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Training huge models is a bottleneck

Requires managing huge dataset

Takes a long time  more difficult to tune hyperparameters

Expensive

▪ Many hours on rented GPU instance(s)

▪ Electricity cost on owned hardware

But we want to use powerful models for our own problems
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Transfer Learning

Idea: layers in trained model might generalize

If we just change the later layers, can use previously trained model to solve 

new problem!

Nice thing: many pre-trained models available
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Our general CNN template

Convolutions

Fully Connected
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What if the most decision-making for 
classification comes at final layer?

Convolutions

Fully Connected

softmax classifier
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We could simply use the rest of the network as 
is and learn weights for a new final layer

Convolutions

Fully Connected

new classifier

softmax classifier
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We only train weights for the last layer

The rest stay constant (can also train a bit for fine-tuning)

Learn 
weights 

here
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This technique is called transfer learning

Bootstrap your custom model from similar
Saves days or weeks of training time
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Transfer Learning in TensorFlow (classification)

1. Get handle to output from second-to-last layer

2. Create a new fully connected layer

▪ Number of neurons equal to the number of output classes

3. Create new softmax cross-entropy loss

4. Create a training op to minimize the new loss

▪ Set var_list parameter to be just the new layer variables

5. Train with new data!



Accessing Ops and tensors



11

Accessing arbitrary Operations/Tensors

In general, we have been simply holding onto pointers for our Tensor 
objects in TensorFlow:

c = tf.multiply(a, b)  # c is a Tensor object

But what if we don’t have pointer due to using pre-built models or layer functions 
which don’t return handles?
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Accessing arbitrary Operations/Tensors

graph.get_operation_by_name()

graph.get_tensor_by_name()

functions allow us to get handles to Operations/Tensors by passing in a 
string name:

with graph.as_default():

tf.multiply(a, b, name=‘mul’)  # forgot to assign handle!

c = graph.get_tensor_by_name(‘mul:0’)  # got Tensor handle!
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Op names

Be careful when getting handles to Operations vs Tensors

Operation names are the names you pass in as name argument (they don’t 
have number at end)

c_op = graph.get_operation_by_name(‘mul’) 
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Tensor names

Tensors have numeric suffix along with parent Op’s name

Number corresponds to the output index from Op

c = graph.get_tensor_by_name(‘mul:0’)

Some Ops have multiple output Tensors

▪ example: tf.nn.moments()

mean = graph.get_tensor_by_name(‘moments:0’) 
var = graph.get_tensor_by_name(‘moments:1’)



Batch normalization
Ioffe and Szegedy
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Internal Covariate Shift

Change in distributions of activations during training due to weights changing

Slows down training

▪ Weights have to keep figuring out how to respond to different activations

If we can keep neuron activations (more) normally distributed, weights can 
settle down more quickly
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Batch Normalization

Idea: normalize (“whiten”) the activations of each layer

Then add learnable “weight” and “bias” terms for final output

𝐵𝑁 𝑎 𝑙 is what gets passed to next layer

Note: paper uses 𝑥 and 𝑦 to refer to initial activations and final activations.
Changed here for consistency with class

ො𝑎(𝑙) =
𝑎(𝑙) − ത𝑎(𝑙)

𝑉𝑎𝑟 𝑎 𝑙 + 𝜖 Epsilon 𝝐 prevents divide by zero

𝐵𝑁 𝑎 𝑙 = 𝛾ො𝑎 𝑙 + 𝛽
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Batch norm: training vs final

During training, get mean (ത𝑎(𝑙)) and variance (𝑉𝑎𝑟(𝑎 𝑙 )) of activations w.r.t. 
training batch (not single example)

After training, get mean and variance of activations over the entire training set. 

Alternative: keep moving average of mean/variance during training.
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Implementation Note

With batch normalization, we no longer need our standard bias term, 𝑏

Due to the normalization subtracting the mean, the bias term gets 
cancelled out

Simply need weights 𝑊(𝑙−1)

𝑧(𝑙) = 𝑎 𝑙−1 𝑊 𝑙−1 + 𝑏 or    𝑧(𝑙) = 𝑐𝑜𝑛𝑣(𝑎 𝑙−1 𝑊 𝑙−1 + 𝑏)

𝑧(𝑙) = 𝑎 𝑙−1 𝑊 𝑙−1 or    𝑧(𝑙) = 𝑐𝑜𝑛𝑣(𝑎 𝑙−1 𝑊 𝑙−1 )
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Batch Normalization in TensorFlow

Method 1: Manually

z = tf.matmul(a_prev, W)
a = tf.nn.relu(z)

a_mean, a_var = tf.nn.moments(a, [0])

scale = tf.Variable(tf.ones([depth/channels]))
beta = tf.Variable(tf.zeros ([depth/channels]))

bn = tf.nn.batch_normalizaton(a, a_mean, a_var, beta, scale, 1e-3)

For testing, replace a_mean, a_var with full training statistics
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Batch Normalization in TensorFlow

Method 2: Built-in layer function

z = tf.matmul(a_prev, W)
a = tf.nn.relu(z)

bn = tf.layers.batch_normalization(a) 

▪ Keeps a decaying average of activation mean and variance

▪ Much simpler than doing manually

▪ Can still replace with full training mean/variance if desired
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Results of Batch Normalization

Speeds up training dramatically

Enables increased learning rate with less chance of exploding gradients

Reduces effectiveness/need for dropout

Final model is more accurate

In summary: use batch normalization.



Deeper Networks and Receptive Field
VGGNet
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VGG Net

Very Deep Convolutional Networks for Large-Scale Image 
Recognition

▪ Karen Simonyan and Andrew Zisserman, 2014

Problem: networks involve many manual decisions

How to choose between different size convolutions?

Idea: Simplify network and add many more layers
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3

Idea: Each subsequent 3x3 convolution effectively “sees” a larger portion of the inputs
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3

A single output in Layer 2 is the result of “seeing” a 3x3 grid from Layer 1
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3

We can say that the “receptive field” of layer 2 is 3x3.
Each output has been influenced by a 3x3 patch of inputs. 
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3

What about on layer 3?
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3

This output on Layer 3 uses a 3x3 patch from layer 2.
How much from layer 1 does it use?
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3
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Receptive field

(Input)

Layer 1 Layer 2 Layer 3

Each square in layer 3 “sees” 
a 5x5 grid from layer 1.
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Receptive Field

Two 3x3, stride 1 convolutions in a row is effectively a 5x5

Three 3x3 convolutions is effectively a 7x7 convolution

Benefit: fewer parameters!

3 × 3 × 𝐶 × 𝐶 = 9𝐶2 7 × 7 × 𝐶 × 𝐶 = 49𝐶2

One 3x3 layer One 7x7 layer

3 × (9𝐶2) = 27𝐶2

Three 3x3 layers

assume C input/output channels

49𝐶2  27𝐶2  ≈45% reduction!
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Ramifications of VGGNet

One of the first papers to experiment with many layers

▪ More is better!

Can use multiple 3x3 convolutions to simulate larger kernels with 
fewer parameters

Served as ”base model” for future works




