Intended Audience: Software
Developers

®Interested in performance optimizing your
application

>Don’t need to be a performance expert

>But should be an expert in the application!

eWorking on a platform with a 2" generation Intel®
Core™ processor

eUsing Intel® VTune™ Amplifier XE performance
analyzer

>The performance information here applies to other tools (PTU,
etc) but is focused on VTune Amplifier XE

Software and Services Group ‘ i nte |)

1

How to Use this Presentation

® Read through the slides once, then again while
collecting data

® Remember performance analysis is a process that
may take several iterations

® Software Optimization should begin after you
have:
>Utilized any compiler optimization options (/02, /QXxSSE4.2, etc)
>Chosen an appropriate workload
>Measured baseline performance

Software and Services Group ‘ i nte |)
2

@5 . @mside i n te l :

CORE” i7 messmmmnt®™
CORE’i7

Using Intel® VTune™ Amplifier XE
to Tune Software on the

2nd generation Intel® Core™
processor family

Software and Services Group

Ver. 1.01

http://software.intel.com/en-us/articles/using-intel-vtune-amplifier-xe-
to-tune-software-on-the-2nd-generation-intel-core-processor-family/

Legal Disclaimer

]NFDRMATIDN IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTE! PODUCTS NO LICENSE, EXPRESS OR
Ef GR. D BY THIS DOCUMENT. EXCEPT
TIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
RODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPO E, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
SFE)ZI:FIH %I'AI\\?I\CI)(I:I‘EI:J\EHICH THE FAILURE OF THE INTEL'PRODUCT COULD CREATE A STTUATION WHERE PERSONAL INJURY OR

® Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not relx

the absence or characteristics of any featurea or instructions marked "reserved” or "undefined." Intel reserves these for future
tion and shall have no responsibility whatsoever for conflicts or incompa ties arising from future changes to them.

The information here is sub]ect to change thhcut notice. Do not finalize a design with this information.

® The products described in this document may contain design defects or errors known as errata which may cause the product
to deviate from published cpeoflcat\ons Current characterized errata are available on request.

. (dIuntact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product

® Copies of documents which have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel's website

yper-Threading Technology requires a computer system with a processor su é:portm HT Technology and an HT

TELhnoIogy enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and
software you use. For more information including details on which processors support HT Technology, see

C Vlrtuallzat\on Technology requires a computer system with an enabled Intel® processor, BIOS, vu’tual machine
and, for some uses, certain computer system software enabled for it. mctlonallty erformance or other
beneﬂta W\H vary dej endmﬁ on hardware and software configurations and may requlre a BIOS update. Software applications
may not be compatible with all operating systems. Please check with your application vendor.

® 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device
drivers and applications enabled for Int 4 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.

Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo
Boo:t Technolog perfmmance varies dependm? on hardware, software and overall system configiration. Check with your PC
h hel syste livers Intel Turbo Boost Technology. For more information, see

® Intel, the Intel logo, VTune, inTru, and Core are trademarks or registered trademarks of Intel Corporation or its subsidiari
in the United States and other countries.
® *Other names and brands are the property of their respective owners.

® Copyright 011, Intel Corporation

Software and Services Group

Optimization Notice

Intel’s compilers may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include
SSE2®, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Software and Services Group ‘ i nte |)
5

Agenda

—Intel® Microarchitecture Codename Sandy Bridge
—The new Intel® VTune™ Amplifier XE
—The Software Optimization Cycle

>Hotspots

>Methods for Determining Efficiency
>Common Architectural Causes of Inefficiency:

Cache Misses

Other Data Access Issues
Execution Stalls

Branch Mispredicts

Front End Stalls

Software and Services Group ‘ i nte |)
[]

Intel® Microarchitecture Codename Sandy Bridge

® Manufactured on Intel® 32nm process
technology - delivering a performance
and energy boost ee—

e Full integration of processor cores,
memory controller, last-level cache,
and graphics and media processing Display

®ntel® Turbo Boost 2.0 Technology
®Intel® Hyper-Threading Technology

® Hardware-based media and graphics
accelerators:
—Intel® Quick Sync Video
—Intel® HD Graphics
—Intel® Clear Video HD Technology
—Intel® InTru™ 3D Technology
®Intel® Advanced Vector Extensions (AVX) Instructions

Software and Services Group ‘ i nte |)
7

For how to tell which product nhumbers are Sandy Bridge, check
here:
http://www.intel.com/products/processor_number/about/core.ht
m

For more on these features see
http://www.intel.com/consumer/products/processors/core-
family.htm or http://www.intel.com/technology/architecture-
silicon/2ndgen/index.htm

The New Intel® VTune™ Amplifier XE Am

®The latest version of VTune Analyzer was released in
November 2010

®\/Tune Amplifier XE features:
— Multiple Collection Types

>Hotspots (statistical call tree) e
R

SystemProceduralFire DLL
SystemProceduralfire.OLL

>Thread Concurrency e = Py

Ogrebdain.dl

>Locks and Waits Analysis

T TaskManaqerTEB:Wa.
Selected 189 row(s):

>Event-based Sampling

QP

— Timeline View Integrated into WZ”‘
all Analysis Types

— Source/Assembly Viewing

— Compatible with C/C++, Fortran,
Assembly, .NET

— Visual Studio Integration, Command-line, or Standalone interface
for Windows* or Linux*

Software and Services Group ‘ i nte |)

New in Amplifier XE: Pre-Configured Profiles!

A C:\Users\sgcepeda\Documents'\ Amplifier XE\Proiects\matrix - Intel VTune Amolifier XE 2011
F‘a"‘; S The Intel® Microarchitecture Codename Sandy Bridge: General
- T T Exploration profile should be used for a top-level analysis of

potential issues. It is the subject of this guide.

Choose Analysis Type

55 1y Algorkthm Analysis [el(R)
A Ughtweight Hotspots s :
VPressFlfumwedudsA

A Locks and Waits
=) (2 Advanced IntekR) Core(TM) 2

A General Exploeation © oetals

dify ‘options for a predefined. right-cick the ‘select Copy from Cu inthe
Pop-up menu, and edk the copy of the selected analysis type configuration.
Events configured for CPU: | Intel(R) Core{TM) Processar 2xocx Series
__uovs:F«mmmmm,mzmmgnwumvmnﬁmmwaw‘mmmam
I spachie

A General Exploration ~

A Memory Access Sample After LBR Filter =

ﬁ:ﬁ::’m ‘ 3 z 2000000 None ‘Cycles that the dwider is busy wth
= [y Advanced InteR) Mfoarchitec 4 400000 None ol macro branches (Precise Event)
: 2000000 Reference cydes when thread s rx

2000000 Cydes when thread is not haked (f

|DSBRMITE_SWITCHES.PENALTY_(2000000 None: 'DSB-to-MITE switch true penalty ¢y
A Clent Analysis DTLB_LOAD_MISSES.STLB_HIT 100000 None Frst vl miss but second level h;
A Core Port Saturation 3 2000000 None Cycles PMH is busy with this walk
200000 None “Number of Instruction Cache, Stre
2000000 None

) . All the events required are pre-
Video online! configured - no research needed!
g See notes. Simply click Start to run the analysis.

The logic for identifying issues on Microarchitecture Codename Sandy Bridge
is embedded into the interface. All the formulas and metrics used are the
same as the ones given in this guide. You no longer have to apply formulas
and rules to the data yourself to figure out what it means - using this guide
and the interface tuning features, you can easily pinpoint problems and
possible solutions.

The formulas and metrics are only applied to the General Exploration profile,
and the General Exploration viewpoint (which is automatic). For the other
profiles, it will just show the raw data.

Also view our video demo of this interface at:
http://software.intel.com/en-us/videos/channel/parallel-
programming/the-intel-vtune-amplifier-xe-analysis-and-results-
interface-for-intel-microarchitecture-codename-sandy-
bridge/1265162566001

http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001

Enhanced General Exploration View for Intel®
Microarchitecture Codename Sandy Bridge

: Y The enhanced view is present when running the
atectonton] [Summny YR General Exploration profile with the General
=1 - Exploration viewpoint selected (the default).

Hardware Event Count by Ha... Filled Pipeline Slots Unfilled Pipeline Slots (Stalls)
Bl Back-end = 2]
Bound Front-end Module Function (Fu
Pipeline
Slots

B Retired L C; lled

- vt ® Cncate
o CPUCL. WTRTRE. Faw gt Pieine
by Assists Slots

Bound
Pipeline Slots

0.104 analyze Jocks.exe grd_intersect

0.085 snalyze locks.exe grid_bounds intersect

0.448 tob.dil thb:task_scheduler_initzinitialize(int)
0.135 gdiplus.dil GelipCreateSokidFill

0,250 rdpdd.dil [rdpdd.dil]

0.034 analyze Jocks.exe posdgrid

0.025 analyze_locks.exe ti_intersect

o
sphers_intersect 2 17,624,000,

grid_intersect 5,214,000,000 4,068,000,000

grid_bounds intersect 1124000000 976,000,000
thbistask_scheduler_initiinitialize 630,000,000 226,000,000

GipCreateSolidFill 306,000,000 536,000,000

[rdpdd.dil] 256,000,000 564,000,000

pos2grid 2,000,000 182,000,000

tr_intersect 160,000,000 170,000,000

shader 154,000,000 0.026 analyze locks.exe shaderfstruct ray *)
Rayprt 146,000,000

0.000 analyze _locks.exe Raypnt(struct ray *,double)
Trchomard,sws | 116,000,000, 234000000) . 0,103 rdowd,svs. Irdowed.svs|
Selected 1row(s): 14,284,000,008" 17,624,000,000

PQECeGe 3
[Thread (01448
[Thread (0<172d)

[Thread (0x14f8)

Hardware Events

[Thread (0x3f8)

e format (see next slide), with helpful metrics
e msen already calculated (see issue slides).

Hardware Events

Bl 1o fiiters are appiicd. JE3

CPU_CLK_UNHALTED. =

Software and Services Group ‘ nnwew/

[Thread (G726) All collected data is presented in hierarchical ik Hardare v

10

Enhanced General Exploration View for Intel®

Microarchitecture Codename Sandy Bridge

M General Exploration - General Exploration 4 @ Hierarchical data display
corresponds to how available
@ Analysis Target Analysis Type | | B Collection Log | | ¥1 Summary execution slots in each core’s
/ pipeline are utilized.

Grouping: | Function

Hardware Event ... Filled Pipeline Slots , Unfilled Pipeline Slots (Stalls)
. * cpr Retired pamiy Back-end Front-end (4
Function CPU_.. INS. Ry Pipeline A Bound Bound
THRE... AN. Slots by ';;L’;' Pipeline

Assists Slots

sphere_intersect 14,284,000, ...
grid_intersect 5,214,000,000 40..
grid_bounds_intersect 1,124,000,000 976.. 1.152 0.320

tbbutask_scheduler_init:i 830,000,000 226.. 3.673
GdipCreateSolidFill 386,000,000 536.. 0.720
[rdpdd.dil] 256,000,000 564.. 0.454

pos2grid 232,000,000 182..
tri_intersect 160,000,000 170...
shader
Raypnt
[rdowd.svs]

Front-end Bound Pipeline Slots

ICache me DSB to MITE
Misses Overhead Switch Cost

3 Pipeline Slots

o=
3

xpand a column to see a
breakdown of issues pertaining
to its category of pipeline
utilization: Retired, Cancelled,
Back-end Bound, or Front-end
Bound Pipeline Slots

11

Enhanced General Exploration View for Intel®
Microarchitecture Codename Sandy Bridge

M General Exploration - General Exploration /4 @

@ Analysis Target Analysis Type | | 2 Collection Log | | 1 Summary %) Bottom-up

Grouping: | Function

Hardware Event ... Filled Pipeline Slots

* Retired Cancelled Pipeline Slots[€
Function CPU_... INS. Pipeline)
THRE..” AN. Slots by Branch Machine
Assist Mispredict Clears
sphere_intersect 14,284,000, ...
grid_intersect 5,214,000,000 4,0..
grid_bounds_intersect 1,124,000,000.97% ..
tbb:task_scheduler_inituinitialize 830,0807000 226..
GdipCreateSolidFill 86,000,000 536..
[rdpdd.dll] 256,000,000 564..
pos2grid 232,000,000 182.. 1. For a given hotspot, if a cell is
160,000,000 170.. 0. highlighted pink, it means the value for
A AL that metric is over VTune’s pre-
Pre-computed metrics for each determined threshold and should be
category of pipeline utilization saves investigated.

users analysis time.
Software and Services Group < intel
12

Note that issue highlighting occurs under 2 conditions:

1. The value for the metric is over VTune’s pre-determined
threshold

2. The associated function uses 5% or greater of the CPU
clockticks sampled

The Old Way vs. The New Way

™ General Exploration

@ Analysis Target Analysis Type

ints A @

H Summary Qﬂoﬂon-up

Grouping: | Function

Function

sphere_intersect
grid_intersect

grid_bounds_intersect
[rdpdd.dll]
GdipCreateSolidFill
Raypnt

& ™ General Exploration - Ger

bl
po @ Analysis Target

®

o
INST_RETIR... CPU_CLK_UN... ~ CPU_CLKUN.. — BR_MISP_RET...
ANYby THREAD by REF_TSC by ALL_BRANC...
Package Package Package by Package

17,624,000,000 14,284,000,000
4,068,000,000 5,214,000,000
976,000,000 1,124,000,000

564,000,000 256,000,000
536,000,000 386,000,000
284,000,000 146,000,000

al Exploration > 0

Analysis Type | | B Summary | YT RN

Grouping: [Fu'\cﬁon

Function

sphere_intersect
grid_intersect
grid_bounds_intersect
tbb:task_scheduler
GdipCreateSolidFill

Filled Pipeline Slots
Retired Cancelled Pipeline Slots

Pipeline .

Slots by Branch Maching

Assists Mispredict Clears
0,322 0,000 L
0.265 0.33 [
0.320 0.228 0.4
0.246 0.000 0.0
0.611 0.000 0.4

[OFFCORE_R

ANY_REQUE|
LLC_MISS_L
DRAM_1 by

12,210,000,000 0
4,404,000,000

86,400,000
990,000,000 12,800,000
The Old Way: To see if there is an issue
with branch misprediction, multiply event
value (86,400,000) by 20 cycles, then
divide by CPU_CLK_UNHALTED.THREAD
(5,214,000,000). Then compare the
resulting value to a threshold. If it is too
high, investigate.

The New Way: Look at the Branch
Mispredict metric, and see if any cells are
pink. If so, investigate.

Software and Services Group ‘ intel}
13

13

Complexities of Performance
Measurement

® Two features of the 2"d generation Intel® Core™ processor
family have a significant effect on performance measurement:

—Intel® Hyper-Threading Technology
—Intel® Turbo Boost 2.0 Technology

® \Vith these features enabled, it is more complex to measure
and interpret performance data

—Most events are counted per thread, some events per core
—See VTune Amplifier XE Help for specific events

® Some experts prefer to analyze performance with these
features disabled, then re-enable them once optimizations are
complete

Software and Services Group ‘ i nte |)

14

Both Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0
Technology can be enabled or disabled through BIOS on most platforms.

Contact with the system vendor or manufacturer for the specifics of any
platform before attempting this. Incorrectly modifying bios settings
from those supplied by the manufacturer can result in rendering the
system completely unusable and may void the warranty.

Don't forget to re-enable these features once you are through with the
software optimization process!

14

The “"Software on Hardware"”
Tuning Process

1. Identify Hotspots

— Determine efficiency of hotspots

> If inefficient, identify architectural reason for
inefficiency

2. Optimize the issue
3. Repeat from step 1!

Software and Services Group ‘ i nte |)

156

Note: While VTune Amplifier XE’s Concurrency, Timeline and Locks and Waits
features can also be helpful in threading an application, this slideset is not
aimed at the process of introducing threads.

The process described here could be used either before or after threading.
However, we *do* recommend that you follow a top-down process when
optimizing: beginning with system tuning (if appropriate), then algorithmic
tuning, then microarchitectural tuning. The name of Software on Hardware
tuning just means we are tuning software for specific hardware.

Remember for all upcoming slides - that you should only focus on hotspots!
Only try to determine efficiency, identify causes, and optimize in hotspots!

15

Step 1) Identify the Hotspots

® What: Hotspots are where your application
spends the most time

® Why: You should aim your optimization
efforts there!

>Why improve a function that only takes 2% of your
application’s runtime?

® How: VTune Amplifier XE Hotspots or
Lightweight Hotspots analysis type

>Usually hotspots are defined in terms of the
CPU_CLK_UNHALTED.THREAD event (aka “clockticks”)

Software and Services Group ‘ i nte |)

16

For the 2"d generation Intel® Core™ processor family, the
CPU_CLK_UNHALTED.THREAD counter measures unhalted clockticks on a per
thread basis. So for each tick of the CPU's clock, the counter will count 2
ticks if Hyper-Threading is enabled, 1 tick if Hyper-Threading is disabled.
There is no per-core clocktick counter.

There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted
clockticks per thread, at the reference frequency for the CPU. In other words,
the CPU_CLK_UNHALTED.REF counter should not increase or decrease as a
result of frequency changes due to Turbo Mode 2.0 or Speedstep Technology.

Step 1) Determine Efficiency

® Determine efficiency of the hotspot using one of
three methods:

— % Pipeline Slots Retired / Cycle

— Changes in CPI

— Code Examination

® Note: Some of these methods are more appropriate for
certain codes than others... see notes on the following
slides

Software and Services Group ‘ i nte |)

17

% Pipeline Slots Retired and Changes in CPI methods rely on VTune Amplifier
XE’s event-based sampling. The Code Examination method relies on using
VTune Amplifier XE's capability as a source/disassembly viewer.

Efficiency Method 1: % Retired Pipeline
Slots / Cycle

® Why: Helps you understand how efficiently your app is using
the processors

® How: General Exploration profile, Metric: Retired Pipeline Slots
L4 What NOW: -: n—'- eral E ation & ©

Callection Log | | Kl Summary

» For a given hotspot:

Hardware Event Count by Ha...

*In general, > 900/0 retll’ing unction ?ﬁi&ﬁ"w INST RET. o m;ﬁ:‘gu
(o 9 or h I g h e r) is g OOd . GO e 14,264,000,000] 17,624,000,000) 0. 10)
tO eﬂ:l C | en Cy m et h 0 d 3 . s . 5,214,000,000 4,068,000,000 1§82

1124000000 976,000,000 1852

b ler_init:initialize 830,000,000 226,000,000 3§73

- 0, H - GdipCreateSolidFill 386,000,000 536,000,000 020

* 50 90 /0 for Cllent apps [rdpdd.dll) 256,000,000 564,000,000 0.%4
- - - H poslgrid 232,000,000 182,000,000 1.2
Consider investigating stall [oo 1m0 o4
shader 154,000,000 154,000,000 1000

reduction using the Ropo Tcaoon sioanm 10
. - - 00 234000000 0.496
following issue slides.

Irdowd.sws

116 000 0
Selected 1 rowd(s):| 14,284,000,000 17,624,000,000
v

» < 60% for server apps — consider investigating stall reduction.

Software and Services Group ‘ i nte I)

18

Formula:

(UOPS_RETIRED.RETIRE_SLOTS/
(4*CPU_CLK_UNHALTED.THREAD))

Thresholds: Investigate if -
% Retiring < .9

This metric is based on the fact that when operating at peak
performance, the pipeline on a 2nd generation Core CPU should
be able to retire 4 micro-operations per clock cycle (or
“clocktick™). The formula looks at “slots” in the pipeline for each
core, and sees if the slots are filled, and if so, whether they
contained a micro-op that retired.

The thresholds are general guidelines. Depending on the
domain, some applications can run with less slots allocated
retiring than the thresholds above and still be very efficient. For
example, it is common for database workloads to be running
with only 20-25% of allocated slots retiring per clocktick (due to
heavy 1/0).

Efficiency Method 2: Changes in Cycles
per Instruction (CPI)

® Why: Another measure of efficiency that can be useful when
comparing 2 runs

>Shows average time it takes one of your workload’s instructions
to execute

® How: General Exploration profile, Metric: CPI
L What NOW: ™ General Exploration - General Exploration /4

@ Analysis Target Analysis Type | | B Collection Log | | H Summary | B RULETY

>CPI can vary widely
depending on the HardwareEvent Countby ..
application and platform! SN S
THREAD ANY
>If code size stays ‘
. A . 3} 14,284/000,000 17,624,000,0 0| 0.810|
Constant, 0pt|m|Zat|Ons rid_in 5,214,000,000 4,068,000,§0
should focus on e il Lz ‘

830,000,000

red ucing CPI ke 386,000,000

q
[rdpdd.dil] 256,000,000 564,000,080

Filled Pipeline Slots

poslgrid 232,000,000 182,000,0
tri_intersect 160,000,000 170,000,000 0.
shader 154,000,000 154,000,000 Nl
Raypnt 146,000,000 284,000,000 0.

Irdowd.svs] 116.000.000 234.000.000 0.
Selected 1 row(s): 14,284,000,000 17,624,000,000
)y«

Software and Services Group

Formula:
CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:

In the interface, CPI will be highlighted if > 1. This is a very general rule
based on the fact that some very well tuned apps achieve CPIs of 1 or below.
However, many apps will naturally have a CPI of over 1 - it is very dependent
on workload and platform. It is best used as a comparison factor — know your
app’s CPI and see if over time it is moving upward (that is bad) or reducing
(good!).

Note that CPI is a ratio! Cycles per instruction. So if the code size changes
for a binary, CPI will change. In general, if CPI reduces as a result of
optimizations, that is good, and if it increases, that is bad. However there are
exceptions! Some code can have a very low CPI but still be inefficient
because more instructions are executed than are needed. This problem is
discussed using the Code Examination method for determining efficiency.

Another Note: CPI will be doubled if using Intel® Hyper-threading. With
Intel® Hyper-Threading enabled, there are actually 2 different definitions of
CPI. We call them "Per Thread CPI" and "Per Core CPI". The Per Thread CPI
will be twice the Per Core CPI. Only convert between per Thread and per Core
CPI when viewing aggregate CPIs (summed for all logical threads).

Note: Optimized code (i.e: SSE instructions) may actually lower the CPI, and
increase stall % - but it will increase the performance. CPI is just a general
efficiency metric — the real measure of efficiency is work taking less time.

Efficiency Method 3: Code Examination

® Why: Methods 1 and 2 measure how long it takes
instructions to execute. The other type of inefficiency is
executing too many instructions.

® How: Use VTune Amplifier XE’s capab|l|ty as a source and
disassembly viewer [E= =

® What Now:

® Failure to

utilize modern -
instructions 1 e
results in
larger code ; e
size o s e e | | i S LT

See next 2 i B '::‘"'.‘,wfpj —
slides for : = : ‘
potential

issues

+ (YT %

[— =4
Software and Services Group (lnteD
20

This method involves looking at the disassembly to make sure the most
efficient instruction streams are generated. This can be complex and can
require an expert knowledge of the Intel instruction set and compiler
technology. What we have done is describe how to find 2 easy-to-detect
issues and suggest how they may be fixed using new features of Intel®
Microarchitecture Codename Sandy Bridge.

Code Study 1: Convert Legacy Floating Point or
Integer SSE Code to Intel® Advanced Vector
Extensions (AVX)

® Why: Using SIMD instructions can greatly increase floating
point performance. For existing FP or Integer SSE code,
converting to AVX instructions has several advantages, including
support for wider vector data (up to 256-bit), 3- and 4-operand
syntax that allows NDS operations, and power savings.

® How: Examine your assembly code for existing SSE instructions
(using xmm registers), MMX instructions (using mmx registers),
or for floating point instructions that are not packed (such as
faddp, fmul, or scalar SSE instructions like addss)

® What Now:

—Convert Intel SSE code to 128-bit AVX instructions automatically
using the Intel Compiler /QxAVX (Windows*) or —xAVX (Linux*)
switches

—Optimize to AVX - See the Intel® 64 and IA-32 Architectures
Optimization Reference Manual, chapter 11

Software and Services Group ‘ i nte |)

21

For more on AVX, see: http://software.intel.com/en-us/articles/intel-avx-new-
frontiers-in-performance-improvements-and-energy-efficiency/

SSE instructions will look like: addps xmm4, xmmb5.

+ addss is a s(calar) Intel® SSE instruction - which is better than x87
instructions- but is not as good as packed SSE instructions.

21

Code Study 2: Take Advantage of Improvements
in Intel® Advanced Encryption Standard (AES)

Instructions

e Why: Existing AES instruction throughput has been improved on Sandy
Bridge microarchitecture, which can result in significant performance
increases in parallel encryption/decryption.

» How: If the application’s functionality is in the domain of
encryption/decryption, check to see if AES instructions are being used.
Blocks of aes instructions with xmm registers as operands may be using
parallel modes:

cmm5 ,
esenc emmb ,
e What Now:
» If AES is being used in parallel modes (such as ECB, CTR, and CBC-
Decrypt), increase performance by redefining the number of blocks to be
processed in parallel. (8 on Sandy Bridge compared to 4 on Westmere).
« If AES is not being used and the application does any encryption or
decryption, try it! See the Intel® Advanced Encryption Standard (AES
New Instructions Set

Software and Services Group ‘ i nte |)

22

22

Step 1) Identify architectural reason for
inefficiency
oIf Methods 1 or 2 are used to determine code is
inefficient, investigate potential issues in rough
order of likelihood
Cache Misses Back-End Bound
Contested Accesses

Other Data Access Issues

. Blocked Loads, Cache Line Splits, 4K Aliasing Conflicts, DTLB
Misses

Allocation Stalls

Microcode Assists Retired
Branch Mispredicts, Machine Clears Cancelled
Front End Stalls Front-End Bound

Software and Services Group (i ntel

23

These are issues that result in inefficient pipeline use and high CPI. In
addition to being in rough order of likelihood, these issues have been
classified into the 4 categories of pipeline slot usage identified in the _Intel®
64 and IA-32 Architectures Optimization Reference Manual .
The General Exploration profile also groups metrics according to these 4
categories. If desired, you can see how your application used the available
pipeline slots per cycle using the first 4 metrics to the right of CPI: Retired
Pipeline Slots, Cancelled Pipeline Slots, Back-End Bound Pipeline Slots, and
Front-End Pipeline Slots.

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

Issue Classification

® The General Exploration View for Intel® Microarchitecture
Codename Sandy Bridge uses the methodology outlined in the
Optimization Reference Manual to analyze performance by
studying "“Slots” in a core’s execution pipeline

® Performance issues are classified according to what happened
for each possible slot in the pipeline, per cycle:

Micro-op
Issued?

Allocation Did Micro-op
Stall? Retire?
Yes No Yes

ideo online!” Bacl-End

Cancelled Retired
See notes. Bound

Software and Services Group ‘ i nte |)
24

Note that the way this methodology allows us to classify what
percentage of all pipeline slots end up in each category, for each
cycle and for each core. It is possible that for a given dataset,
there may be a significant percentage of pipeline slots in multiple
categories that merit investigation. Ideally a large percentage of
slots will fall into the “Retired” category, but even then, it may be
possible to make your code more efficient.

For a complete description of this methodology, see the _Intel®
64 and IA-32 Architectures Optimization Reference Manual,
Appendix B.3. You can also view our 10-minute video, which
describes the methodology in more detail, here:
http://software.intel.com/en-us/videos/channel/parallel-
programming/performance-analysis-methodology-for-intel-
microarchitecture-codename-sandy-bridge/1265132823001.

24

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001

The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

Execution Retirement
Fetch & Core

Decode @ ———

Instruc.tlons, _Re-Order & __ ST
Predict Execute Results

Branches Instructions to Memory

Case 1: Front-End does not provide micro-operations
for all 4 pipeline slots

Front-End Bound

Software and Services Group ‘ i nte I)

25

The Front-End consists of several different structures. It is responsible for
fetching instructions, decoding them into micro-operations, and then
delivering those micro-operations to the Back-End of the pipeline. For Intel®
Microarchitecture Codename Sandy Bridge, a maximum of 4 micro-operations
can be delivered to the Back-End portion of the pipeline per cycle (per core).

Front-End issues are generally caused by delays in fetching code (due to
caching or ITLB issues) or in decoding instructions (due to specific instruction
types or queueing issues). Front-End issues are generally resolved by
compiler techniques.

The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

Execution Retirement
Core

Fetch &
Decode
Instructions,
Predict
Branches

Re-Qr_dEr_{g___ Commit

~ " Execute Results
Instructions to Memory

VLL/ILL1 1411441114

Case 2: Back-End cannot accept micro-operations
for all 4 pipeline slots

Back-End Bound

Software and Services Group ‘ i nte I)

26

The Back-End of the pipeline is responsible for accepting micro-operations
from the Front-End, then re-ordering them as necessary to schedule their
execution in the various execution units, retrieving needed operands from
memory, executing the operations, then committing the results to memory.
If the Back-End is not able to accept micro-operations from the Front-End, it
is generally because internal queues are full. Most of the time this is due to
data access issues - the Back-End’s structures are being taken up by micro-
operations that are waiting on data from the caches.

26

The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

Retirement
Fetch &

Decode
Instructions,

Predict
Branches

Commit
Results
to Memory

Case 3: Micro-operations make it to the Back-End,
but then get removed from the pipeline

Cancelled

Software and Services Group ‘ i nte I)

27

Cancelled micro-operations most likely happen because the Front-End mis-
predicted a branch. This is discovered in the Back-End when the branch
operation is executed. At this point, if the target of the branch was
incorrectly predicted, the micro-operation and all subsequent incorrectly
predicted operations are cancelled and the Front-End is re-directed to begin
fetching instructions from the correct target.

27

The Pipeline Slot Methodology,
Illustrated

Front-End Back-End

— - H_Op

Execution Retirement
Fetch & Core

Decode R H-op

Instrucpons, Re-Order &
Predict ~“Bxecute

Branches Instructions to Memanry
H-0p

Case 4: Micro-operations make it to the Back-End,
Execute, and then Retire

Retired

Software and Services Group ‘ i nte I)

28

In general, having as many pipeline slots retiring per cycle as possible is the
goal. Only one issue is identified for this category - which deals with how to
get micro-operations to this stage faster.

28

Step 2) Optimize the Issue

® For each potential issue, there are several important pieces of
information:

—Why? - Why you should be concerned about this potential
problem.

—How? — Which profile and metric to use in the Amplifier XE
interface. If the data is highlighted, then it should be investigated.

—What Now? - Helps you move to Step 2 of the Tuning Process
(Optimize the Issue). Gives suggestions for follow-up
investigations or optimizations to try.

—Event Names and Metric Formulas are given in the Notes. These
are not included on the slide because they are already embedded
in the Amplifier XE logic. You only need to use the pre-configured
profiles and metrics pointed out in order to know if you may have
a problem.

Software and Services Group ‘ i nte |)

29

29

Back-End Bound

Cache Misses

® Why: Cache misses raise the CPI of an application

e Focus on long-latency data accesses coming from 2nd and
3rd level misses

® How: General Exploration profile, Metrics: LLC Hit, LLC Miss

® What Now:
® If either metric is highlighted for your hotspot, consider
reducing misses:

® Use the cacheline replacement analysis outlined in the
64 and IA-32 Architectures Optimization Reference
Manual, section B.3.4.2

® Use software prefetch instructions

Block data accesses to fit into cache

Use local variables for threads

Pad data structures to cacheline boundaries
Change your algorithm to reduce data storage

Software and Services Group ‘ i nte |)

30

Formulas:
% of cycles spent on memory access (LLC misses):
(MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS * 180) / CPU_CLK_UNHALTED.THREAD

% of cycles spent on last level cache access (2nd level misses that hit in LLC):

((MEM_LOAD_RETIRED.L3_HIT_PS * 26) + (MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS
*43) +
(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 60)) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles for LLC miss = .2,
% cycles for LLC Hit > .2

Doing the cacheline replacement analysis study (the first suggestion) can be very helpful in
resolving these issues. The approach is to figure out at what level most of the application’s loads
are being satisfied, then look one level above. This is because if loads are coming from a
particular level of cache or memory, it is because the data has been replaced at the level above
(for example, if loads are coming from memory, the data has been replaced in the LLC). The
study shows how to identify the areas of your code that are causing the replacements to occur.
Once these are identified, you can try changing the algorithm, doing non-temporal stores, or one
of the other suggestions above.

Back-End Bound

Contested Accesses

® Why: Sharing modified data among cores can raise the latency
of data access

® How: General Exploration profile, Metrics: Contested Accesses
® What Now:

® If either metric is highlighted for your hotspot, locate the source
code line(s) that is generating HITMs by viewing the source. Look
for the MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS event
which will tag to the next instruction after the one that generated the
HITM.

® Then use knowledge of the code to determine if real or false
sharing is taking place. Make appropriate fixes:

® For real sharing, reduce sharing requirements
® For false sharing, pad variables to cacheline boundaries

Software and Services Group ‘ i nte |)

31

Formula:
% of cycles spent accessing data modified by another core:
(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 60) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles accessing modified data > .05

This metric is also called write sharing. It occurs when one core needs data that is found in a
modified state in another core’s cache. This causes the line to be invalidated in the holding core’s
cache and moved to the requesting core’s cache. If it is written again and another core requests
it, the process starts again. The cacheline ping pong-ing between caches causes longer access
time than if it could be simply shared amongst cores (as with read-sharing).

Write sharing can be caused by true sharing, as with a lock or hot shared data structure, or by
false sharing, meaning that the cores are modifying 2 separate pieces of data stored on the same
cacheline.

Note that in the case of real write sharing that is caused by a lock, Amplifier XE’s Locks and Waits
analysis should also indicate a problem. This hardware-level analysis will detect other cases as
well though (such as false sharing or write sharing a hot data structure).

Back-End Bound

Other Data Access Issues: Blocked
Loads Due to No Store Forwarding

® Why: If it is not possible to forward the result of a store
through the pipeline, dependent loads may be blocked

® How: General Exploration profile, Metric: Loads Blocked by
Store Forwarding

® What Now:

® If the metric is highlighted for your hotspot, investigate:

® View source and look at the LD_BLOCKS_STORE_FORWARD event.
Usually this event tags to next instruction after the attempted load
that was blocked. Locate the load, then try to find the store that
cannot forward, which is usually within the prior 10-15 instructions.
The most common case is that the store is to a smaller memory
space than the load. Fix the store by storing to the same size or
larger space as the ensuing load.

32

Software and Services Group ‘ i nte |)

Formula:
Blocked Store Forwarding Cost = (LD_BLOCKS_STORE_FORWARD * 13) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost = .05

Store forwarding occurs when there are two memory instructions in the pipeline, a store followed
by a load from the same address. Instead of waiting for the data to be stored to the cache, it is
“forwarded” back along the pipeline to the load instruction, saving a load from the cache. Store
forwarding is the desired behavior, however, in certain cases, the store may not be able to be
forwarded, so the load instruction becomes blocked waiting for the store to write to the cache and
then to load it.

32

Back-End Bound

Other Data Access Issues: Cache
Line Splits
® Why: Multiple cache line splits can result in load penalties.

® How: General Exploration profile, Metric: Split Loads, Split
Stores

® What Now:

® If the metric is highlighted for your hotspot, investigate by viewing
the metrics at the sourcecode level. The split load event,
MEM_UOP_RETIRED.SPLIT_LOADS_PS, should tag to the next
executed instruction after the one causing the split. If the split store
ratio is greater than .01 at any source address, it is worth
investigating.

® To fix these issues, ensure your data is aligned. Especially watch
out for mis-aligned 256-bit AVX store operations.

Software and Services Group ‘ i nte |)

33

A cacheline split is any load or store that traverses a 64-byte boundary.

Formulas:
Split Load Cost = (MEM_UOP_RETIRED.SPLIT_LOADS_PS * 5) / CPU_CLK_UNHALTED.THREAD

Split Store Ratio = MEM_UOP_RETIRED.SPLIT_STORES_PS /
MEM_UOP_RETIRED.ANY_STORES_PS

Thresholds: Investigate if -
Split load cost > .1 or
Split store ratio is > 0.01

Beginning with the Intel® Core™ architecture, the penalty for cacheline splits has been reduced
to only 5 cycles. However, if there are repeated splits occurring, the penalty can grow, and even
just a 5-cycle increase in latency can make a difference in application performance.

33

Back-End Bound

Other Data Access Issues: 4K
Aliasing
® Why: Aliasing conflicts result in having to re-issue loads.
® How: General Exploration profile, Metric: 4K Aliasing

® What Now:

® If this metric is highlighted for your hotspot, investigate at the
sourcecode level.

® Fix these issues by changing the alignment of the load. Try
aligning data to 32 bytes, changing offsets between input and output
buffers (if possible), or using 16-Byte memory accesses on memory
that is not 32-Byte aligned.

Software and Services Group ‘ i nte |)

34

Formula:
Aliasing Conflicts Cost = (LD_BLOCKS_PARTIAL.ADDRESS_ALIAS * 5) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if
Aliasing conflicts cost > .1

This occurs when a load is issued after a store and their memory addresses are offset by (4K).

When this is processed in the pipeline, the issue of the load will match the previous store (the full
address is not used at this point), so pipeline will try to forward the results of the store and avoid
doing the load (this is store forwarding). Later on when the address of the load is fully resolved,

it will not match the store, and so the load will have to be re-issued from a later point in the pipe.

This has a 5-cycle penalty in the normal case, but could be worse in certain situations, like with
un-aligned loads that span 2 cache lines.

34

Back-End Bound

Other Data Access Issues: DTLB
Misses

® Why: First-level DTLB Load misses (Hits in the STLB) incur a
latency penalty. Second-level misses require a page walk that
can affect your application’s performance.

® How: General Exploration profile, Metric: DTLB Overhead
® What Now:

® If this metric is highlighted for your hotspot, investigate at the
sourcecode level.

® To fix these issues, target data locality to TLB size, use the
Extended Page Tables (EPT) on virtualized systems, try large
pages (database/server apps only), increase data locality by using
better memory allocation or Profile-Guided Optimization

35

Software and Services Group ‘ i nte |)

Formula:
DTLB Overhead = ((DTLB_LOAD_MISSES.STLB_HIT * 7) +
DTLB_LOAD_MISSES.WALK_DURATION) / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-
DTLB Overhead = .1

On target data locality to TLB size: this is accomplished via data blocking and trying to minimize
random access patterns.

Note: this is more likely to occur with server applications or applications with a large random
dataset

Back-End Bound

Allocation Stalls

® Why: Certain types of instructions can cause allocation stalls
because they take longer to retire. These increase latencies
overall.

® How: General Exploration Profile, Metric: LEA Stalls, Flags
Merge Stalls

® What Now:

® If this metric is highlighted for your hotspot, investigate at the
sourcecode level.

® Try to eliminate uses of 3-operand LEA instructions, Look for certain
uses of an LEA instruction (see section 3.5.1.3 of Intel® 64 and IA-

32 Architectures Optimization Reference Manual) or partial register
use (see section 3.5.2.4 of Intel® 64 and IA-32 Architectures

Optimization Reference Manual) and fix.

Software and Services Group ‘ i nte |)

36

Formulas:

Flags Merge Stalls =
PARTIAL_RAT_STALLS.FLAGS_MERGE_UOP_CYCLES/CPU_CLK_UNHALTED.TH
READ

LEA Stalls =
PARTIAL_RAT_STALLS.SLOW_LEA_WINDOW/CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-
Flags Merge Stalls > .05
LEA Stalls > .05

Long-latency instructions cause the Back-end to refuse instructions from the
front-end (allocation stalls).

36

Retired

Microcode Assists

® Why: Assists from the microcode sequencer can have long
latency penalties.

® How: General Exploration Profile, Metric: Assists
¢ What Now:

® If this metric is highlighted for your hotspot, re-sample using the
additional assist events to determine the cause.

® If FP_ASSISTS.ANY / INST_RETIRED.ANY is significant, check for
denormals. To fix enable FTZ and/or DAZ if using SSE/AVX
instructions or scale your results up or down depending on the
problem

o If ((OTHER_ASSISTS.AVX_TO_SSE_NP*75) /
CPU_CLK_UNHALTED.THREAD) or
((OTHER_ASSISTS.SSE_TO_AVX_NP*75) /
CPU_CLK_UNHALTED.THREAD) is greater than .1, reduce transitions
between SSE and AVX code

37

Software and Services Group ‘ i nte |)

Formula:
Assist % = IDQ.MS_CYCLES / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Assist Cost = .05

There are many instructions that can cause assists when there is no
performance problem. If you see MS_CYCLES it doesn’t necessarily mean
there is an issue, but whenever you do see a significant amount of
MS_CYCLES, check the other metrics to see if it's one of the problems we
mention.

37

Cancelled

Branch Mispredicts

® Why: Mispredicted branches cause pipeline inefficiencies due to
wasted work or instruction starvation (while waiting for new
instructions to be fetched)

® How: General Exploration Profile, Metric: Branch Mispredict
¢ What Now:

® If this metric is highlighted for your hotspot try to reduce
misprediction impact:

® Use compiler options or profile-guided optimization (PGO) to
improve code generation

® Apply hand-tuning by doing things like hoisting the most popular
targets in branch statements.

Software and Services Group ‘ i nte |)

38

Formula:

Mispredicted branch cost: (20* BR_MISP_RETIRED.ALL_BRANCHES_PS)/
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost is = .2

Note that all applications will have some branch mispredicts - it is not the
number of mispredicts that is the problem but the impact.

To do hand-tuning, you need to locate the branch causing the mispredicts.
This can be difficult to track down due to the fact that this event will normally
tag to the first instruction in the correct path that the branch takes.

Cancelled

Machine Clears

® Why: Machine clears cause the pipeline to be flushed and the
store buffers emptied, resulting in a significant latency penalty.

® How: General Exploration Profile, Metric: Machine Clears
® Now What:

® [f this metric is highlighted for your hotspot try to determine the
cause using the specific events:

® If MACHINE_CLEARS.MEMORY_ORDERING is significant, investigate
at the sourcecode level. This could be caused by 4K aliasing conflicts
or contention on a lock (both previous issues).

® If MACHINE_CLEARS.SMC is significant, the clears are being caused
by self-modifying code, which should be avoided.

Software and Services Group ‘ i nte |)

39

Formula:

Machine Clear cost: ((MACHINE_CLEARS.MEMORY_ORDERING +
MACHINE_CLEARS.SMC + MACHINE_CLEARS.MASKMOV) * 100) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost is = .02

Machine clears are generally caused by either contention on a lock, or failed
memory disambiguation from 4k aliasing (both earlier issues). The other
potential cause is self-modifying code (SMC).

Front-End Bound

Front-end Stalls

® Why: Front-end stalls (at the Issue stage of the pipeline) can
cause instruction starvation, which may lead to stalls at the
execute stage in the pipeline.

® How: General Exploration profile, Metric: Front-end Bound
Pipeline Slots
® What Now:

® If this metric is highlighted for your hotspot, try using better code
layout and generation techniques:

— Try using profile-guided optimizations (PGO) with your compiler

— Use linker ordering techniques (/ORDER on Microsoft’s linker or
a linker script on gcc)

— Use switches that reduce code size, such as /O1 or /Os

40

Software and Services Group ‘ i nte |)

Formula:
IDQ_UOPS_NOT_DELIVERED.CORE / (CPU_CLK_UNHALTED.THREAD * 4)

Threshold: Investigate if -
Front-End Bounc uOps = .15

Assists or excessive Branch Mispredicts, all on previous slides, could be the
reason for front-end issues, so check for and resolve those problems first.
This issue may also be caused by instruction cache misses (on server apps),
which are generally fixed by better code layout.

Good Luck!
For more information:

VTune User Forums:
://software.intel.com/en-us/forums/intel-vtune-performance-analyzer/

VTune Amplifier XE Videos:
:/Isoftware.intel.com/en-us/articles/intel-vtune-amplifier-xe/

Intel® 64 and IA-32 Architecture Software Developer’s Manuals:
http://www.intel.com/products/processor/manuals/index.htm

Optimization Guide for Intel® Microarchitecture Codename Nehalem:
http://software.intel.com/file/15529

For optimization of the integrated graphics controller on
Intel® Microarchitecture Codename Sandy Bridge:

www.intel.com/software/gpa

Software and Services Group ‘ i nte |)

41

41

