
© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

AN-543-1.0© April 2009

AN543: Debugging Nios II Software Using
the Lauterbach Debugger

Introduction
This application note presents methods of debugging a Nios® II application with the
Lauterbach TRACE32 Logic Development System.

The TRACE32 system, including Lauterbach PowerTrace hardware and the TRACE32
PowerView integrated development environment (IDE), provides complete visibility
into the operation of a Nios II system. In combination with the Nios II EDS, SOPC
Builder, and the Quartus® II software, the TRACE32 system enables you to analyze
Nios II system failures or anomalous design behavior. The Lauterbach TRACE32
system gives you a degree of control unmatched by other Nios II debugging
environments.

This application note includes tutorial steps for debugging an example design on the
Altera® Cyclone® III 3C120 development board, and general guidelines for debugging
a custom design.

This application note assumes that you are running the Lauterbach TRACE32
PowerView IDE on a Windows platform. However, the techniques presented are
independent of the platform.

f For detailed instructions for the Lauterbach TRACE32 Logic Development System,
refer to www.lauterbach.com.

The Diagnostic Power of the Lauterbach Tools
The Lauterbach TRACE32 hardware and software tools provide an extremely
powerful set of features for diagnosing and solving some of the toughest embedded
systems development problems, including those problems involving the time
domain. The Lauterbach tools enable you to accomplish the following typical
debugging tasks:

■ Set breakpoints and watchpoints

■ Step though code

■ Examine variable values

You can also employ more powerful techniques, such as:

■ Watch for writes to a particular variable

■ Capture and review a complete program execution trace

Execution Trace
By including a MICTOR connection to the Nios II processor in your Quartus II
hardware design, you can non-intrusively capture large quantities of off-chip
execution trace data through the Lauterbach PowerTrace hardware, allowing a
thorough analysis of the program execution history. You can combine this feature with
trigger conditions to capture Nios II execution activity leading up to and immediately
following a system failure.

www.lauterbach.com

Page 2 Prerequisite Knowledge

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

1 To examine execution trace data, you must have the Lauterbach LA-3801 Nios II trace
module. Without the LA-3801, you can still use other features of the TRACE32 system,
such as breakpoints and watchpoints.

Prerequisite Knowledge
This document is intended for advanced systems developers with a basic
understanding of the following topics:

■ Nios II application development

■ The Quartus II software

■ The Lauterbach TRACE32 PowerView IDE

f To gain the minimum prerequisite knowledge, refer to the following documents:

■ Nios II Development Kit Getting Started User Guide

■ Nios II Hardware Development Tutorial

■ The Nios II Software Development Tutorial, available in the Nios II IDE by
clicking Tutorials on the Welcome page

■ TRACE32 documentation installed with the TRACE32 PowerView IDE. Nios II
Debugger and Trace (debugger_nios.pdf) is of particular interest.

1 Documentation for the TRACE32 Logic Development System is also
available at www.lauterbach.com.

Software Requirements
The following software components are required:

■ Altera Complete Design Suite version 9.0 or later

■ Lauterbach TRACE32 PowerView IDE for the Nios II processor v. 9.0 or later.

1 After you install the TRACE32 IDE, Altera recommends that you upgrade
to the latest software distribution at www.lauterbach.com.

■ The lauterbach.zip file, available on Literature: Nios II Processor page of the
Altera website, accompanying this document. The contents of lauterbach.zip are
shown in Table 1.

Unzip lauterbach.zip into a working directory. Be sure to not include any spaces
in the working directory path name. The remainder of this application note refers
to your working directory as <working_directory>.

http://www.lauterbach.com
www.lauterbach.com
http://www.altera.com/literature/ug/ug_nios2_getting_started.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/lit-nio2.jsp

Hardware Requirements Page 3

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Hardware Requirements
This section describes the hardware requirements for debugging with the Lauterbach
TRACE32 Logic Development System.

Lauterbach PowerTrace Hardware
The Lauterbach PowerTrace hardware consists of the following components:

■ Lauterbach LA-7707 PowerTrace Ethernet 256 MB Universal NEXUS/debug
controller

■ Lauterbach LA-7837 Debugger for NIOS-II (ICD)

■ Lauterbach LA-3801 Preprocessor for NIOS-II Flex Cable

1 If you are not using trace features, the LA-3801 is optional.

c To protect the Lauterbach circuitry from damage, it is critical that you apply power to
the target board and the Lauterbach PowerTrace hardware in the correct order. Do not
connect or power up the Lauterbach PowerTrace hardware until you have carefully
studied “Starting the TRACE32 Logic Development System” on page 10.

Target Hardware
To support the Lauterbach TRACE32 debugging system, your target board must meet
the following requirements:

■ The FPGA device supports the Nios II processor.

Table 1. Contents of lauterbach.zip

Directory Name Contents

mictor The Nios II hardware example design for the Altera Cyclone III 3C120 development
board and the Altera THDB-SUM adapter board. This hardware design includes the
Trace Output Buffer component.

mictor\software_examples\app The nested loops application in nested_loops.c

schematics ■ Schematics for the Altera Cyclone III 3C120 development board and the Altera
THDB-SUM adapter board

■ Mictor_Trace_Connections_HSMA_3c120.xls, which documents the trace data pin
mapping in the example design

board_config The following board reconfiguration files:

■ 3C120_flash_option_bits.jbc

■ m2_prod_1338.pof

For details, refer to “Special Hardware Techniques” on page 19.

troubleshooting Files to assist in troubleshooting communication problems between the TRACE32
system and the Nios II OCI core:

■ lauterbach_system_up_debug_script.cmm

■ good_debug.log

■ good_debug.lst

■ failed_debug.log

Page 4 FPGA Design Requirements

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

■ The board provides a 10-pin JTAG header.

■ The board provides a MICTOR socket.

1 If you are not using trace features, the MICTOR socket is unnecessary.

Tutorial Target Hardware
The tutorial steps in this application note use the following hardware components:

■ Altera Cyclone III 3C120 development board

f For detailed information about the Cyclone III development board, refer
to the Cyclone III 3C120 Development Board Reference Manual.

1 You might need to perform the hardware configuration steps described in
“Updating the MAX II Design on the Cyclone III Development Board” on
page 21 and “Updating the Flash Option Bits on the Cyclone III
Development Board” on page 22.

■ Altera THDB-SUM adapter board. The THDB-SUM connects to high-speed
mezzanine connector (HSMC) Port A on the Altera Cyclone III 3C120
development board, to provide a MICTOR socket for trace data.

f For detailed information about the THDB-SUM board, refer to the Santa
Cruz, USB, Mictor, SD Card HSMC Reference Manual.

1 If you are not using trace features, you do not need the THDB-SUM board.

FPGA Design Requirements
Your hardware design must connect the Nios II processor to the MICTOR socket as
described in “Hardware Design Preparation” on page 6.

1 If you are not using trace features, the MICTOR connection is unnecessary.

The example design uses the Cyclone III 3C120 development board with a
THDB-SUM adapter board connected to the HSMC connector labeled HSMA. The
THDB-SUM board provides a MICTOR socket for connection with the Lauterbach
trace hardware.

The <working_directory>\schematics directory contains a file named
Mictor_Trace_Connections_HSMA_3c120.xls. This spreadsheet documents the trace
data pin mapping in the example design. The spreadsheet associates the trace data
pins in the FPGA design, listed in the FPGA Logic column, with the physical FPGA
pins connected to the MICTOR, listed in the FPGA Pin column.

This mapping is derived from the Cyclone III development board and THDB-SUM
adapter board schematics, found in the <working_directory>\schematics directory.
The pin mappings are shown in Figure 1.

In your custom design, determine the correct trace data pin mappings from your
schematics. You implement the mapping in the Quartus II pin planner.

http://www.altera.com/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf
http://www.altera.com/literature/manual/rm_thdb_sum_board.pdf
http://www.altera.com/literature/manual/rm_thdb_sum_board.pdf

Preparing the Cyclone III Development Board for Lauterbach Debugging Page 5

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Preparing the Cyclone III Development Board for Lauterbach Debugging
The Altera Cyclone III 3C120 development board is highly configurable. You must
configure several critical hardware settings to enable the Lauterbach trace module to
access the FPGA through the MICTOR connection, and to enable the Lauterbach
debug cable to access the FPGA through the 10-pin JTAG header. This section
describes the required settings.

Configure the Cyclone III development board as follows:

■ Connect the THDB-SUM adapter board directly to the HSMC connector labeled
HSMA on the Cyclone III development board.

1 If you are not using trace features, do not connect the THDB-SUM.

■ Configure the small dual in-line package (DIP) switch labeled SW3. On SW3, set
switch 4 to 1. (Switch 4 is also labeled MAX_ENABLE.) This configuration enables
an external device, such as the Lauterbach LA-7837 Debugger, to control the JTAG
chain through the 10-pin JTAG header.

■ Set switch 5 on SW1, labeled MAX0, to 1 (OPEN).

■ Remove jumper J6.

■ Set the PCM CONFIG SELECT rotary switch to 0.

f For details about configuring the Cyclone III development board, refer to the
Cyclone III 3C120 Development Board Reference Manual.

Figure 1. Trace Output Buffer and Pin Assignments

http://www.altera.com/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf

Page 6 Hardware Design Preparation

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

Hardware Design Preparation
To debug your Nios II design with the Lauterbach TRACE32 system, you must
configure the Nios II processor’s JTAG debug module. You set the JTAG debug
module to level 4, to enable hardware breakpoints, data triggers, and (if needed)
off-chip trace.

In addition, to use the hardware trace features of the TRACE32 Logic Development
System, you must connect the Nios II processor to a MICTOR socket on the target
board.

You use the Quartus II software and SOPC Builder to make these preparations.

1 lauterbach.zip includes a Quartus II project for the Cyclone III 3C120 development
board in which these preparation steps are already done. The project is in the mictor
directory, and the Quartus II project file is named
niosII_cycloneIII_3c120_host_board_top.qpf.

Setting the JTAG Debug Module to Level 4

1 If you are using the example design, the steps in this section are already complete. To
ensure a complete understanding of the steps, you can read them while examining the
example design in SOPC Builder.

To work with the Lauterbach TRACE32 Logic Development System, you must set the
JTAG debug module in the Nios II processor to Level 4, as follows:

1. Open your Quartus II project, and launch SOPC Builder.

2. In SOPC Builder, double-click the Nios II processor to open the Nios II processor
MegaWizard™ interface.

3. Click the JTAG Debug Module page, and then select Level 4.

4. If the hardware design targets a Stratix® Series device, under Advanced Debug
Settings, turn off Automatically generate internal 2X clock signal to disable
generation of a second phase-locked loop (PLL).

1 This step is unnecessary with Cyclone Series devices, because extra PLLs
are not available.

5. Click Generate to regenerate the SOPC Builder system.

6. In the Quartus II software, display the hardware design schematic.

7. Right-click the symbol for the SOPC Builder module in the schematic, and click
Update Symbol or Block.

8. Click OK.

Hardware Design Preparation Page 7

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Adding a MICTOR Connection to the Hardware Design

1 If you are using the example design, the steps in this section are already complete. To
ensure a complete understanding of the steps, you can read them while examining the
example design in the Quartus II software.

To transmit trace data, your design must have a MICTOR connection. To add this
connection, you can insert the Trace Output Buffer component, included in
lauterbach.zip and shown in Figure 1 on page 5, between your SOPC Builder module
and the MICTOR. This section describes how to connect your design to the MICTOR
through the Trace Output Buffer.

The Trace Output Buffer data centering component buffers the trace data and shifts
the data signal by adding a half-clock cycle delay. This shift ensures that the trace data
is not sampled too close to a trace clock signal edge.

Table 2 lists top-level signals in the SOPC Builder module that are relevant to trace
data capture. These signals are exported to the top level of the module by the JTAG
debug module, which you enable in “Setting the JTAG Debug Module to Level 4”.

The Trace Output Buffer component must be connected to the SOPC Builder block as
shown in Figure 2. The Trace Output Buffer component exports the debugging signals
shown in Table 2 to the top level.

Figure 2 is an excerpt from the hardware example design schematic, showing the
portion that connects the SOPC Builder symbol to the Trace Output Buffer
component.

Table 2. Trace Output Signals

Signal Name in SOPC Builder Module Signal Name in traceoutputbuffer

jtag_debug_offchip_trace_clk_from_the_cpu iTraceClk

jtag_debug_offchip_trace_data_from_the_cpu[17..0] iTraceData[17..0]

jtag_debug_trigout_from_the_cpu (1)

clkx2_to_the_cpu iClkX2

Note to Table 2:

(1) jtag_debug_trigout_from_the_cpu connects directly to a top-level output pin on the FPGA.
(2) clkx2_to_the_cpu runs at double the Nios II processor clock speed.

Page 8 Hardware Design Preparation

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

To add the Trace Output Buffer component to your own hardware design, perform the
following steps:

1. Copy the following two files from the <working_directory>/mictor directory to
your Quartus II project directory:

■ traceoutputbuffer.bsf

■ traceoutputbuffer.vhd

2. In the Quartus II software, open the schematic in your hardware design.

3. To add the Trace Output Buffer component, right-click the schematic, point to
Insert, and click Symbol.

4. Select the traceoutputbuffer component in the Project folder.

5. Make the connections in your schematic between the Trace Output Buffer
component signals and the signals on the SOPC Builder symbol, as shown in
Table 2 and Figure 2.

6. The jtag_debug_trigout_from_the_cpu pin is not routed to the Trace
Output Buffer component. Route the jtag_debug_trigout_from_the_cpu
signal to an FPGA output pin. In the hardware example design,
jtag_debug_output is routed to a pin called tr_triga.

7. Compile the Quartus II project.

Creating a Raw Binary Format File of the Hardware Design
To load the hardware design into the FPGA using the TRACE32 PowerView IDE, you
must generate a Raw Binary Format (.rbf) File. The TRACE32 IDE does not support
the SRAM Object File (.sof) format. This section describes two ways to generate a .rbf.

Figure 2. JTAG Debug Nodes

Preparing the Software Example Page 9

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Directly Generating a .rbf
If your design is not already compiled, the simplest way to create a .rbf is to generate
it directly with the Quartus II software. To configure the Quartus II software to
generate a .rbf as a result of the compilation process, perform the following steps:

1. In the Quartus II software, on the Assignments menu, click Device to open the
Settings dialog box.

2. On the Device page, click Device and Pin Options.

3. Click the Programming Files tab.

4. Turn on Raw Binary File.

5. Click OK.

6. Click OK again.

7. Compile the design.

Converting a .sof to a .rbf
If you have already generated a .sof, you can convert it to .rbf format with the
following steps:

1. In the Quartus II software, on the File menu, click Convert Programming Files.

2. Under Output programming file, select Raw Binary File (.rbf) for Programming
file type.

3. In the File name box, enter a file path and file name.

4. Under Input files to convert, select SOF Data.

5. Click Add File and browse to the .sof to be converted.

6. Select the .sof name and click Properties.

7. Verify that Compression is turned off, and click OK.

8. Click Generate to generate the .rbf.

1 The niosII_cycloneIII_3c120_host_board_top.sof file provided with the hardware
example design is already converted for you in a file named mictor_01.rbf.

Preparing the Software Example
In this application note’s tutorial steps, you run the nested loops software example to
demonstration the features of the Lauterbach TRACE32 system. This section describes
how to build the nested loops example using the Nios II software build tools.

To build the nested loops software example, perform the following steps:

1. To open a Nios II command shell, on the Start menu, point to Programs > Altera >
Nios II EDS <version>, and click Nios II <version> Command Shell.

Page 10 Starting the TRACE32 Logic Development System

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

2. To change to the directory where your software design application example is
installed, type the following command:

cd <working_directory>\mictor\software_examples\app\nested_loopsr

1 The remainder of this application note refers to your software application
directory as <app_directory>.

3. Type the following command:

./create-this-appr

Starting the TRACE32 Logic Development System
This section describes how to correctly apply power to the Lauterbach PowerTrace
hardware and start the TRACE32 PowerView IDE.

c Always apply power first to the Lauterbach hardware before applying power to the
target board or connecting it to the Lauterbach hardware. When powering down,
always disconnect power to the Lauterbach hardware last.

Before you start, ensure that your hardware is connected as follows:

■ The PowerTrace hardware is disconnected from the target board.

■ The PowerTrace hardware is connected to the host.

■ The LA-7837 module is connected to the LA-7707 PowerTrace module.

■ The LA-3801 module is connected to the LA-7707 PowerTrace module.

1 If you are not using trace features, do not connect the LA-3801.

You must perform a precise sequence of actions to correctly connect the PowerTrace
hardware and attach the TRACE32 IDE. If you are debugging custom hardware,
perform the tutorial instructions in this section, substituting your design file names
for the example design file names.

c Failure to follow the steps in the correct order can result in damage to the Lauterbach
PowerTrace hardware, your target hardware, or both. Do not apply power to the
target board until step 8.

To bring up the TRACE32 system, perform the following steps:

1. Apply power to the Lauterbach hardware.

2. Launch the TRACE32 IDE.

1 Ensure that you apply power to the Lauterbach hardware before launching
the TRACE32 IDE. The TRACE32 IDE expects the Lauterbach hardware to
be powered up.

3. On the CPU menu, click System Settings to open the B::SYStem dialog box,
shown in Figure 3.

4. In the B::SYStem dialog box, under Mode, select NoDebug.

Starting the TRACE32 Logic Development System Page 11

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

5. Ensure that the target board is disconnected from its power source.

6. Connect the Lauterbach PowerTrace LA-7837 module’s 10-pin JTAG header to the
target board, ensuring that pin 1 on the cable corresponds to pin 1 on the target
board.

7. Plug the Lauterbach MICTOR cable into the THDB-SUM board's MICTOR socket.

1 If you are not using trace features, do not connect the MICTOR cable.

c Always apply power first to the Lauterbach hardware before applying power to the
target board or connecting it to the Lauterbach hardware.

8. Power on the target board. The message running appears in the state line at the
bottom of the TRACE32 GUI.

9. Select Attach under Mode in the B::SYStem dialog box. The Lauterbach TRACE32
IDE establishes communications with the PowerTrace hardware, and the radio
button changes to Up, as shown in Figure 3.

10. Ensure that the settings in the B::SYStem dialog box are configured as shown in
Table 3.

1 If CpuAccess is set to Denied (the default value), trace data is not collected.
To enable this setting whenever the TRACE32 IDE launches, add the
following line to the t32.cmm script file, located in the Lauterbach
installation directory:

system.cpuaccess enable

Figure 3. B::System Dialog Box

Page 12 Starting the TRACE32 Logic Development System

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

11. At the bottom of the TRACE32 screen, there is a command line, identified by the
prompt B::. Type area at this prompt. This command opens the B::area window,
which displays the text output from subsequent commands.

1 If you see the following message when you run the area command, you
have not configured your target board correctly:

no debugging device attached
**** Unknown SLD HUB. Can’t find Nios II nodes!
**** Are you sure that the FPGA is configured correctly?

If this message appears, check your board configuration, as described in
“Preparing the Cyclone III Development Board for Lauterbach Debugging”
on page 5.

12. Program the .rbf in the FPGA with the following command:

jtag.loadrbf <working_directory>\mictor\mictor_01.rbfr
You see the following messages:

FPGA configuration start
FPGA is from the Cyclone III family
FPGA configuration finished

1 If the message target processor in reset appears, communications
is not established between the TRACE32 IDE and the PowerTrace
hardware. Select Attach under Mode in the B::SYStem dialog box, and wait
for the radio button to change to Up, as shown in Figure 3.

If the message access timeout processor running appears, the

target is not stopped. Click Break , and type the jtag.loadrbf
command again.

13. In the tool bar, click Break to stop the target, in preparation for loading the
software. The running message in the state line is replaced by stopped.

Table 3. Settings in the B::SYStem Dialog Box

Area Setting Name Setting Value

CpuAccess Enable Selected

Option ICFLUSH On

DCFLUSH On

FSS Off

BTM On

TOFF Off

Viewing System State in the TRACE32 PowerView IDE Page 13

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

14. Use the data.load.elf command to load nested_loops.elf, as follows:

data.load.elf <app_directory>\nested_loops.elf /PLUSVM /StripPART 3 /PATH C:\ /stabsr
This example of the data.load.elf command demonstrates the following
command-line arguments:

■ /PLUSVM—loads the code into virtual memory on the host and the target. For a
full trace listing, the code must be loaded on the host.

■ /StripPART 3—makes source code path names compatible with the
Lauterbach TRACE32 IDE. The GNU tools build the executable and linking
format (.elf) file with Cygwin-style path names. However, the TRACE32 IDE
expects to access C source code through a Windows-style path. The
/StripPART switch converts the path names in the .elf to
Windows-compatible path names so the TRACE32 IDE can locate source code
referenced in the .elf.

■ /PATH C:\—defines the root path where the TRACE32 IDE is to begin
searching for source code. You can specify multiple search paths with the
/PATH argument. Alternatively, to search additional paths, on the View menu,
point to Symbol and click Source Search Paths.

■ /stabs—specifies that the debugging information is in STABS format.

15. After the .elf is successfully loaded, the following message appears in the B::area
window:

file ’<app_directory>\nested_loops.elf’ (ELF) loaded

16. Click Go, then Break. The Nios II program starts execution, runs through the
initialization code, and breaks in the body of the nested_loops.c example
application.

f To view the source code for nested_loops.c, refer to “Displaying Processor Usage
Data” on page 17.

Viewing System State in the TRACE32 PowerView IDE
After you load the .elf, the TRACE32 PowerView IDE can examine the current state of
the Nios II system. The following sections describe some ways to examine the system
state.

1 You must click Break before you can view the system state.

Viewing Nios II Registers
To view the Nios II registers, on the View menu, click Registers. Figure 4 shows the
Nios II registers as they are set up in the example design.

Page 14 Viewing System State in the TRACE32 PowerView IDE

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

Viewing Nios II Source Code
To examine the source code, on the View menu, click List Source. The B::Data.List
window appears, displaying your application source code.

1 You can click Mode to show or hide assembly language.

Finding Symbols
On the View menu, you can point to Symbols and click Browse to display all symbols
defined in the program. Click on a symbol name to open the source file that defines
the symbol.

Displaying Symbols
At the B:: prompt, type the symbol command to display the symbols defined in
your C source code. Figure 5 shows the symbols defined in nested_loop.c.

Figure 4. Register Window

Figure 5. Symbol Definition Window

Viewing System State in the TRACE32 PowerView IDE Page 15

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Setting Breakpoints and Watchpoints
In the B::Data.List window, you can set breakpoints and watchpoints. For example, to
watch for writes to variable count_c, perform the following steps:

1. Open the B::Data.List window as described in “Viewing Nios II Source Code”.

2. Scroll to the top of the loop_c() function.

3. Click the variable name count_c to select.

4. Right-click count_c, point to Breakpoints, and click Write, as shown in Figure 6.

1 On the Break menu, you can click List to view a list of breakpoints.

5. Click Go. The debugger pauses execution every time data is written to the
count_c variable.

1 On the View menu, you can click Locals to view the value of count_c.

Figure 6. Write Breakpoint

Page 16 Using Trace

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

Using Trace
Before capturing Nios II instruction execution, you must configure the TRACE32
PowerView IDE's trace options, by performing the following steps:

1. On the Trace menu, click Configuration to display the B::Trace dialog box, shown
in Figure 7.

2. Verify the following settings:

■ Under METHOD, make sure Analyzer is selected.

■ Make sure THreshold is set to an appropriate level, depending on the target
design. For the example design, 1.26V is an appropriate level. For custom
hardware, the appropriate level is design-dependent.

3. Click RESet and Init to clear the trace buffer.

4. In the TRACE32 toolbar, click Go to begin collecting trace data. In the Trace
configuration dialog box, the used bar fills.

1 If the used bar does not fill completely, check for one of the following causes:

■ You have set a breakpoint or a watchpoint.

■ The trace clock is not properly connected in your hardware design.

■ The trace clock is not sampled correctly. Ensure that a valid trace clock is
generated, and that the voltage threshold for the trace data is appropriate.

Figure 7. Trace Configuration Dialog Box

Using Trace Page 17

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

You must click Break before you can view trace data.

Displaying a Code Trace
On the Trace menu, point to List and click Default to view the Nios II instructions
captured by the trace, as shown in Figure 8. The Nios II assembler instructions are
interspersed with the corresponding C source code.

Displaying Processor Usage Data
To view the time spent in each function in graphical form, on the Trace menu, point to
Chart and click Symbols. See Figure 9 for an example.

You can control the scope and detail of the data in the view as follows:

■ Click In to zoom in for a more detailed view.

■ Click Out to zoom out for a wider view.

1 The first time you display the processor usage data after capturing the data, the
TRACE32 IDE takes a few moments to render the graph.

Figure 9 shows a trace data set captured from the nested loops application. Each row
in the diagram represents the time spent executing one function, listed at the left side
of the diagram. The x axis is the execution timeline of the application.

Figure 8. Code Trace Listing

Page 18 Using Trace

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

The nested loops application consists of three loops:

■ loop_a(), the outermost loop, calls loop_b() 10,000 times.

■ loop_b() calls loop_c() 10,000 times.

■ loop_c(), is the innermost loop, increments the variable count_c 10,000 times.

Example 1 shows the source code in the example program, nested_loops.c. The
Nios II processor spends almost all of its time in loop_c().

Figure 9. Extended Processor Usage Graph

Example 1. nested_loops.c Source Code (Part 1 of 2)

/* Source File: nested_loops.c
Description: Creates a simple illustration of processor usage
data for display with the Lauterbach TRACE32 IDE. */

void loop_c(int count_c)
{

int iterator;
for (iterator=0; iterator < 10000; iterator++)
{
count_c++;

}
}

/* Continued... */

Special Hardware Techniques Page 19

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Figure 9 shows the time spent in loop_c() as a nearly-solid bar. Interrupts and
occasional returns to loop_b() appear as small periodic ticks in the execution
timeline. loop_b() did not happen to return during the capture of this data set, so
loop_a() does not appear.

Figure 10 shows a detailed view of the same trace data shown in Figure 9. The
detailed view is achieved by zooming in on the data set. This view shows the time
spent processing a timer interrupt and returning to the loop_c() function in the
example application.

Special Hardware Techniques
This section describes maintenance and diagnostic techniques that you might
occasionally need to prepare your target hardware for debugging with the Lauterbach
TRACE32 system.

Hot Swapping the Target Board’s JTAG Connection
You can hot swap the Lauterbach JTAG connector with another device, such as the
USB-Blaster™. However, to do so safely, you much follow the guidelines in this
section.

c It is important always to set the System Settings mode to NoDebug in the TRACE32
IDE before connecting the Lauterbach hardware to, or disconnecting it from, a
powered-up target board. Failure to set the mode to NoDebug can result in hardware
damage. To set the System Settings mode, on the CPU menu, click System Settings to
open the B::SYStem dialog box, and under Mode, select NoDebug.

void loop_b(int count_b)
{

int iterator;
for (iterator=0; iterator < 10000; iterator++)
{
count_b++;
loop_c(count_b);

}
}

void loop_a(int count_a)
{

int iterator;
for (iterator=0; iterator < 10000; iterator++)
{
count_a++;
loop_b(count_a);

}
}

int main()
{

static int count_main = 0;
loop_a(count_main);
while(1);
return 0;

}

Example 1. nested_loops.c Source Code (Part 2 of 2)

Page 20 Special Hardware Techniques

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

You might need to hot swap the Lauterbach JTAG connector with another device for
one of the following reasons:

■ To troubleshoot JTAG connection issues. For example, you might need to swap in
another JTAG download cable in place of the Lauterbach LA-7837 debugger.

■ To disconnect or reconnect the target board without powering down. For example,
if you use the Quartus II Programmer with a USB-Blaster to program the FPGA
with a .sof, you must leave the target board powered up to preserve the .sof image
in memory.

1 If you have access to the Quartus II software, it is much safer to avoid
hot-swapping by converting the .sof to a .rbf. When you have your
hardware design in a .rbf, you can use the TRACE32 IDE to program the
.rbf in the FPGA through the Lauterbach JTAG connection. For steps to
create a .rbf, refer to “Creating a Raw Binary Format File of the Hardware
Design” on page 8.

Before you resume debugging, you must select Attach mode, as described in “Starting
the TRACE32 Logic Development System”, at step 9 on page 11.

Restoring Factory Default Board Settings
If you update the hardware design on the MAX II device, or update the flash option
bits, first you need to restore the default factory settings for switches and jumpers on
the Cyclone III development board. The default factory settings for switches and
jumpers on the development board are as follows:

■ SW3 position 1, labeled FPGA BYPASS, is set to 1.

■ All other positions on SW3 are set to 0.

Figure 10. Detailed Processor Usage Graph

Special Hardware Techniques Page 21

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

■ Jumper J6 (DEV_SEL) is installed.

■ Jumper J7 (JTAG_SEL) is installed.

■ SW1 position 5, labeled MAX0, is set to 1 (OPEN).

1 Before you resume debugging with the Lauterbach TRACE32 system, return the
Cyclone III development board’s jumper and switch settings to their debugging
configuration, as described in “Preparing the Cyclone III Development Board for
Lauterbach Debugging” on page 5.

f For details about configuring the Cyclone III development board, refer to the
Cyclone III 3C120 Development Board Reference Manual.

Updating the MAX II Design on the Cyclone III Development Board
Before you use the Cyclone III 3C120 development board with the Lauterbach
PowerTrace hardware, you might need to update the hardware design programmed
in the Max II device. You only need to perform this update once.

To determine which build of the Max II design is installed, apply power to the board
and hold down the CPU RESET (underneath the LCD display). Look for the build
number on the seven-segment display labeled POWER DISPLAY. If the displayed
build number is 1338 or higher, your version of the Max II design is prepared to work
with the Lauterbach PowerTrace hardware. Otherwise, you have an older version of
the Max II design. You must update the design before proceeding further.

To update the Max II design you need the following items:

■ The Max II design file m2_prod_1338.pof. This file is included in lauterbach.zip.

■ An Altera USB-Blaster

1 You cannot use the Cyclone III development board’s embedded JTAG
programmer to update the MAX II design. The embedded JTAG
programmer circuitry is partly implemented in the Max II CPLD.

To update the Max II design, perform the following steps:

1. Disconnect power from the Cyclone III development board.

2. Ensure that the switches and jumpers are in the default factory settings, as
described in “Restoring Factory Default Board Settings”.

3. Connect the USB-Blaster to the board through the 10-pin JTAG port, found on the
side of the board. Ensure that pin 1 on the cable corresponds to pin 1 on the target
board.

4. Apply power to the Cyclone III development board.

5. On the Quartus II Tools menu, click Programmer to launch the Quartus II
Programmer.

6. Ensure that JTAG is selected for Mode.

7. Click Hardware Setup and ensure that the USB-Blaster connected to your
Cyclone III board is selected.

8. Click Auto Detect. The Quartus II Programmer finds and lists the EPM2210.

http://www.altera.com/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf

Page 22 Special Hardware Techniques

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

9. Double click <none> for the EPM2210 device.

10. Browse to and select <working_directory>/board_config/m2_prod_1338.pof, and
click Open.

11. Turn on the Program / Configure option for the EPM2210 device.

12. Click Start.

13. When programming is complete, confirm the presence of the correct Max II
design. Hold down the CPU RESET button. The POWER DISPLAY shows 1338.

1 Before you resume debugging with the Lauterbach TRACE32 system, return the
Cyclone III development board’s jumper and switch settings to their debugging
configuration, as described in “Preparing the Cyclone III Development Board for
Lauterbach Debugging” on page 5.

Updating the Flash Option Bits on the Cyclone III Development Board
Before you use the Cyclone III 3C120 development board with the Lauterbach
PowerTrace hardware, you might need to update the flash option bits to enable
parallel flash programming implemented in the MAX II. You only need to perform
this update once.

To update the flash option bits you need the following items:

■ The Jam Byte-Code file 3C120_flash_option_bits.jbc. This file is included in
lauterbach.zip.

■ An Altera USB-Blaster

To update the flash option bits, perform the following steps:

1. Disconnect power from the Cyclone III development board.

2. Ensure that the switches and jumpers are in the factory default settings, as
described in “Restoring Factory Default Board Settings”.

3. Connect the USB-Blaster to the board through the 10-pin JTAG port, found on the
side of the board. Ensure that pin 1 on the cable corresponds to pin 1 on the target
board.

4. Apply power to the Cyclone III development board.

5. To open a Nios II command shell, on the Start menu, point to Programs > Altera >
Nios II EDS <version>, and click Nios II <version> Command Shell.

6. Type the following commands to program the flash options bits with the
Quartus II JBI Player:

quartus-jli <working_directory>/board_config/flash_option_bits.jbc -a CONFIGURE
quartus-jli <working_directory>/board_config/flash_option_bits.jbc -a PROGRAM

Wait for the Quartus II JBI Player to finish programming flash. This process can
take several minutes.

1 Before you resume debugging with the Lauterbach TRACE32 system, return the
Cyclone III development board’s jumper and switch settings to their debugging
configuration, as described in “Preparing the Cyclone III Development Board for
Lauterbach Debugging” on page 5.

Referenced Documents Page 23

© April 2009 Altera Corporation AN543: Debugging Nios II Software Using the Lauterbach Debugger

Troubleshooting OCI Core Communications
If there are problems with the Nios II On-Chip Instrumentation (OCI) core, the
Lauterbach TRACE32 System.Attach (or System.Up) command might fail with the
message monitor not responding. This message indicates one of several
communication problems between the TRACE32 system and the Nios II OCI core.
You can use the debug script lauterbach_system_up_debug_script.cmm to help
identify the cause of the problem.

The lauterbach_system_up_debug_script.cmm script is included in lauterbach.zip,
and you can find it in the <working_directory>\troubleshooting directory. To use this
script, execute the following instructions:

1. Copy lauterbach_system_up_debug_script.cmm to the Lauterbach installation
directory.

2. If the TRACE32 IDE is not already running, launch it.

3. On the File menu, click Run Batchfile, then double-click the
lauterbach_system_up_debug_script.cmm script.

The script generates the following files, which provide diagnostic information
enabling you to analyze the failure:

■ debug.log—The results of each command executed in the debug script.

■ debug.lst—Produced by the trace portion of the debug script. If the system is
functioning properly, debug.lst contains raw data and an up-counting timestamp.

In <working_directory>\troubleshooting you can find the following examples of
debug.log and debug.lst:

■ good_debug.log and good_debug.lst—Generated from a successful invocation of
lauterbach_system_up_debug_script.cmm on a Cyclone III Nios II Embedded
Evaluation Kit (NEEK) board with MICTOR daughter card.

■ failed_debug.log—Generated on a failing Lauterbach connection to a custom
board.

Compare your debug.log and debug.lst with the examples to identify the cause of the
communication error.

f For assistance with interpreting the test results in debug.log and debug.lst, contact
Lauterbach Technical Support through www.lauterbach.com.

Referenced Documents
This application note references the following documents:

■ Nios II Development Kit Getting Started User Guide

■ Nios II Hardware Development Tutorial

■ The Nios II Software Development Tutorial, available in the Nios II IDE by
clicking Tutorials on the Welcome page

http://www.altera.com/literature/ug/ug_nios2_getting_started.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.lauterbach.com

Page 24 Document Revision History

AN543: Debugging Nios II Software Using the Lauterbach Debugger © April 2009 Altera Corporation

■ TRACE32 documentation installed with the TRACE32 PowerView IDE.
Documentation for the TRACE32 Logic Development System is also available at
www.lauterbach.com. The following documents are of particular interest:

■ Nios II Debugger and Trace (debugger_nios.pdf)

■ Nios II Instantiating the Off-chip Trace Logic (app_nios.pdf)—information on
multiplexing trace outputs from multiple Nios II processor cores

1 In Nios II Instantiating the Off-chip Trace Logic, disregard the steps under
“Disable automatic PLL instantiation”. Step 4 on page 6 accomplishes the
same task.

■ Santa Cruz, USB, Mictor, SD Card HSMC Reference Manual.

■ Cyclone III 3C120 Development Board Reference Manual.

Document Revision History
Table 4 shows the revision history for this application note.

Table 4. Revision History

Date and Revision Changes Made Summary of Changes

April 2009

version 1.0

Initial Release —

http://www.altera.com/literature/manual/rm_thdb_sum_board.pdf
http://www.altera.com/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf
www.lauterbach.com

	AN543: Debugging Nios II Software Using the Lauterbach Debugger
	Introduction
	The Diagnostic Power of the Lauterbach Tools
	Execution Trace

	Prerequisite Knowledge
	Software Requirements
	Hardware Requirements
	Lauterbach PowerTrace Hardware
	Target Hardware
	Tutorial Target Hardware

	FPGA Design Requirements
	Preparing the Cyclone III Development Board for Lauterbach Debugging
	Hardware Design Preparation
	Setting the JTAG Debug Module to Level 4
	Adding a MICTOR Connection to the Hardware Design
	Creating a Raw Binary Format File of the Hardware Design
	Directly Generating a .rbf
	Converting a .sof to a .rbf

	Preparing the Software Example
	Starting the TRACE32 Logic Development System
	Viewing System State in the TRACE32 PowerView IDE
	Viewing Nios II Registers
	Viewing Nios II Source Code
	Finding Symbols
	Displaying Symbols
	Setting Breakpoints and Watchpoints

	Using Trace
	Displaying a Code Trace
	Displaying Processor Usage Data

	Special Hardware Techniques
	Hot Swapping the Target Board’s JTAG Connection
	Restoring Factory Default Board Settings
	Updating the MAX II Design on the Cyclone III Development Board
	Updating the Flash Option Bits on the Cyclone III Development Board
	Troubleshooting OCI Core Communications

	Referenced Documents
	Document Revision History

