backpressure

The Avalon-ST Splitter core handles backpressure by AND-ing the ready signals from
all of the output interfaces and sending the result to the input interface. This way, if
any output interface deasserts the ready signal, the input interface receives the
deasserted ready signal as well. This mechanism ensures that backpressure on any of
the output interfaces is propagated to the input interface.
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When the Qualify Valid Out parameter is set to 1, the Out_Valid signals on all
other output interfaces are gated when backpressure is applied from one output
interface. In this case, when any output interface deasserts its ready signal, the
Out_Valid signals on the rest of the output interfaces are deasserted as well.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a non-
gated Out_Valid signal when backpressure is applied. In this case, when an output
interface deasserts its ready signal, the Out_Valid signals on the rest of the output
interfaces are not affected.

Because the logic is purely combinational, the core introduces no latency.

42.2.2 Interfaces

The Avalon-ST Splitter core supports packetized and non-packetized interfaces with
optional channel and error signals. The core propagates backpressure from any output
interface to the input interface.

Table 360. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

42.3 Parameters

Table 361. Configurable Parameters

Parameter Legal Values Default
Value

Description

Number Of Outputs 1 to 16 2 The number of output interfaces. The value of 1 is supported for
some cases of parameterized systems in which no duplicated
output is required.

Qualify Valid Out 0 or 1 1 Determines whether the Out_Valid signal is gated or non-gated
when backpressure is applied.

Data Width 1–512 8 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and output
interfaces. For example, byte-oriented interfaces have 8-bit
symbols.

Use Packets 0 or 1 0 Indicates whether or not packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

continued...   
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Parameter Legal Values Default
Value

Description

Channel Width 0-8 1 The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data interface can
support. This parameter is disabled when Use Channel is set to
0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output interfaces. A value of
0 indicates that the error signal is not used. This parameter is
disabled when Use Error is set to 0.

Use packets 0 or 1 Setting this parameter to 1 enables packet support on the
Avalon-ST data interfaces.

Use fill level 0 or 1 Setting this parameter to 1 enables the Avalon-MM status
interface.

Number of almost-full
thresholds

0 to 2 The number of almost-full thresholds to enable. Setting this
parameter to 1 enables Use almost-full threshold 1. Setting it
to 2 enables both Use almost-full threshold 1 and Use
almost-full threshold 2.

Number of almost-empty
thresholds

0 to 2 The number of almost-empty thresholds to enable. Setting this
parameter to 1 enables Use almost-empty threshold 1. Setting
it to 2 enables both Use almost-empty threshold 1 and Use
almost-empty threshold 2.

Section available
threshold

0 to 2
Address
Width

Specify the amount of data to be delivered to the output
interface. This parameter applies only when packet support is
disabled.

Packet buffer mode 0 or 1 Setting this parameter to 1 causes the core to deliver only full
packets to the output interface. This parameter applies only when
Use packets is set to 1.

Drop on error 0 or 1 Setting this parameter to 1 causes the core to drop packets at the
Avalon-ST data sink interface if the error signal on that interface
is asserted. Otherwise, the core accepts the packet and sends it
out on the Avalon-ST data source interface with the same error.
This parameter applies only when packet buffer mode is enabled.

Use almost-full threshold
1

0 or 1 This threshold indicates that the FIFO is almost full. It is enabled
when the parameter Number of almost-full threshold is set to
1 or 2.

Use almost-full threshold
2

0 or 1 This threshold is an initial indication that the FIFO is getting full.
It is enabled when the parameter Number of almost-full
threshold is set to 2.

Use almost-empty
threshold 1

0 or 1 This threshold indicates that the FIFO is almost empty. It is
enabled when the parameter Number of almost-empty
threshold is set to 1 or 2.

Use almost-empty
threshold 2

0 or 1 This threshold is an initial indication that the FIFO is getting
empty. It is enabled when the parameter Number of almost-
empty threshold is set to 2.
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42.4 Document Revision History

Table 362. Avalon-ST Splitter Core Revision History

Date Version Changes

December 2010 v10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”,
and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

January 2010 v9.1.1 Initial release.
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43 Avalon-MM DDR Memory Half Rate Bridge Core

43.1 Core Overview

The Avalon Memory-Mapped (MM) Half-Rate Bridge core is a special-purpose clock-
crossing bridge intended for CPUs that require low-latency access to high-speed
memory. The core works under the assumption that the memory clock is twice the
frequency of the CPU clock, with zero phase shift between the two. It allows high
speed memory to run at full rate while providing low-latency interface for a CPU to
access it by using lightweight logic that translates one single-word request into a two-
word burst to a memory running at twice the clock frequency and half the width. For
systems with a 8-bit DDR interface, using the Half-Rate DDR Bridge in conjunction
with a DDR SDRAM high-performance memory controller creates a datapath that
matches the throughput of the DDR memory to the CPU. This half-rate bridge provides
the same functionality as the clock crossing bridge, but with significantly lower latency
—2 cycles instead of 12.

The core’s master interface is designed to be connected to a high-speed DDR SDRAM
controller and thus only supports bursting. Because the slave interface is designed to
receive single-word requests, it does not support bursting. The figure below shows a
system including an 8-bit DDR memory, a high-performance memory controller, the
Half-Rate DDR Bridge, and a CPU.

Figure 124. Platform Designer Memory System Using a DDR Memory Half-Rate Bridge
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The Avalon-MM DDR Memory Half-Rate Bridge core has the following features and
requirements:

• Platform Designer ready with Timing Analyzer Timing Analyzer constraints

• Requires master clock and slave clock to be synchronous

• Handles different bus sizes between CPU and memory

• Requires the frequency of the master clock to be double of the slave clock

• Has configurable address and data port widths in the master interface
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43.2 Resource Usage and Performance

This section lists the resource usage and performance data for supported devices
when operating the Half-Rate Bridge with a full-rate DDR SDRAM high-performance
memory controller.

Using the Half-Rate Bridge with a full-rate DDR SDRAM high-performance memory
controller results an average of 48% performance improvement over a system using a
half-rate DDR SDRAM high-performance memory controller in a series of embedded
applications. The performance improvement is 62.2% based on the Dhrystone
benchmark, and 87.7% when accessing memory bypassing the cache. For memory
systems that use the Half-Rate bridge in conjunction with DDR2/3 High Performance
Controller, the data throughput is the same on the Half-Rate Bridge master and slave
interfaces. The decrease in memory latency on the Half-Rate Bridge slave interface
results in higher performance for the processor.

The table below shows the resource usage for Stratix II and Stratix III devices in the
Intel Quartus Prime software with a data width of 16 bits, an address span of 24 bits.

Table 363. Resource Utilization Data for Stratix II and Stratix III Devices

Device Family Combinational ALUTs ALMs Logic Register Embedded Memory

Stratix II 61 134 153 0

Stratix III 60 138 153 0

Table 364. Resource Utilization Data for Cyclone III Devices

Logic Cells (LC) Logic Register LUT-only LC Register-only LC LUT/Register LCs Embedded
Memory

233 152 33 84 121 0

43.3 Functional Description

The Avalon MM DDR Memory Half Rate Bridge works under two constraints:

• Its memory-side master has a clock frequency that is synchronous (zero phase
shift) to, and twice the frequency of, the CPU-side slave.

• Its memory-side master is half as wide as its CPU-side slave.

The bridge leverages these two constraints to provide lightweight, low-latency clock-
crossing logic between the CPU and the memory. These constraints are in contrast
with the Avalon-MM Clock-Crossing Bridge, which makes no assumptions about the
frequency/phase relationship between the master- and slave-side clocks, and provides
higher-latency logic that fully-synchronizes all signals that pass between the two
domains.

The Avalon MM DDR Memory Half-Rate Bridge has an Avalon-MM slave interface that
accepts single-word (non-bursting) transactions. When the slave interface receives a
transaction from a connected CPU, it issues a two-word burst transaction on its master
interface (which is half as wide and twice as fast). If the transaction is a read request,
the bridge's master interface waits for the slave’s two-word response, concatenates
the two words, and presents them as a single readdata word on its slave interface to
the CPU. Every time the data width is halved, the clock rate is doubled. As a result,
the data throughput is matched between the CPU and the off-chip memory device.
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The figure below shows the latency in the Avalon-MM Half-Rate Bridge core. The core
adds two cycles of latency in the slave clock domain for read transactions. The first
cycle is introduced during the command phase of the transaction and the second
cycle, during the response phase of the transaction. The total latency is 2+<x>,
where <x> refers to the latency of the DDR SDRAM high-performance memory
controller. Using the clock crossing bridge for this same purpose would impose
approximately 12 cycles of additional latency.

Figure 125. Avalon-MM DDR Memory Half-Rate Bridge Block Diagram
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43.4 Instantiating the Core in Platform Designer

Use the IP Catalog in Platform Designer to find the Avalon-MM DDR Memory Half-Rate
Bridge core. In the parameter editor window you can specify the core’s configuration.
The table below describes the parameters that can be configured for the Avalon-MM
Half-Rate Bridge core.

Table 365. Configurable Parameters for Avalon-MM DDR Memory Half-Rate Bridge Core

Parameters Allowed Values Default Value Description

Data Width 8, 16, 32, 64, 128, 256, 512 16 The width of the data signal
in the master interface.

Address Width 1-32 24 The width of the address
signal in the master
interface.

The table below describes the parameters that are derived based on the Data Width
and Address Width settings for the Avalon-MM DDR Memory Half-Rate Bridge core.

Table 366. Derived Parameters for Avalon-MM DDR Memory Half-Rate Bridge Core

Parameter Default Value Description

Master interface’s Byte Enable Width 2 The width of the byte-enable signal in
the master interface.

Slave interface’s Data Width 32 The width of the data signal in the
slave interface.

Slave interface’s Address Width 22 The width of the address signal in the
slave interface.

Slave interface’s Byte Enable Width 4 The width of the byte-enable signal in
the slave interface.
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43.5 Example System

The following example provides high-level steps showing how the Avalon-MM DDR
Memory Half-Rate Bridge core is connected in a system. This example assumes that
you are familiar with the Platform Designer GUI.

1. Add a Nios II Processor to the system.

2. Add a DDR2 SDRAM High-Performance Controller and configure it to full-rate
mode.

3. Add Avalon-MM DDR Memory Half-Rate Bridge to the system.

4. Configure the parameters of the Avalon-MM DDR Memory Half-Rate Bridge based
on the memory controller. For example, for a 32 MByte DDR memory controller in
full rate mode with 8 DQ pins (see Figure 124 on page 462), the parameters
should be set as the following:

• Data Width = 16

For a memory controller that has 8 DQ pins, its local interface width is 16 bits.
The local interface width and the data width must be the same, therefore data
width is set to 16 bits.

• Address Width = 25

For a memory capacity of 32 MBytes, the byte address is 25 bits. Because the
master address of the bridge is byte aligned, the address width is set to 25 bits.

5. Connect altmemddr_auxhalf to the slave clock interface (clk_s1) of the Half-
Rate Bridge.

6. Connect altmemddr_sysclk to the master clock interface (clk_m1) of the Half-
Rate Bridge.

7. Remove all connections between Nios II processor and the memory controller, if
there are any.

8. Connect the master interface (m1) of the Avalon-MM DDR Memory Half-Rate
Bridge to the memory controller slave interface.

9. Connect the slave interface (s1) of the Avalon-MM DDR Memory Half-Rate Bridge
to the Nios II processor data_master interface.

10. Connect altmemddr_auxhalf to Nios II processor clock interface.

43.6 Document Revision History

Table 367. Avalon-MM DDR Memory Half Rate Bridge Core Revision History

Date Version Changes

June 2016 2016.06.17 Initial release
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44 Intel FPGA GMII to RGMII Converter Core

44.1 Core Overview

The Intel FPGA GMII to RGMII converter core is an available soft IP for the FPGA
fabric. It converts the GMII/MII interface of the Ethernet controller in the hard
processor system (HPS) to an RGMII interface. By default, the HPS Ethernet controller
can either provide an RGMII interface on the HPS pins or an GMII/MII interface by
using the FPGA loaner I/O. However, the GMII to RGMII converter offers a solution for
designers who want to interface to an external RGMII PHY through the FPGA without
adding external interface logic.

44.2 Feature Description

44.2.1 Supported Features

The following is the list of features supported by the core.

• Perform GMII/MII interface to RGMII interface conversion

• Supports tri-speed (10/100/1000 Mbps) operation

• Supports dynamic speed switching

• Supports generation time option to enable pipeline registers for the transmit and
receive paths

44.2.2 Unsupported Features

The Intel FPGA GMII to RGMII converter core does not support an internal delay of the
TX/RX clock. However, the FPGA may still provide the 2 ns delay for center-aligned
data transmission/reception through the FPGA I/O buffer. This delay feature is
commonly supported by the PHY device or handled at the board level.

For more information on Intel Quartus Prime delay settings, refer to your device's
Golden Hardware Reference Design (GHRD) user manual on RocketBoards.org.

Related Links

GSRD User Manual
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44.3 Parameters

44.3.1 IP Configuration Parameter

These parameters are configurable by user during generation time.

Parameter Legal
Values

Default
Values

Description

Transmit Pipeline Register
Depth

0 - 10 0 TX_PIPELINE_DEPTH - Number of register stages
between HPS transmit output and FPGA I/O buffer.

Receive Pipeline Register
Depth

0 - 10 0 RX_PIPELINE_DEPTH - Number of register stages
between FPGA I/O buffer and HPS receive input.

44.4 Intel FPGA GMII to RGMII Converter Core Interface

Figure 126. Intel FPGA GMII to RGMII Converter Core Top Level Interfaces
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Note: For more information and a detailed list of the interfaces denoted on this figure, refer
to the corresponding interface name in the following tables.

Table 368. peri_clock

Interface Name: peri_clock
Description: Peripheral clock interface.

Signal Width Direction Description

clk 1 Input Peripheral clock source.

Table 369. peri_reset

Interface Name: peri_reset
Description: Peripheral reset interface.

Signal Width Direction Description

rst_n 1 Input Active low peripheral
asynchronous reset source.
This signal is asynchronously
asserted and synchronously
de-asserted. The
synchronous de-assertion
must be provided external to
this core.
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Table 370. pll_25m_clock

Interface Name: pll_25m_clock
Description: 25MHz clock from FPGA PLL output.

Signal Width Direction Description

pll_25m_clk 1 Input 25MHz input clock from
FPGA PLL.

Table 371. pll_2_5m_clock

Interface Name: pll_2_5m_clock
Description: 2.5MHz clock from FPGA PLL output.

Signal Width Direction Description

pll_2_5m_clk 1 Input 2.5MHz input clock from
FPGA PLL.

Table 372. hps_gmii

Interface Name: hps_gmii
Description: GMII/MII interface facing Intel FPGA HPS Emac Interface Splitter Core

Signal Width Direction Description

mac_tx_clk_o 1 Input GMII/MII transmit clock
from HPS

mac_tx_clk_i 1 Output GMII/MII transmit clock to
HPS

mac_rx_clk 1 Output GMII/MII receive clock to
HPS

mac_rst_tx_n 1 Input GMII/MII transmit reset
source from HPS. Active low
reset

mac_rst_rx_n 1 Input GMII/MII receive reset
source from HPS. Active low
reset

mac_txd 8 Input GMII/MII transmit data from
HPS

mac_txen 1 Input GMII/MII transmit enable
from HPS

mac_txer 1 Input GMII/MII transmit error
from HPS

mac_rxdv 1 Output GMII/MII receive data valid
to HPS

mac_rxer 1 Output GMII/MII receive data error
to HPS

mac_rxd 8 Output GMII/MII receive data to
HPS

mac_col 1 Output GMII/MII collision detect to
HPS

mac_crs 1 Output GMII/MII carrier sense to
HPS

mac_speed 2 Input MAC speed indication from
HPS
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Table 373. phy_rgmii

Interface Name: phy_rgmii
Description: RGMII interface facing PHY device.

Signal Width Direction Description

rgmii_tx_clk 1 Output RGMII transmit clock to PHY

rgmii_rx_clk 1 In RGMII receive clock from
PHY

rgmii_txd 4 Output RGMII transmit data to PHY

rgmii_tx_ctl 1 Output RGMII transmit control to
PHY

rgmii_rxd 4 Input RGMII receive data from
PHY

rgmii_rx_ctl 1 Input RGMII receive control from
PHY

44.5 Functional Description

Figure 127. System Level Block Diagram
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Intel FPGA GMII to RGMII connverter core is not directly connected to the HPS
Ethernet controller. Instead, an intermediate component called the Intel FPGA HPS
EMAC interface splitter core is used as a bridge between HPS core and Intel FPGA
GMII to RGMII converter core. This intermediate component is responsible for splitting
the emac conduit interface output from HPS core into several interfaces according to
their function (hps_gmii, ptp, mdio interfaces). It is also responsible for managing
differences between the EMAC interfaces in the Arria V, Cyclone V, and Intel Arria 10
HPS.

Related Links

Intel FPGA HPS EMAC Interface Splitter Core on page 471
For more information about Intel FPGA HPS EMAC Interface Splitter Core.

44.5.1 Architecture

44.5.1.1 Data Path
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Figure 128. Data Path Diagram
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For transmit path, the GMII/MII data goes through the transmit pipeline register stage
before going into the SDR/DDR converter block. The pipeline logic can be optionally
enabled or disabled by the user during generation time.

For receive path, the GMII/MII data right after the SDR/DDR converter block goes
directly to EMAC controller through Intel FPGA HPS EMAC interface splitter core; and
also goes through the receive pipeline register stage. Similarly, this pipeline logic can
be optionally enabled or disabled by the user during generation time.

The SDR/DDR converter block manages single data rate to double data rate
conversion and vice-versa. Intel FPGA DDIO component (ALTDDIO_IN and
ALTDDIO_OUT) is used to perform this task. This block also decodes collision and
carrier sense condition through In-Band status detection.

44.5.1.2 Clock Scheme

44.5.1.2.1 Transmit

All transmit sequential logic in the Intel FPGA GMII to RGMII Converter core is clocked
by the HPS PLL during GMII mode (1000 Mbps) and by the FPGA PLL during MII mode
(10/100 Mbps).
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Figure 129. Transmit Clocking Scheme
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44.5.1.2.2 Receive

All receive sequential logic in the Intel FPGA GMII to RGMII converter core is clocked
by rgmii_rx_clk (always driven from the PHY device).

44.6 Intel FPGA HPS EMAC Interface Splitter Core

The Intel FPGA HPS EMAC interface splitter core is used as a bridge between the HPS
core and the Intel FPGA GMII to RGMII converter core. It is responsible for splitting
the EMAC conduit interface output from the HPS core into several interfaces according
to their function (hps_gmii, ptp, mdio interfaces). It is also responsible for managing
the differences between the EMAC interfaces in the Arria V, Cyclone V, and Intel Arria
10 HPS. Besides the Avalon-MM slave interface logic, there is no additional real logic in
this core, except it takes the input signals from HPS, regroups them according to their
function, and outputs them.

Related Links

Feature Description on page 478

44.6.1 Parameter

44.6.1.1 System Info Parameter

The following parameter is not configurable by the user:

Parameter Description

DEVICE_FAMILY Name: DEVICE_FAMILY
Indicates the device family type of the current selected device in Platform Designer.
This parameter is used to determine the version of HPS (Arria V, Cyclone V, and Intel Arria 10
HPS) supported by the current selected device. This information is used to enable or disable
certain logic; or to terminate certain interfaces of this core.

44.6.1.2 HDL Parameter
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This parameter is not configurable by the user through Platform Designer. Its value is
automatically derived by the component based on the DEVICE_FAMILY parameter.

Parameter Description

Enable mac speed CSR Name: MAC_SPEED_CSR_ENABLE
0: The MAC Speed CSR block is not instantiated in this core. In this case, the Mac Speed
information is directly coming from the HPS EMAC interface.
1: The MAC Speed CSR block is instantiated in this core. In this case, the Mac Speed
information is determined by the control register defined in this core.

44.6.1.3 Intel FPGA HPS EMAC Interface Splitter Core Interface

Figure 130. Intel FPGA HPS EMAC Interface Splitter Core Top Level Interfaces
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Table 374. peri_clock

Interface Name: peri_clock
Description: Peripheral clock interface. This interface exists only when the selected device is Arria V or Cyclone

V.

Signal Width Direction Description

clk 1 Input Peripheral clock source used
for Avalon-MM slave
interface.

Table 375. peri_reset

Interface Name: peri_reset
Description: Peripheral reset interface. This interface exists only when the selected device is Arria V or Cyclone

V.

Signal Width Direction Description

rst_n 1 Input Active low peripheral
asynchronous reset source
used to reset the Avalon-MM
slave interface.
This signal is asynchronously
asserted and synchronously
de-asserted. The
synchronous de-assertion
must be provided external to
this core.
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Table 376. avalon_slave

Interface Name: avalon_slave
Description: This interface exists only when the selected device is Arria V or Cyclone V.

Signal Width Direction Description

addr 1 Input Avalon-MM address bus. (21)

read 1 Input Avalon-MM read control

write 1 Input Avalon-MM write control

writedata 32 Input Avalon-MM write data bus

readdata 32 Output Avalon-MM read data bus

Table 377. emac

Interface Name: emac
Description: Conduit interface connected to HPS EMAC interface

Signal Width Direction Description

phy_txd_o 8 Input GMII/MII transmit data from
HPS

phy_txen_o 1 Input GMII/MII transmit enable
from HPS

phy_txer_o 1 Input GMII/MII transmit error
from HPS

phy_rxdv_i 1 Output GMII/MII receive data valid
to HPS

phy_rxer_i 1 Output GMII/MII receive data error
to HPS

phy_rxd_i 8 Output GMII/MII receive data to
HPS

phy_col_i 1 Output GMII/MII collision detect to
HPS

phy_crs_i 1 Output GMII/MII carrier sense to
HPS

phy_mac_speed_o 2 Input MAC speed indication from
HPS (22)

mdo_o 1 Input MDIO data output from HPS

mdo_o_e 1 Input MDIO data output enable
from HPS

mdi_i 1 Output MDIO data input to HPS

ptp_pps_o 1 Input PTP pulse per second from
HPS

ptp_aux_ts_trig_i 1 Output PTP auxiliary timestamp
trigger to HPS

(21) The address bus is in the unit of Word addressing.

(22) These bits exist only when the selected device is Intel Arria 10.
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Table 378. emac_gtx_clk

Interface Name: emac_gtx_clk
Description: GMII/MII transmit clock from HPS

Signal Width Direction Description

phy_txclk_o 1 Input GMII/MII transmit clock
from HPS

Table 379. emac_tx_reset

Interface Name: emac_tx_reset
Description: GMII/MII transmit reset source synchronous to phy_txclk_o from HPS

Signal Width Direction Description

rst_tx_n_o 1 Input GMII/MII transmit reset
source from HPS. Active low
reset.

Table 380. emac_rx_reset

Interface Name: emac_rx_reset
Description: GMII/MII receive reset source synchronous to clk_rx_i from HPS

Signal Width Direction Description

rst_rx_n_o 1 Input GMII/MII receive reset
source from HPS. Active low
reset.

Table 381. emac_rx_clk_in

Interface Name: emac_rx_clk_in
Description: GMII/MII receive clock to HPS

Signal Width Direction Description

clk_rx_i 1 Output GMII/MII receive clock to
HPS

Table 382. emac_tx_clk_in

Interface Name: emac_tx_clk_in
Description: GMII/MII transmit clock to HPS

Signal Width Direction Description

clk_tx_i 1 Output GMII/MII transmit clock to
HPS

Table 383. hps_gmii

Interface Name: hps_gmii
Description: GMII/MII interface facing FPGA fabric

Signal Width Direction Description

mac_tx_clk_o 1 Output GMII/MII transmit clock
from HPS

mac_tx_clk_i 1 Input GMII/MII transmit clock to
HPS

continued...   
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Interface Name: hps_gmii
Description: GMII/MII interface facing FPGA fabric

Signal Width Direction Description

mac_rx_clk 1 Input GMII/MII receive clock to
HPS

mac_rst_tx_n 1 Output GMII/MII transmit reset
source from HPS

mac_rst_rx_n 1 Output GMII/MII receive reset
source from HPS

mac_txd 8 Output GMII/MII transmit data from
HPS

mac_txen 1 Output GMII/MII transmit enable
from HPS

mac_txer 1 Output GMII/MII transmit error
from HPS

mac_rxdv 1 Input GMII/MII receive data valid
to HPS

mac_rxer 1 Input GMII/MII receive data error
to HPS

mac_rxd 8 Input GMII/MII receive data to
HPS

mac_col 1 Input GMII/MII collision detect to
HPS

mac_crs 1 Input GMII/MII carrier sense to
HPS

mac_speed 2 Output MAC speed indication from
HPS

Table 384. ptp

Interface Name: ptp
Description: PTP interface facing FPGA fabric

Signal Width Direction Description

ptp_pps_out 1 Output PTP pulse per second to
FPGA soft logic

ptp_aux_ts_trig_in 1 Input PTP auxiliary timestamp
trigger from FPGA soft logic

ptp_tstmp_data_out 1 Output PTP timestamp data from
HPS to FPGA soft logic

ptp_tstmp_en_out 1 Output PTP timestamp enable from
HPS to FPGA soft logic
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Table 385. mdio

Interface Name: mdio
Description: MDIO interface facing PHY device

Signal Width Direction Description

mdo_out 1 Output MDIO data output to FPGA
bidirectional I/O buffer

mdo_out_en 1 Output MDIO data output enable to
FPGA bidirectional I/O buffer

mdi_in 1 Input MDIO data input from FPGA
bidirectional I/O buffer

Related Links

Avalon-MM Slave Interface on page 477
For more information about the Avalon-MM Slave interface, refer to the Avalon-MM
Slave interface section.

44.6.1.4 Register

44.6.1.4.1 Register Memory Map

This register block exists only when the selected device is Arria V or Cyclone V. Each
address offset represents one word of memory address space.

Name Address Offset Width Attribute Description

CTRL 0x0 2 R/W Control Register

44.6.1.4.2 Register Description

Control Register

Table 386. Control Registers

Bit Fields Access Default Value Description

31:2 Reserved N/A 0x0 Reserved

1:0 MAC_SPEED R/W 0x0 This field indicates the
speed mode used by
HPS EMAC and PHY
device. HPS software
is required to write to
this field once it has
set the MAC Speed in
the HPS EMAC register
space after the auto-
negotiation process.
0x0-0x1: 1000 Mbps
(GMII)
0x2: 10 Mbps (MII)
0x3: 100 Mbps (MII)
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44.6.1.5 Avalon-MM Slave Interface

The following information describes the characteristics of the Avalon slave interface of
the HPS EMAC interface splitter core:

• Burst width: 32-bit

• Burst support: No

• Fixed read and write wait time: 0 cycle

• Fixed read latency: 1 cycle

• Lock support: No

44.7 Document Revision History

Table 387. Altera GMII to RGMII Converter Core Revision History

Date Version Changes

November 2015 2015.11.06 • Updated "Altera HPS EMAC Interface Splitter Core Interface" PTP table
• Updated "Unsupported Features"

July 2014 2014.07.24 Initial release
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45 Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS
Bridge Core

45.1 Core Overview

The Intel Hard Processor System (HPS) provides an Ethernet MAC function through its
EMAC peripherals. The EMAC peripherals provide an RGMII or RMII interface to the
HPS dedicated I/O or an GMII/MII interface to the FPGA I/O. For Serial Gigabit Media
Independent Interface (SGMII), it is supported through the GMII/MII interface to
FPGA fabric.

The Intel HPS GMII to TSE 1000BASE-X/SGMII PCS bridge is a soft IP core in FPGA
fabric which provides logic to hook up the HPS’s EMAC GMII/MII to the Altera
1000BASE-X/SGMII PCS core for SGMII interface realization.

45.2 Feature Description

Figure 131. Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Block
Diagram
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The Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS bridge is not directly
connected to the HPS component. Instead an intermediate component called the
Altera HPS EMAC Interface Splitter core is used as a bridge between HPS core and
Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS bridge. The intermediate
component is responsible to split the EMAC conduit interface output from HPS core
into several interfaces according to their function (hps_gmii, PTP, MDIO interfaces).
It also responsible to manage differences between EMAC interfaces of the Arria V HPS,
Cyclone V HPS, and Intel Arria 10 HPS.
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Related Links

Intel FPGA HPS EMAC Interface Splitter Core on page 471

45.2.1 Supported Features

Features supported by the core:

• Enable HPS’s EMAC GMII/MII connection Intel FPGA 1000BASE-X/SGMII PCS core

• Tri-speed (10/100/1000 Mbps) operation

• Dynamic speed switching

45.3 Core Architecture

45.3.1 Data Path

Figure 132. Transmit Data Path
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For transmit path, the GMII/MII data from the HPS goes through the transmit elastic
buffer before going into the PCS GMII and MII port. The transmit elastic buffer is
responsible for handling slight frequency differences between the transmit clock from
HPS and the transmit clock generated from the PCS’s block.

Figure 133. Receive Data Path
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The PCS block has separate GMII and MII ports while the HPS has only single GMII
and MII ports. Therefore a mux is needed in the receive data path. During MII mode,
the 4 bits MII receive data bus is duplicated in order to feed 8 bits to the GMII/MII
receive data bus of HPS. The mac_speed information from the HPS or from the CSR in
Intel FPGA HPS EMAC Interface Splitter core is used as mux select.
(23)(24)
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45.3.2 Clock Scheme

During GMII mode (1000 Mbps), both the HPS and PCS blocks generate a transmit
clock. The GMII/MII data from the HPS is synchronous to the HPS’s internal PLL while
the PCS block expects transmit data to be synchronous to its own transmit clock. To
solve two different transmit clocks in a transmit data path, an elastic buffer is used for
transmit data transmission.

During MII mode (10/100 Mbps), a transmit clock only comes from the PCS block. The
transmit clock connected to the HPS is the gated version of transmit clock sent from
PCS block with the worst duty cycle of 1% (high: 4 ns, low: 396 ns).

The receive clock comes from the PCS block. The receive clock connected to the HPS
is the gated version of receive clock sent from the PCS block with worst duty cycle of
1% (high: 4 ns, low: 396 ns).

45.3.3 MAC Speed

Mac speed information is used to select different transmit clock sources.

Arria V or Cyclone V HPS cores do not provide mac speed information to the FPGA
fabric. Therefore a control register is defined in the Intel FPGA HPS EMAC Interface
Splitter corefor software to configure it correctly according to the speed used by HPS
EMAC and PHY device.

The Intel Arria 10 HPS provides mac speed information to the FPGA fabric. The control
register in the Intel FPGA HPS EMAC Interface Splitter core is automatically removed.

The two incoming mac_speed bits going into Intel FPGA HPS GMII to TSE 1000BASE-
X/SGMII PCS bridge is treated as asynchronous and static. Only 1 bit
(mac_speed[1]]) is being used to determine whether the MAC is operating in GMII or
MII mode. Therefore a double synchronizer is enough to synchronize (mac_speed[1]).
No additional filtering logic is needed unless both bits are used.

45.3.4 Transmit Elastic Buffer

Transmit elastic buffer is asynchronous FIFO with fix high and low watermark level.
High watermark level is fixed at (TX_BUFFER_DEPTH/2 + 4) valid entries and low
watermark level is fixed at (TX_BUFFER_DEPTH/2 - 4) valid entries. When the number
of valid entries is equal or above the high watermark level, any IDLE symbol
appearing at the write port of the buffer is dropped (IDLE symbol deletion). When the
number of valid entries is equal or below low watermarks level, any IDLE symbol read
from the read port does not increment the read pointer of the buffer (IDLE symbol
insertion). IDLE symbol definition is tx_en = 0 and tx_err = 0.

The buffer depth is fixed at 64. Higher buffer depths provides more margins to avoid
overflow/underflow condition to occur. The buffer depth configuration depends on the
maximum Ethernet packet or maximum IDLE symbol separation in the Ethernet
protocol and the maximum ppm different between the two clock sources.

(23) Avalible for Cyclone V and Arria V SoC devices.

(24) Avalible for Intel Arria 10 SoC devices.
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Figure 134. Elastic Buffer Watermark Level
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45.3.4.1 GMII to MII Mode Transition

The elastic buffer works when both write and read ports are having an equal or similar
clock frequency. Ethernet operation allows dynamic speed mode changes. During a
GMII to MII or MII to GMII mode transition, there could be a possibility that the
transmit clock from HPS clock source and PCS block are out of sync in terms of clock
frequency. If they are out of sync this causes an overflow/underflow condition to
occur.

For example, during GMII to MII mode transition, the transmit clock from the PCS
could be running at 25/2.5MHz while clock switching in HPS may yet to be completed
and running at 125MHz. Clock switching in the PCS and HPS could incur a short period
of an inactive clock as well due to graceful clock mux implementation. This challenge
is handled through software.A register bit which act as a soft reset to the buffer is
defined in this adapter core. Software is responsible to ensure the buffer is disabled
when there is a change in the speed configuration of the PCS and MAC. The buffer is
enabled only when configuration in both PCS and MAC blocks are completed and a
valid transmit clock is running at both read and write ports of the buffer.

45.3.5 Avalon-MM Slave Interface

The following are the configuration of the Avalon-MM slave interface:

• Bus width: 32-bit

• Fixed read and write wait time: 0 cycles

• No burst support

• No lock support

45.3.6 Programming Model

Software is required to disable and enable the transmit data path accordingly
whenever there is change in speed mode configuration.

In the case of Cyclone V and Arria V SoC devices, software is required to program the
mac_speed register in Intel FPGA HPS EMAC Interface Splitter core as per MAC or PHY
device setting.
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Refer to the Triple-Speed Ethernet IP Core User Guide for programming sequence of
the MAC and PCS block respectively.

Related Links

Triple-Speed Ethernet MegaCore Function User Guide

45.4 Configuration Parameters

45.5 Interface

Figure 135. Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Top Level
Interfaces
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Table 388. Top Level I/O Port List

Signal Width Direction Description

Interface Name: peri_clock
Description: Peripheral clock interface

clk 1 Input Peripheral clock source

Interface Name: peri_reset
Description: Peripheral reset interface

rst_n 1 Input Active low peripheral asynchronous reset source.
This signal is asynchronously asserted and synchronously de-asserted. The
synchronous de-assertion must be provided external to this core.

Interface Name: avalon_slave
Description: Avalon MM slave interface for CSR access of this core

addr 1 Input Avalon-MM address bus. The address bus is in the unit of word addressing.

read 1 Input Avalon-MM read control

write 1 Input Avalon-MM write control

writedata 32 Input Avalon-MM write data bus

readdata 32 Output Avalon-MM read data bus

Interface name: hps_gmii
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Signal Width Direction Description

Description: Conduit interface connected to HPS EMAC GMII/MII interface

mac_tx_clk_o 1 Input GMII/MII transmit clock from HPS

mac_tx_clk_i 1 Output GMII/MII transmit clock to HPS

mac_rx_clk 1 Output GMII/MII receive clock to HPS

mac_rst_tx_n 1 Input GMII/MII transmit reset source from HPS. Active low reset.

mac_rst_rx_n 1 Input GMII/MII receive reset source from HPS. Active low reset.

mac_txd 8 Input GMII/MII transmit data from HPS

mac_txen 1 Input GMII/MII transmit enable from HPS

mac_txer 1 Input GMII/MII transmit error from HPS

mac_rxdv 1 Output GMII/MII receive data valid to HPS

mac_rxer 1 Output GMII/MII receive data error to HPS

mac_rxd 8 Output GMII/MII receive data to HPS

mac_col 1 Output GMII/MII collision detect to HPS

mac_crs 1 Output GMII/MII carrier sense to HPS

mac_speed 2 Input MAC speed indication from HPS

Interface name: pcs_transmit_reset
Description: Transmit reset source from HPS

pcs_rst_tx 1 Output Inverted version of mac_rst_tx_n. Active high reset.

Interface name: pcs_receive_reset
Description: Receive reset source from HPS

pcs_rst_rx 1 Output Inverted version of mac_rst_rx_n. Active high reset.

Interface name: pcs_transmit_clock
Description: Transmit clock from PCS block

pcs_tx_clk 1 Input Transmit clock from PCS block.

Interface name: pcs_receive_clock
Description: Receive clock from PCS block

pcs_rx_clk 1 Input Receive clock from PCS block

Interface name: pcs_clock_enable
Description: Transmit and receive clock enabler from PCS block

pcs_txclk_ena 1 Input Transmit clock enabler from PCS block. This signal enables the pcs_tx_clk.

pcs_rxclk_ena 1 Input Receive clock enabler from PCS block. This signal enables the pcs_rx_clk.

Interface name: pcs_gmii
Description: GMII interface to the PCS block

pcs_gmii_rx_dv 1 Input Receive data valid from PCS block

pcs_gmii_rx_d 8 Input Receive data from PCS block

pcs_gmii_rx_err 1 Input Receive data error from PCS block

pcs_gmii_tx_en 1 Output Transmit data enable to PCS block

continued...   
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Signal Width Direction Description

pcs_gmii_tx_d 8 Output Transmit data to PCS block

pcs_gmii_tx_err 1 Output Transmit data error to PCS block

Interface name: pcs_mii
Description: MII interface to the PCS block

pcs_mii_rx_dv 1 Input Receive data valid from PCS block

pcs_mii_rx_d 4 Input Receive data from PCS block

pcs_mii_rx_err 1 Input Receive data error from PCS block

pcs_mii_tx_en 1 Output Transmit data enable to PCS block

pcs_mii_tx_d 4 Output Transmit data to PCS block

pcs_mii_tx_err 1 Output Transmit data error to PCS block

pcs_mii_col 1 Input Collision detect from PCS block

pcs_mii_crs 1 Input Carrier sense from PCS block

45.6 Registers

45.6.1 Register Memory Map

Each address offset represent one word of memory address space.

Table 389. Control Register Memory Map

Register Address Offset Width Attribute

CTRL 0x0 1 R/W

45.6.2 Register Description

Table 390. Control Register (CTRL)

Bit Fields Access Default Value Description

31:1 Reserved N/A 0x0 Reserved

0 TX_DISABLE R/W 0x1 Transmit data path
disable bit.
This field disables the
transmit data path of
the adapter core. It
acts as software reset
to all transmit
sequential logic in the
adapter core (example
the elastic buffer
controller).
1: Transmit data path
is disabled (default).
0: Transmit data path
is enabled.
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45.7 Document Revision History

Table 391. Altera HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core

Date Version Changes

May 2017 2017.05.08 Initial release
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46 Intel FPGA MSI to GIC Generator Core

46.1 Core Overview

In the PCI subsystem, Message Signaled Interrupts (MSI) is a feature that enables a
device function to request service by writing a system-specified data value to a
system-specified message address (using a PCI DWORD memory write transaction).
System software initializes the message address and message data during device
configuration, allocating one or more system-specified data and system-specified
message addresses to each MSI capable function.

A MSI target (receiver), Intel FPGA PCIe RootPort Hard IP, receives MSI interrupts
through the Avalon Streaming (Avalon-ST) RX TLP of type MWr. For Avalon-MM based
PCIe RootPort Hard IP, the RP_Master issues a write transaction with the system-
specified message data value to the system-specified message address of a MSI TLP
received. This memory mapped mechanism does not issue any interrupt output to
host the processor; and it relies on the host processor to poll the value changes at the
system-specified message address in order to acknowledge the interrupt request and
service the MSI interrupt. This polling mechanism may overwhelm the processor
cycles and it is not efficient.

The Intel FPGA MSI-to-GIC Generator is introduced with the purpose of allowing level
interrupt generation to the host processor upon arrival of a MSI interrupt. It exists as
a separate module to Intel FPGA PCIe HIP for completing the interrupt generation to
host the processor upon arrival of a MSI TLP.

46.2 Background

The existing implementation of the MSI target at Intel FPGA PCIe RootPort translates
the MSI TLP received into a write transaction via PCIe Hard IP Avalon-MM Master port
(RP_Master). No interrupt output directed to the host processor to kick start the
service routine for the MSI sender is needed.

46.3 Feature Description

The Intel FPGA MSI-to-GIC Generator provides storage for the MSI system-specified
data value. It also generates level interrupt output when there is an unread entry. The
following figure illustrates the connection of the MSI-to-GIC Generator module in a
PCIe subsystem.
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Figure 136. MSI-to-GIC Generator in PCIe RP system
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This module is connected to RP_Master of PCIe RootPort HIP issuing memory map
write transaction upon MSI TLP arrival. System-specified data value carried by the MSI
TLP is written into the module storage. The same Avalon MM Data Slave port also
connects to the host processor for MSI data retrieval upon interrupt assertion. An Intel
FPGA MSI-to-GIC Generator module could contain data storage from one to 32 words
of continuous address span. Each data word of storage is associated with a
corresponding numbered bit of Status Bits and Mask Bits registers. Each data word
address location can store up to 32 entries.

There is an up to 32-bit Status Register that indicates which storage word location has
an unread entry. Also, there is a similar bit size of Interrupt Mask Register that is in
place to allow control of module behavior by the host processor. The Interrupt Mask
register provides flexibility for the host processor to disregard the incoming interrupt.

The base address assigned for Intel FPGA MSI-to-GIC Generator module in the
subsystem should cover the system-specified message address of MSI capable
functions during device configuration. Multiple Intel FPGA MSI-to-GIC Generator
modules could be instantiated in a subsystem to cover different system-specified
message addresses.

Avalon-MM Slave interfaces of this module honors fixed latency of access to ensure
the connected master (in this case, the RP_Master) can successfully write into the
module without back pressure. This avoids the PCIe upstream traffic from impact
because of backpressuring of RP_Master.

Since MSI is multiple messages capable and multiple vectors are supported by each
MSI capable function, there is a tendency that a system-specified message address
receives more than one MSI message data before the host processor is able to service
the MSI request. The Component is configurable to have each data word address to
receive up to 32 entries, before any data value is retrieved. When you reach the
maximum data value entry of 32, subsequent write transactions are dropped and
logged. This ensures every write transaction to the storage has no back pressure
which may lead to system lock up.

46.3.1 Interrupt Servicing Process
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When a new message data is written inIntel FPGA MSI-to-GIC Generator module, the
storage word associated Status bit is set automatically and a level interrupt output is
then fired. The host processor that receives this interrupt output is required to service
the MSI request, as indicated in the following procedure:

1. The host processor reads the Status Register to recognize which data word
location of its storage is causing the interrupt.

2. The host processor reads the firing data word location for its system-specified
message data value sent by the MSI capable function. Upon reading the data
word, message data is considered consumed, the associated Status bit is then
unset automatically. If the word location entry is empty, then the Status bit still
remains asserted.

3. The host processor services either the MSI sender or the function who calls for the
MSI.

4. Upon completing the interrupt service for the first entry, the host processor may
continue to service the remaining entry if there is any residing inside the word
location, by observing the associated Status bit.

5. The host processor may run through the Status Register and service each firing
Status bit in any order.

46.3.2 Registers of Component

The following table illustrates the Intel FPGA MSI-to-GIC Generator registers map as
observed by the host processor from its Avalon-MM CSR interfaces. The bit size of
each register is numbered according to the configured number of data word storage
for MSI message of the component. The maximum width of each register should be 32
bits because the configurable value range is from 1 to 32.

Table 392. CRA registers map

Word Address Offset Register/ Queue Name Attribute

0x0 Status register R

0x1 Error register RW
Note: Write '1' to clear

0x2 Interrupt Mask register RW

46.3.2.1 Status Register

The status register contains individual bits representing each of the data words
location entry status. An unread entry sets the Status bit. The Status bit is cleared
automatically when entry is empty. The value of the register is defaulted to ‘0’ upon
reset.

The following table illustrates the Status register field.
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Table 393. Status Register fields

Field Name Bit Location

Status bit for message data word location [31:1] 31:1

Status bit for message data word location [0] 0

46.3.2.2 Error Register

The Error register bit is set automatically only when the associated message data
word location that contains the write entry, indicating it was dropped due to maximum
entry limit reached. The Error bit indicates the possibility of the MSI TLP targeting the
associated system-specified address. This condition should not happen as each MSI
capable function is only allowed to send up to 32 MSI even with multiple vector
supported.

The Error bit can be cleared by the host processor by writing ‘1’ to the location.

Upon reset, the default value of the Error register bits are set to ‘0’.

The following table illustrates the Pending register field.

Table 394. Error Register fields

Field Name Bit Location

Error bit for message data word location [31:1] 31:1

Error bit for message data word location [0] 0

46.3.2.3 Interrupt Mask Register

The Interrupt Mask register provides a masking bit to individual Status bit before the
Status is used to generate level interrupt output. Having the masking bit set,
disregards the corresponding Status bit from causing interrupt output.

Upon reset, the default value of Interrupt Mask register is 0, which means every single
data word address location is disabled for interrupt generation. To enable interrupt
generation from a dedicated message entry location, the associated Mask bit needs to
be set to ‘1’.

The following table illustrates the Interrupt Mask register field.

Table 395. Interrupt Mask Register fields

Field Name Bit Location

Masking bit for Status [31:1] 31:1

Masking bit for Status [0] 0

46.3.3 Unsupported Feature
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The message data entry Avalon-MM Slave represents the system-specified address for
MSI function. The offset seen by MSI function should be similar to the offset seen by
the host processors. As this Avalon-MM Slave interface is accessible (write and read)
by both the host processor and the PCIe RP HIP, any read transaction to the offset
address (system-specified address) is considered to have the message data entry
consumed. Observing this limitation, only host master, which is expected to serve the
MSI should read from the Avalon-MM Slave interface. A read from the PCIe RP_Master
to the Avalon-MM Slave is prohibited.

46.4 Document Revision History

Table 396. Altera MSI to GIC Generator Core Revision History

Date Version Changes

July 2014 2014.07.24 Initial release
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A Document Revision History
This section covers the revision history of the entire volume. For details regarding
changes to a specific chapter refer to each chapter revision history.

Table 397. Embedded Peripherals IP User Guide Volume Revision History

Date Version Changes

November 2017 2017.11.06 • Removed the Supported Devices topic from various cores. Refer to
Device Support.

December 2016 2016.12.19 Maintenance release.

October 2016 2016.10.28 New chapters:
• Altera Avalon I2C (Master) Core
Updated:
• 16550 UART Core
• Altera I2C Slave to Avalon-MM Master Bridge Core

June 2016 2016.06.17 New chapters:
• Avalon-MM DDR Memory Half Rate Bridge Core
Updated chapters:
• UART Core
• SPI Core
• Altera Interrupt Latency Counter Core
• Altera I2C Slave to Avalon-MM Master Bridge Core

May 2016 2016.05.03 New chapters:
• Altera I2C Slave to Avalon-MM Master Bridge Core
Updated chapters:
• Vectored Interrupt Controller Core

December 2015 2015.12.16 Removed chapters:
• PCI Lite Core
• Avalon-ST JTAG Interface Core
Updated chapters:
• 16550 UART Core
• PIO Core
• Altera Modular Scatter-Gather DMA Core

November 2015 2015.11.06 Removed chapters:
• Mailbox Core-Replaced with Intel FPGA Avalon Mailbox Core on page

102
Updated chapters:
• 16550 UART Core
• Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
• Altera Modular Scatter-Gather DMA Core
• Vectored Interrupt Controller Core
• Altera GMII to RGMII Adapter Core
• Altera Avalon Mailbox (simple) Core

June 2015 2015.06.12 New chapters:
continued...   
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Date Version Changes

• Altera Quad SPI Controller Core
• Altera Serial Flash Controller Core
• Altera Avalon Mailbox Core
• Altera GMII to RGMII Adapter Core
Updated chapters:
• 16550 UART Core
• Performance Counter Core
• DMA Controller Core
• PIO Core
• Interval Timer Core
The following chapters have been reinserted:
• Avalon-ST Single-Clock and Dual-Clock FIFO Cores
• Avalon Streaming Channel Multiplexer and Demultiplexer Cores
• Avalon-ST Round Robin Scheduler Core
• Avalon-ST Delay Core
• Avalon-ST Splitter Core
• Avalon Streaming Test Pattern Generator and Checker Cores
• Avalon Streaming Data Pattern Generator and Checker Cores
The following chapters have been removed:
• Common Flash Interface Controller Core
• Cyclone III Remote Update Controller Core (No longer available starting

from V14.0)

A Document Revision History

UG-01085 | 2017.11.06

Embedded Peripherals IP User Guide
492


	Embedded Peripherals IP User Guide
	Contents
	1 Embedded Peripherals IP User Guide Introduction
	1.1 Tool Support
	1.2 Device Support
	1.3 Document Revision History

	2 Avalon-ST Multi-Channel Shared Memory FIFO Core
	2.1 Core Overview
	2.2 Performance and Resource Utilization
	2.3 Functional Description
	2.3.1 Interfaces
	2.3.2 Operation

	2.4 Parameters
	2.5 Software Programming Model
	2.5.1 HAL System Library Support
	2.5.2 Register Map

	2.6 Document Revision History

	3 Avalon-ST Single-Clock and Dual-Clock FIFO Cores
	3.1 Core Overview
	3.2 Functional Description
	3.2.1 Interfaces
	3.2.2 Operating Modes
	3.2.3 Fill Level
	3.2.4 Thresholds

	3.3 Parameters
	3.4 Register Description
	3.5 Document Revision History

	4 Avalon-ST Serial Peripheral Interface Core
	4.1 Core Overview
	4.2 Functional Description
	4.2.1 Interfaces
	4.2.2 Operation
	4.2.3 Timing
	4.2.4 Limitations

	4.3 Configuration
	4.4 Document Revision History

	5 SPI Core
	5.1 Core Overview
	5.2 Functional Description
	5.2.1 Example Configurations
	5.2.2 Transmitter Logic
	5.2.3 Receiver Logic
	5.2.4 Master and Slave Modes
	5.2.4.1 Master Mode Operation
	5.2.4.2 Slave Mode Operation
	5.2.4.3 Multi-Slave Environments


	5.3 Configuration
	5.3.1 Master/Slave Settings
	5.3.1.1 Number of Select (SS_n) Signals
	5.3.1.2 SPI Clock (sclk) Rate
	5.3.1.3 Specify Delay

	5.3.2 Data Register Settings
	5.3.3 Timing Settings

	5.4 Software Programming Model
	5.4.1 Hardware Access Routines
	5.4.1.1 alt_avalon_spi_command()

	5.4.2 Software Files
	5.4.3 Register Map
	5.4.3.1 rxdata Register
	5.4.3.2 txdata Register
	5.4.3.3 status Register
	5.4.3.4 control Register
	5.4.3.5 slaveselect Register
	5.4.3.6 end of packet value Register


	5.5 Document Revision History

	6 Ethernet MDIO Core
	6.1 Core Overview
	6.2 Functional Description
	6.2.1 MDIO Frame Format (Clause 45)
	6.2.2 MDIO Clock Generation
	6.2.3 Interfaces
	6.2.4 Operation
	6.2.4.1 Write Operation
	6.2.4.2 Read Operation


	6.3 Parameter
	6.4 Configuration Registers
	6.5 Document Revision History

	7 Intel FPGA 16550 Compatible UART Core
	7.1 Core Overview
	7.2 Feature Description
	7.2.1 Unsupported Features
	7.2.2 Interface
	7.2.3 General Architecture
	7.2.4 16550 UART General Programming Flow Chart
	7.2.5 Configuration Parameters
	7.2.6 DMA Support
	7.2.7 FPGA Resource Usage
	7.2.8 Timing and Fmax
	7.2.9 Avalon-MM Slave
	7.2.9.1 Read behavior
	7.2.9.2 Write behavior

	7.2.10 Overrun/Underrun Conditions
	7.2.10.1 Overrun
	7.2.10.2 Receive Overrun Behavior
	7.2.10.3 Transmit Overrun Behavior
	7.2.10.4 Underrun

	7.2.11 Hardware Auto Flow-Control
	7.2.12 Clock and Baud Rate Selection

	7.3 Software Programming Model
	7.3.1 Overview
	7.3.2 Supported Features
	7.3.3 Unsupported Features
	7.3.4 Configuration
	7.3.5 16550 UART API
	7.3.5.1 Public APIs
	7.3.5.2 Private APIs
	7.3.5.3 UART Device Structure

	7.3.6 Driver Examples

	7.4 Address Map and Register Descriptions
	7.4.1 rbr_thr_dll
	7.4.2 ier_dlh
	7.4.3 iir
	7.4.4 fcr
	7.4.5 lcr
	7.4.6 mcr
	7.4.7 lsr
	7.4.8 msr
	7.4.9 scr
	7.4.10 afr
	7.4.11 tx_low

	7.5 Document Revision History

	8 UART Core
	8.1 Core Overview
	8.2 Functional Description
	8.2.1 Avalon-MM Slave Interface and Registers
	8.2.2 RS-232 Interface
	8.2.3 Transmitter Logic
	8.2.4 Receiver Logic
	8.2.5 Baud Rate Generation

	8.3 Instantiating the Core
	8.3.1 Configuration Settings
	8.3.1.1 Baud Rate Options
	8.3.1.2 Baud Rate (bps) Setting
	8.3.1.3 Baud Rate Can Be Changed By Software Setting
	8.3.1.4 Data Bits, Stop Bits, Parity
	8.3.1.5 Synchronizer Stages
	8.3.1.6 Streaming Data (DMA) Control
	8.3.1.6.1 Include End-of-Packet Register


	8.3.2 Simulation Settings
	8.3.2.1 Simulated RXD-Input Character Stream
	8.3.2.2 Prepare Interactive Windows
	8.3.2.3 Simulated Transmitter Baud Rate


	8.4 Simulation Considerations
	8.5 Software Programming Model
	8.5.1 HAL System Library Support
	8.5.1.1 Driver Options: Fast vs Small Implementations
	8.5.1.2 ioct() Operations
	8.5.1.3 Limitations

	8.5.2 Software Files
	8.5.3 Register Map
	8.5.3.1 rxdata Register
	8.5.3.2 txdata Register
	8.5.3.3 status Register
	8.5.3.4 control Register
	8.5.3.5 divisor Register (Optional)
	8.5.3.6 endofpacket Register (Optional)

	8.5.4 Interrupt Behavior

	8.6 Document Revision History

	9 Intel FPGA Avalon Mailbox Core
	9.1 Core Overview
	9.2 Functional Description
	9.2.1 Message Sending and Retrieval Process
	9.2.2 Registers of Component
	9.2.2.1 Command Register
	9.2.2.2 Pointer Register
	9.2.2.3 Status Register
	9.2.2.4 Interrupt Masking Register


	9.3 Interface
	9.3.1 Component Interface
	9.3.2 Component Parameterization

	9.4 HAL Driver
	9.4.1 Feature Description
	9.4.1.1 Configuration
	9.4.1.1.1 Interrupt Mode
	9.4.1.1.2 Polling Mode

	9.4.1.2 Driver Implementation
	9.4.1.3 Driver Examples


	9.5 Document Revision History

	10 Intel FPGA Avalon Mutex Core
	10.1 Core Overview
	10.2 Functional Description
	10.3 Configuration
	10.4 Software Programming Model
	10.4.1 Software Files
	10.4.2 Hardware Access Routines

	10.5 Mutex API
	10.5.1 altera_avalon_mutex_is_mine()
	10.5.2 altera_avalon_mutex_first_lock()
	10.5.3 altera_avalon_mutex_lock()
	10.5.4 altera_avalon_mutex_open()
	10.5.5 altera_avalon_mutex_trylock()
	10.5.6 altera_avalon_mutex_unlock()

	10.6 Document Revision History

	11 Intel FPGA Avalon I2C (Master) Core
	11.1 Core Overview
	11.2 Feature Description
	11.2.1 Supported Features
	11.2.2 Unsupported Features

	11.3 Configuration Parameters
	11.4 Interface
	11.5 Registers
	11.5.1 Register Memory Map
	11.5.2 Register Descriptions
	11.5.2.1 Transfer Command FIFO (TFR_CMD)
	11.5.2.2 Receive Data FIFO (RX_DATA)
	11.5.2.3 Control Register (CTRL)
	11.5.2.4 Interrupt Status Enable Register (ISER)
	11.5.2.5 Interrupt Status Register (ISR)
	11.5.2.6 Status Register (STATUS)
	11.5.2.7 TFR CMD FIFO Level (TFR CMD FIFO LVL)
	11.5.2.8 RX Data FIFO Level (RX Data FIFO LVL)
	11.5.2.9 SCL Low Count (SCL LOW)
	11.5.2.10 SCL High Count (SCL HIGH)
	11.5.2.11 SDA Hold Count (SDA HOLD)


	11.6 Reset and Clock Requirements
	11.7 Functional Description
	11.7.1 Overview
	11.7.2 Configuring TFT_CMD Register Examples
	11.7.2.1 7-bit Addressing Mode
	11.7.2.1.1 Master Transmitter Writes 2 Bytes to Slave Receiver
	11.7.2.1.2 Master Receiver Reads 2 Bytes from Slave Transmitter
	11.7.2.1.3 Combine Format (Master Writes 1 Byte and Changes Direction to Read 2 Bytes)

	11.7.2.2 10-bit Addressing Mode
	11.7.2.2.1 Master Transmitter Writes 2 Bytes to Slave Receiver
	11.7.2.2.2 Master Receiver Reads 2 Bytes from Slave Transmitter


	11.7.3 I2C Serial Interface Connection
	11.7.4 Avalon-MM Slave Interface
	11.7.5 Avalon-ST Interface
	11.7.6 Programming Model

	11.8 Document Revision History

	12 Intel FPGA I2C Slave to Avalon-MM Master Bridge Core
	12.1 Core Overview
	12.2 Functional Description
	12.2.1 Block Diagram
	12.2.2 N-byte Addressing
	12.2.3 N-byte Addressing with N-bit Address Stealing
	12.2.4 Read Operation
	12.2.4.1 Random Address Read
	12.2.4.2 Sequential Address Read
	12.2.4.3 Current Address Read

	12.2.5 Write Operation
	12.2.6 Interacting with Multi-Master

	12.3 Platform Designer Parameters
	12.4 Signals
	12.5 How to Translate the Bridge's I2C Data and I2C I/O Ports to an I2C Interface
	12.6 Document Revision History

	13 Compact Flash Core
	13.1 Core Overview
	13.2 Functional Description
	13.3 Required Connections
	13.4 Software Programming Model
	13.4.1 HAL System Library Support
	13.4.2 Software Files
	13.4.3 Register Maps
	13.4.3.1 Ide Registers
	13.4.3.2 Ctl Registers
	13.4.3.3 Cfctl Register
	13.4.3.4 idectl Register


	13.5 Document Revision History

	14 EPCS Serial Flash Controller Core
	14.1 Core Overview
	14.2 Functional Description
	14.2.1 Avalon-MM Slave Interface and Registers

	14.3 Configuration
	14.4 Software Programming Model
	14.4.1 HAL System Library Support
	14.4.2 Software Files

	14.5 Document Revision History

	15 Intel FPGA Serial Flash Controller and Controller II Core
	15.1 Parameters
	15.1.1 Configuration Device Types
	15.1.2 I/O Mode
	15.1.3 Chip Selects
	15.1.4 Interface Signals

	15.2 Registers
	15.2.1 Register Memory Map
	15.2.2 Register Descriptions
	15.2.2.1 FLASH_RD_STATUS
	15.2.2.2 FLASH_RD_SID
	15.2.2.3 FLASH_RD_RDID
	15.2.2.4 FLASH_MEM_OP
	15.2.2.5 FLASH_ISR
	15.2.2.6 FLASH_IMR
	15.2.2.7 FLASH_CHIP_SELECT

	15.2.3 Valid Sector Combination for Sector Protect and Sector Erase Command
	15.2.3.1 Sector Protect
	15.2.3.2 Sector Erase


	15.3 Nios II Tools Support
	15.3.1 Booting Nios II from Flash
	15.3.1.1 Flash Memory Map and Setting Nios II Reset Vector when Using a Boot Copier
	15.3.1.2 Boot Copier File
	15.3.1.3 When Nios II SBT will Append a Boot Copier
	15.3.1.4 Creating HEX Programming File
	15.3.1.5 Programming the Flash
	15.3.1.6 Custom Boot Copiers
	15.3.1.7 Executing in Place

	15.3.2 Nios II HAL Driver

	15.4 Intel FPGA Serial Flash Controller II
	15.4.1 Register Memory Map
	15.4.2 Configuration Device Types

	15.5 Document Revision History

	16 Intel FPGA Generic QUAD SPI Controller and Controller II Core
	16.1 Core Overview
	16.2 Functional Description
	16.3 Parameters
	16.3.1 Configuration Device Types
	16.3.2 I/O Mode
	16.3.3 Chip Selects
	16.3.4 Interface Signals

	16.4 Registers
	16.4.1 Register Memory Map
	16.4.2 Register Descriptions
	16.4.2.1 FLASH_RD_STATUS
	16.4.2.2 FLASH_RD_SID
	16.4.2.3 FLASH_RD_RDID
	16.4.2.4 FLASH_MEM_OP
	16.4.2.5 FLASH_ISR
	16.4.2.6 FLASH_IMR
	16.4.2.7 FLASH_CHIP_SELECT

	16.4.3 Valid Sector Combination for Sector Protect and Sector Erase Command
	16.4.3.1 Sector Protect
	16.4.3.2 Sector Erase


	16.5 Nios II Tools Support
	16.5.1 Booting Nios II from Flash
	16.5.1.1 Flash Memory Map and Setting Nios II Reset Vector when Using a Boot Copier
	16.5.1.2 Boot Copier File
	16.5.1.3 When Nios II SBT will Append a Boot Copier
	16.5.1.4 Creating HEX Programming File
	16.5.1.5 Programming Flash
	16.5.1.6 Custom Boot Copiers
	16.5.1.7 Executing in Place

	16.5.2 Nios II HAL Driver

	16.6 Intel FPGA Generic QUAD SPI Controller II
	16.6.1 Register Memory Map
	16.6.2 Configuration Device Types

	16.7 Document Revision History

	17 Interval Timer Core
	17.1 Core Overview
	17.2 Functional Description
	17.2.1 Avalon-MM Slave Interface

	17.3 Configuration
	17.3.1 Timeout Period
	17.3.2 Counter Size
	17.3.3 Hardware Options
	17.3.4 Configuring the Timer as a Watchdog Timer

	17.4 Software Programming Model
	17.4.1 HAL System Library Support
	17.4.2 Software Files
	17.4.3 Register Map
	17.4.4 Interrupt Behavior

	17.5 Document Revision History

	18 JTAG UART Core
	18.1 Core Overview
	18.2 Functional Description
	18.2.1 Avalon Slave Interface and Registers
	18.2.2 Read and Write FIFOs
	18.2.3 JTAG Interface
	18.2.4 Host-Target Connection

	18.3 Configuration
	18.3.1 Configuration Page
	18.3.1.1 Write FIFO Settings
	18.3.1.2 Read FIFO Settings

	18.3.2 Simulation Settings
	18.3.2.1 Simulated Input Character Stream
	18.3.2.2 Prepare Interactive Windows


	18.4 Hardware Simulation Considerations
	18.5 Software Programming Model
	18.5.1 HAL System Library Support
	18.5.1.1 Driver Options: Fast vs. Small Implementations
	18.5.1.2 ioctl() Operations

	18.5.2 Software Files
	18.5.3 Accessing the JTAG UART Core via a Host PC
	18.5.4 Register Map
	18.5.4.1 Data Register
	18.5.4.2 Control Register

	18.5.5 Interrupt Behavior

	18.6 Document Revision History

	19 On-Chip FIFO Memory Core
	19.1 Core Overview
	19.2 Functional Description
	19.2.1 Avalon-MM Write Slave to Avalon-MM Read Slave
	19.2.2 Avalon-ST Sink to Avalon-ST Source
	19.2.3 Avalon-MM Write Slave to Avalon-ST Source
	19.2.4 Avalon-ST Sink to Avalon-MM Read Slave
	19.2.5 Status Interface
	19.2.6 Clocking Modes

	19.3 Configuration
	19.3.1 FIFO Settings
	19.3.2 Interface Parameters

	19.4 Software Programming Model
	19.4.1 HAL System Library Support
	19.4.2 Software Files

	19.5 Programming with the On-Chip FIFO Memory
	19.5.1 Software Control
	19.5.2 Software Example

	19.6 On-Chip FIFO Memory API
	19.6.1 altera_avalon_fifo_init()
	19.6.2 altera_avalon_fifo_read_status()
	19.6.3 altera_avalon_fifo_read_ienable()
	19.6.4 altera_avalon_fifo_read_almostfull()
	19.6.5 altera_avalon_fifo_read_almostempty()
	19.6.6 altera_avalon_fifo_read_event()
	19.6.7 altera_avalon_fifo_read_level()
	19.6.8 altera_avalon_fifo_clear_event()
	19.6.9 altera_avalon_fifo_write_ienable()
	19.6.10 altera_avalon_fifo_write_almostfull()
	19.6.11 altera_avalon_fifo_write_almostempty()
	19.6.12 altera_avalon_write_fifo()
	19.6.13 altera_avalon_write_other_info()
	19.6.14 altera_avalon_fifo_read_fifo()

	19.7 Document Revision History

	20 On-Chip Memory (RAM and ROM) Core
	20.1 Core Overview
	20.2 Component-Level Design for On-Chip Memory
	20.2.1 Memory Type
	20.2.2 Size
	20.2.3 Read Latency
	20.2.4 ROM/RAM Memory Protection
	20.2.5 ECC Parameter
	20.2.6 Memory Initialization

	20.3 Platform Designer System-Level Design for On-Chip Memory
	20.4 Simulation for On-Chip Memory
	20.5 Intel Quartus Prime Project-Level Design for On-Chip Memory
	20.6 Board-Level Design for On-Chip Memory
	20.7 Example Design with On-Chip Memory
	20.8 Document Revision History

	21 Optrex 16207 LCD Controller Core
	21.1 Core Overview
	21.2 Functional Description
	21.3 Software Programming Model
	21.3.1 HAL System Library Support
	21.3.2 Displaying Characters on the LCD
	21.3.3 Software Files
	21.3.4 Register Map
	21.3.5 Interrupt Behavior

	21.4 Document Revision History

	22 PIO Core
	22.1 Core Overview
	22.2 Functional Description
	22.2.1 Data Input and Output
	22.2.2 Edge Capture
	22.2.3 IRQ Generation

	22.3 Example Configurations
	22.3.1 Avalon-MM Interface

	22.4 Configuration
	22.4.1 Basic Settings
	22.4.1.1 Width
	22.4.1.2 Direction
	22.4.1.3 Output Port Reset Value
	22.4.1.4 Output Register

	22.4.2 Input Options
	22.4.2.1 Edge Capture Register
	22.4.2.2 Interrupt

	22.4.3 Simulation

	22.5 Software Programming Model
	22.5.1 Software Files
	22.5.2 Register Map
	22.5.2.1 data Register
	22.5.2.2 direction Register
	22.5.2.3 interruptmask Register
	22.5.2.4 edgecapture Register
	22.5.2.5 outset and outclear Register

	22.5.3 Interrupt Behavior
	22.5.4 Software Files

	22.6 Document Revision History

	23 PLL Cores
	23.1 Core Overview
	23.2 Functional Description
	23.2.1 ALTPLL IP Core
	23.2.2 Clock Outputs
	23.2.3 PLL Status and Control Signals
	23.2.4 System Reset Considerations

	23.3 Instantiating the Avalon ALTPLL Core
	23.4 Instantiating the PLL Core
	23.5 Hardware Simulation Considerations
	23.6 Register Definitions and Bit List
	23.6.1 Status Register
	23.6.2 Control Register
	23.6.3 Phase Reconfig Control Register

	23.7 Document Revision History

	24 DMA Controller Core
	24.1 Core Overview
	24.2 Functional Description
	24.2.1 Setting Up DMA Transactions
	24.2.2 The Master Read and Write Ports
	24.2.3 Addressing and Address Incrementing

	24.3 Parameters
	24.3.1 DMA Parameters (Basic)
	24.3.2 Advanced Options

	24.4 Software Programming Model
	24.4.1 HAL System Library Support
	24.4.2 Software Files
	24.4.3 Register Map
	24.4.4 Interrupt Behavior

	24.5 Document Revision History

	25 Modular Scatter-Gather DMA Core
	25.1 Core Overview
	25.2 Feature Description
	25.3 mSGDMA Interfaces and Parameters
	25.3.1 Interface
	25.3.1.1 Descriptor Slave Port
	25.3.1.2 Control and Status Register Slave Port
	25.3.1.3 Response Port
	25.3.1.4 Parameters

	25.3.2 mSGDMA Parameter Editor

	25.4 mSGDMA Descriptors
	25.4.1 Read and Write Address Fields
	25.4.2 Length Field
	25.4.3 Sequence Number Field
	25.4.4 Read and Write Burst Count Fields
	25.4.5 Read and Write Stride Fields
	25.4.6 Control Field

	25.5 Programming Model
	25.5.1 Stop DMA Operation
	25.5.2 Stop Descriptor Operation
	25.5.3 Recovery from Stopped on Error and Stopped on Early Termination

	25.6 Register Map of mSGDMA
	25.6.1 Status Register
	25.6.2 Control Register

	25.7 Modular Scatter-Gather DMA Prefetcher Core
	25.7.1 Functional Description
	25.7.1.1 Supported Features
	25.7.1.2 Architecture Overview
	25.7.1.3 Descriptor Format
	25.7.1.3.1 Descriptor Fields Definition
	Next Descriptor Pointer
	Actual Bytes Transferred

	25.7.1.3.2 Descriptor Processing

	25.7.1.4 Registers
	25.7.1.4.1 Register Map
	25.7.1.4.2 Control Register
	25.7.1.4.3 Descriptor Polling Frequency
	25.7.1.4.4 Status

	25.7.1.5 Interfaces
	25.7.1.5.1 Avalon-MM Read Descriptor
	25.7.1.5.2 Avalon-MM Write Descriptor
	25.7.1.5.3 Avalon-MM CSR
	25.7.1.5.4 Avalon-ST Descriptor Source
	25.7.1.5.5 Avalon-ST Response
	25.7.1.5.6 IRQ Interface

	25.7.1.6 Software Programming Model
	25.7.1.6.1 Setting up Descriptor and mSGDMA Configuration Flow
	25.7.1.6.2 Resetting Prefetcher Core Flow

	25.7.1.7 Parameters


	25.8 Driver Implementation
	25.8.1 alt_msgdma_standard_descriptor_async_transfer
	25.8.2 alt_msgdma_extended_descriptor_async_transfer
	25.8.3 alt_msgdma_descriptor_async_transfer
	25.8.4 alt_msgdma_standard_descriptor_sync_transfer
	25.8.5 alt_msgdma_extended_descriptor_sync_transfer
	25.8.6 alt_msgdma_descriptor_sync_transfer
	25.8.7 alt_msgdma_construct_standard_st_to_mm_descriptor
	25.8.8 alt_msgdma_construct_standard_mm_to_st_descriptor
	25.8.9 alt_msgdma_construct_standard_mm_to_mm_descriptor
	25.8.10 alt_msgdma_construct_standard_descriptor
	25.8.11 alt_msgdma_construct_extended_st_to_mm_descriptor
	25.8.12 alt_msgdma_construct_extended_mm_to_st_descriptor
	25.8.13 alt_msgdma_construct_extended_mm_to_mm_descriptor
	25.8.14 alt_msgdma_construct_extended_descriptor
	25.8.15 alt_msgdma_register_callback
	25.8.16 alt_msgdma_open
	25.8.17 alt_msgdma_write_standard_descriptor
	25.8.18 alt_msgdma_write_extended_descriptor
	25.8.19 alt_avalon_msgdma_init
	25.8.20 alt_msgdma_irq

	25.9 Document Revision History

	26 Scatter-Gather DMA Controller Core
	26.1 Core Overview
	26.1.1 Example Systems
	26.1.2 Comparison of SG-DMA Controller Core and DMA Controller Core

	26.2 Resource Usage and Performance
	26.3 Functional Description
	26.3.1 Functional Blocks and Configurations
	26.3.2 DMA Descriptors
	26.3.3 Error Conditions

	26.4 Parameters
	26.5 Simulation Considerations
	26.6 Software Programming Model
	26.6.1 HAL System Library Support
	26.6.2 Software Files
	26.6.3 Register Maps
	26.6.4 DMA Descriptors
	26.6.5 Timeouts

	26.7 Programming with SG-DMA Controller
	26.7.1 Data Structure
	26.7.2 SG-DMA API
	26.7.3 alt_avalon_sgdma_do_async_transfer()
	26.7.4 alt_avalon_sgdma_do_sync_transfer()
	26.7.5 alt_avalon_sgdma_construct_mem_to_mem_desc()
	26.7.6 alt_avalon_sgdma_construct_stream_to_mem_desc()
	26.7.7 alt_avalon_sgdma_construct_mem_to_stream_desc()
	26.7.8 alt_avalon_sgdma_enable_desc_poll()
	26.7.9 alt_avalon_sgdma_disable_desc_poll()
	26.7.10 alt_avalon_sgdma_check_descriptor_status()
	26.7.11 alt_avalon_sgdma_register_callback()
	26.7.12 alt_avalon_sgdma_start()
	26.7.13 alt_avalon_sgdma_stop()
	26.7.14 alt_avalon_sgdma_open()

	26.8 Document Revision History

	27 SDRAM Controller Core
	27.1 Core Overview
	27.2 Functional Description
	27.2.1 Avalon-MM Interface
	27.2.2 Off-Chip SDRAM Interface
	27.2.2.1 Signal Timing and Electrical Characteristics
	27.2.2.2 Synchronizing Clock and Data Signals
	27.2.2.3 Clock Enable (CKE) not Supported
	27.2.2.4 Sharing Pins with other Avalon-MM Tri-State Devices

	27.2.3 Board Layout and Pinout Considerations
	27.2.4 Performance Considerations
	27.2.4.1 Open Row Management
	27.2.4.2 Sharing Data and Address Pins
	27.2.4.3 Hardware Design and Target Device


	27.3 Configuration
	27.3.1 Memory Profile Page
	27.3.2 Timing Page

	27.4 Hardware Simulation Considerations
	27.4.1 SDRAM Controller Simulation Model
	27.4.2 SDRAM Memory Model
	27.4.2.1 Using the Generic Memory Model
	27.4.2.2 Using the SDRAM Manufacturer's Memory Model


	27.5 Example Configurations
	27.6 Software Programming Model
	27.7 Clock, PLL and Timing Considerations
	27.7.1 Factors Affecting SDRAM Timing
	27.7.2 Symptoms of an Untuned PLL
	27.7.3 Estimating the Valid Signal Window
	27.7.4 Example Calculation

	27.8 Document Revision History

	28 Tri-State SDRAM Core
	28.1 Core Overview
	28.2 Feature Description
	28.2.1 Block Diagram

	28.3 Configuration Parameter
	28.3.1 Memory Profile Page
	28.3.2 Timing Page

	28.4 Interface
	28.5 Reset and Clock Requirements
	28.6 Architecture
	28.6.1 Avalon-MM Slave Interface and CSR
	28.6.2 Block Level Usage Model

	28.7 Document Revision History

	29 Video Sync Generator and Pixel Converter Cores
	29.1 Core Overview
	29.2 Video Sync Generator
	29.2.1 Functional Description
	29.2.2 Parameters
	29.2.3 Signals
	29.2.4 Timing Diagrams

	29.3 Pixel Converter
	29.3.1 Functional Description
	29.3.2 Parameters
	29.3.3 Signals

	29.4 Hardware Simulation Considerations
	29.5 Document Revision History

	30 Intel FPGA Interrupt Latency Counter Core
	30.1 Core Overview
	30.2 Feature Description
	30.2.1 Avalon-MM Compliant CSR Registers
	30.2.1.1 Control Register
	30.2.1.2 Frequency Register
	30.2.1.3 Counter Stop Registers
	30.2.1.4 Latency Data Registers
	30.2.1.5 Data Valid Registers

	30.2.2 32-bit Counter
	30.2.3 Interrupt Detector

	30.3 Component Interface
	30.4 Component Parameterization
	30.5 Software Access
	30.5.1 Routine for Level Sensitive Interrupts
	30.5.2 Routine for Edge/Pulse Sensitive Interrupts

	30.6 Implementation Details
	30.6.1 Interrupt Latency Counter Architecture

	30.7 IP Caveats
	30.8 Document Revision History

	31 Performance Counter Unit Core
	31.1 Core Overview
	31.2 Functional Description
	31.2.1 Section Counters
	31.2.2 Global Counter
	31.2.3 Register Map
	31.2.4 System Reset

	31.3 Configuration
	31.3.1 Define Counters
	31.3.2 Multiple Clock Domain Considerations

	31.4 Hardware Simulation Considerations
	31.5 Software Programming Model
	31.5.1 Software Files
	31.5.2 Using the Performance Counter
	31.5.3 Interrupt Behavior

	31.6 Performance Counter API
	31.6.1 PERF_RESET()
	31.6.2 PERF_START_MEASURING()
	31.6.3 PERF_STOP_MEASURING()
	31.6.4 PERF_BEGIN()
	31.6.5 PERF_END()
	31.6.6 perf_print_formatted_report()
	31.6.7 perf_get_total_time()
	31.6.8 perf_get_section_time()
	31.6.9 perf_get_num_starts()
	31.6.10 alt_get_cpu_freq()

	31.7 Document Revision History

	32 Vectored Interrupt Controller Core
	32.1 Core Overview
	32.2 Functional Description
	32.2.1 External Interfaces
	32.2.1.1 clk
	32.2.1.2 irq_input
	32.2.1.3 interrupt_controller_out
	32.2.1.4 interrupt_controller_in
	32.2.1.5 csr_access

	32.2.2 Functional Blocks
	32.2.2.1 Interrupt Request Block
	32.2.2.2 Priority Processing Block
	32.2.2.3 Vector Generation Block

	32.2.3 Daisy Chaining VIC Cores
	32.2.4 Latency Information

	32.3 Register Maps
	32.4 Parameters
	32.5 to Intel FPGA HAL Software Programming Model
	32.5.1 Software Files
	32.5.2 Macros
	32.5.3 Data Structure
	32.5.4 VIC API
	32.5.4.1 alt_vic_sw_interrupt_set()
	32.5.4.2 alt_vic_sw_interrupt_clear()
	32.5.4.3 alt_vic_sw_interrupt_status()
	32.5.4.4 alt_vic_irq_set_level()

	32.5.5 Run-time Initialization
	32.5.6 Board Support Package
	32.5.6.1 altera_vic_driver.enable_preemption
	32.5.6.2 altera_vic_driver.enable_preemption_into_new_register_set
	32.5.6.3 altera_vic_driver.enable_preemption_rs_<n>
	32.5.6.4 altera_vic_driver.linker_section
	32.5.6.5 altera_vic_driver.<name>.vec_size
	32.5.6.6 altera_vic_driver.<name>.irq<n>_rrs
	32.5.6.7 altera_vic_driver.<name>.irq<n>_ril
	32.5.6.8 altera_vic_driver.<name>.irq<n>_rnmi
	32.5.6.9 Default Settings for RRS and RIL
	32.5.6.10 VIC BSP Design Rules for to Intel FPGA HAL Implementation
	32.5.6.11 RTOS Considerations


	32.6 Implementing the VIC in Platform Designer
	32.6.1 Adding VIC Hardware
	32.6.1.1 Adding the EIC Interface Shadow Register Set
	32.6.1.2 VIC Instantiation, Parameterization, and Connection
	32.6.1.2.1 Instantiation
	32.6.1.2.2 Parameterization
	32.6.1.2.3 VIC Connections


	32.6.2 Software for VIC
	32.6.2.1 alt_ic_isr_register() versus alt_irq_register()


	32.7 Example Designs
	32.7.1 Example Description
	32.7.2 Example Usage
	32.7.3 Software Description
	32.7.4 Positioning the ISR in Vector Table
	32.7.4.1 Increase the Vector Table Entry Size
	32.7.4.2 Do Not Register the ISR
	32.7.4.3 Insert ISR in Vector Table

	32.7.5 Latency Measurement with the Performance Counter

	32.8 Advanced Topics
	32.8.1 Real Time Latency Concerns
	32.8.1.1 Pipeline Latency
	32.8.1.2 Cause Latency
	32.8.1.3 Selection Latency
	32.8.1.4 Funnel Latency
	32.8.1.5 Compiler-Related Latency

	32.8.2 Software Interrupt

	32.9 Document Revision History

	33 Intel FPGA Avalon Data Pattern Generator and Checker Cores
	33.1 Core Overview
	33.2 Data Pattern Generator
	33.2.1 Functional Description
	33.2.2 Configuration

	33.3 Data Pattern Checker
	33.3.1 Functional Description
	33.3.2 Configuration

	33.4 Hardware Simulation Considerations
	33.5 Software Programming Model
	33.5.1 Register Maps

	33.6 Document Revision History

	34 Avalon-ST Test Pattern Generator and Checker Cores
	34.1 Core Overview
	34.2 Resource Utilization and Performance
	34.3 Test Pattern Generator
	34.3.1 Functional Description
	34.3.2 Configuration

	34.4 Test Pattern Checker
	34.4.1 Functional Description
	34.4.2 Configuration

	34.5 Hardware Simulation Considerations
	34.6 Software Programming Model
	34.6.1 HAL System Library Support
	34.6.2 Software Files
	34.6.3 Register Maps

	34.7 Test Pattern Generator API
	34.7.1 data_source_reset()
	34.7.2 data_source_init()
	34.7.3 data_source_get_id()
	34.7.4 data_source_get_supports_packets()
	34.7.5 data_source_get_num_channels()
	34.7.6 data_source_get_symbols_per_cycle()
	34.7.7 data_source_set_enable()
	34.7.8 data_source_get_enable()
	34.7.9 data_source_set_throttle()
	34.7.10 data_source_get_throttle()
	34.7.11 data_source_is_busy()
	34.7.12 data_source_fill_level()
	34.7.13 data_source_send_data()

	34.8 Test Pattern Checker API
	34.8.1 data_sink_reset()
	34.8.2 data_sink_init()
	34.8.3 data_sink_get_id()
	34.8.4 data_sink_get_supports_packets()
	34.8.5 data_sink_get_num_channels()
	34.8.6 data_sink_get_symbols_per_cycle()
	34.8.7 data_sink_set enable()
	34.8.8 data_sink_get_enable()
	34.8.9 data_sink_set_throttle()
	34.8.10 data_sink_get_throttle()
	34.8.11 data_sink_get_packet_count()
	34.8.12 data_sink_get_symbol_count()
	34.8.13 data_sink_get_error_count()
	34.8.14 data_sink_get_exception()
	34.8.15 data_sink_exception_is_exception()
	34.8.16 data_sink_exception_has_data_error()
	34.8.17 data_sink_exception_has_missing_sop()
	34.8.18 data_sink_exception_has_missing_eop()
	34.8.19 data_sink_exception_signalled_error()
	34.8.20 data_sink_exception_channel()

	34.9 Document Revision History

	35 SPI Slave/JTAG to Avalon Master Bridge Cores
	35.1 Core Overview
	35.2 Functional Description
	35.3 Parameters
	35.4 Document Revision History

	36 System ID Peripheral Core
	36.1 Core Overview
	36.2 Functional Description
	36.3 Configuration
	36.4 Software Programming Model
	36.4.1 alt_avalon_sysid_test()

	36.5 Document Revision History

	37 Avalon Packets to Transactions Converter Core
	37.1 Core Overview
	37.2 Functional Description
	37.2.1 Interfaces
	37.2.2 Operation

	37.3 Document Revision History

	38 Avalon ST Multiplexer and Demultiplexer Cores
	38.1 Core Overview
	38.1.1 Resource Usage and Performance

	38.2 Multiplexer
	38.2.1 Functional Description
	38.2.2 Parameters

	38.3 Demultiplexer
	38.3.1 Functional Description
	38.3.2 Parameters

	38.4 Hardware Simulation Considerations
	38.5 Software Programming Model
	38.6 Document Revision History

	39 Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
	39.1 Core Overview
	39.2 Functional Description
	39.2.1 Interfaces
	39.2.2 Operation—Avalon-ST Bytes to Packets Converter Core
	39.2.3 Operation—Avalon-ST Packets to Bytes Converter Core

	39.3 Document Revision History

	40 Avalon-ST Delay Core
	40.1 Core Overview
	40.2 Functional Description
	40.2.1 Reset
	40.2.2 Interfaces

	40.3 Parameters
	40.4 Document Revision History

	41 Avalon-ST Round Robin Scheduler Core
	41.1 Core Overview
	41.2 Performance and Resource Utilization
	41.3 Functional Description
	41.3.1 Interfaces
	41.3.2 Operations

	41.4 Parameters
	41.5 Document Revision History

	42 Avalon-ST Splitter Core
	42.1 Core Overview
	42.2 Functional Description
	42.2.1 Backpressure
	42.2.2 Interfaces

	42.3 Parameters
	42.4 Document Revision History

	43 Avalon-MM DDR Memory Half Rate Bridge Core
	43.1 Core Overview
	43.2 Resource Usage and Performance
	43.3 Functional Description
	43.4 Instantiating the Core in Platform Designer
	43.5 Example System
	43.6 Document Revision History

	44 Intel FPGA GMII to RGMII Converter Core
	44.1 Core Overview
	44.2 Feature Description
	44.2.1 Supported Features
	44.2.2 Unsupported Features

	44.3 Parameters
	44.3.1 IP Configuration Parameter

	44.4 Intel FPGA GMII to RGMII Converter Core Interface
	44.5 Functional Description
	44.5.1 Architecture
	44.5.1.1 Data Path
	44.5.1.2 Clock Scheme
	44.5.1.2.1 Transmit
	44.5.1.2.2 Receive



	44.6 Intel FPGA HPS EMAC Interface Splitter Core
	44.6.1 Parameter
	44.6.1.1 System Info Parameter
	44.6.1.2 HDL Parameter
	44.6.1.3 Intel FPGA HPS EMAC Interface Splitter Core Interface
	44.6.1.4 Register
	44.6.1.4.1 Register Memory Map
	44.6.1.4.2 Register Description
	Control Register


	44.6.1.5 Avalon-MM Slave Interface


	44.7 Document Revision History

	45 Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core
	45.1 Core Overview
	45.2 Feature Description
	45.2.1 Supported Features

	45.3 Core Architecture
	45.3.1 Data Path
	45.3.2 Clock Scheme
	45.3.3 MAC Speed
	45.3.4 Transmit Elastic Buffer
	45.3.4.1 GMII to MII Mode Transition

	45.3.5 Avalon-MM Slave Interface
	45.3.6 Programming Model

	45.4 Configuration Parameters
	45.5 Interface
	45.6 Registers
	45.6.1 Register Memory Map
	45.6.2 Register Description

	45.7 Document Revision History

	46 Intel FPGA MSI to GIC Generator Core
	46.1 Core Overview
	46.2 Background
	46.3 Feature Description
	46.3.1 Interrupt Servicing Process
	46.3.2 Registers of Component
	46.3.2.1 Status Register
	46.3.2.2 Error Register
	46.3.2.3 Interrupt Mask Register

	46.3.3 Unsupported Feature

	46.4 Document Revision History

	A Document Revision History

