

2

Training huge models is a bottleneck

Requires managing huge dataset

Takes a long time  more difficult to tune hyperparameters

Expensive

▪ Many hours on rented GPU instance(s)

▪ Electricity cost on owned hardware

But we want to use powerful models for our own problems

3

Transfer Learning

Idea: layers in trained model might generalize

If we just change the later layers, can use previously trained model to solve

new problem!

Nice thing: many pre-trained models available

4

Our general CNN template

Convolutions

Fully Connected

5

What if the most decision-making for
classification comes at final layer?

Convolutions

Fully Connected

softmax classifier

6

We could simply use the rest of the network as
is and learn weights for a new final layer

Convolutions

Fully Connected

new classifier

softmax classifier

7

We only train weights for the last layer

The rest stay constant (can also train a bit for fine-tuning)

Learn
weights

here

8

This technique is called transfer learning

Bootstrap your custom model from similar
Saves days or weeks of training time

9

Transfer Learning in TensorFlow (classification)

1. Get handle to output from second-to-last layer

2. Create a new fully connected layer

▪ Number of neurons equal to the number of output classes

3. Create new softmax cross-entropy loss

4. Create a training op to minimize the new loss

▪ Set var_list parameter to be just the new layer variables

5. Train with new data!

Accessing Ops and tensors

11

Accessing arbitrary Operations/Tensors

In general, we have been simply holding onto pointers for our Tensor
objects in TensorFlow:

c = tf.multiply(a, b) # c is a Tensor object

But what if we don’t have pointer due to using pre-built models or layer functions
which don’t return handles?

12

Accessing arbitrary Operations/Tensors

graph.get_operation_by_name()

graph.get_tensor_by_name()

functions allow us to get handles to Operations/Tensors by passing in a
string name:

with graph.as_default():

tf.multiply(a, b, name=‘mul’) # forgot to assign handle!

c = graph.get_tensor_by_name(‘mul:0’) # got Tensor handle!

13

Op names

Be careful when getting handles to Operations vs Tensors

Operation names are the names you pass in as name argument (they don’t
have number at end)

c_op = graph.get_operation_by_name(‘mul’)

14

Tensor names

Tensors have numeric suffix along with parent Op’s name

Number corresponds to the output index from Op

c = graph.get_tensor_by_name(‘mul:0’)

Some Ops have multiple output Tensors

▪ example: tf.nn.moments()

mean = graph.get_tensor_by_name(‘moments:0’)
var = graph.get_tensor_by_name(‘moments:1’)

Batch normalization
Ioffe and Szegedy

16

Internal Covariate Shift

Change in distributions of activations during training due to weights changing

Slows down training

▪ Weights have to keep figuring out how to respond to different activations

If we can keep neuron activations (more) normally distributed, weights can
settle down more quickly

17

Batch Normalization

Idea: normalize (“whiten”) the activations of each layer

Then add learnable “weight” and “bias” terms for final output

𝐵𝑁 𝑎 𝑙 is what gets passed to next layer

Note: paper uses 𝑥 and 𝑦 to refer to initial activations and final activations.
Changed here for consistency with class

ො𝑎(𝑙) =
𝑎(𝑙) − ത𝑎(𝑙)

𝑉𝑎𝑟 𝑎 𝑙 + 𝜖 Epsilon 𝝐 prevents divide by zero

𝐵𝑁 𝑎 𝑙 = 𝛾ො𝑎 𝑙 + 𝛽

18

Batch norm: training vs final

During training, get mean (ത𝑎(𝑙)) and variance (𝑉𝑎𝑟(𝑎 𝑙)) of activations w.r.t.
training batch (not single example)

After training, get mean and variance of activations over the entire training set.

Alternative: keep moving average of mean/variance during training.

19

Implementation Note

With batch normalization, we no longer need our standard bias term, 𝑏

Due to the normalization subtracting the mean, the bias term gets
cancelled out

Simply need weights 𝑊(𝑙−1)

𝑧(𝑙) = 𝑎 𝑙−1 𝑊 𝑙−1 + 𝑏 or 𝑧(𝑙) = 𝑐𝑜𝑛𝑣(𝑎 𝑙−1 𝑊 𝑙−1 + 𝑏)

𝑧(𝑙) = 𝑎 𝑙−1 𝑊 𝑙−1 or 𝑧(𝑙) = 𝑐𝑜𝑛𝑣(𝑎 𝑙−1 𝑊 𝑙−1)

20

Batch Normalization in TensorFlow

Method 1: Manually

z = tf.matmul(a_prev, W)
a = tf.nn.relu(z)

a_mean, a_var = tf.nn.moments(a, [0])

scale = tf.Variable(tf.ones([depth/channels]))
beta = tf.Variable(tf.zeros ([depth/channels]))

bn = tf.nn.batch_normalizaton(a, a_mean, a_var, beta, scale, 1e-3)

For testing, replace a_mean, a_var with full training statistics

21

Batch Normalization in TensorFlow

Method 2: Built-in layer function

z = tf.matmul(a_prev, W)
a = tf.nn.relu(z)

bn = tf.layers.batch_normalization(a)

▪ Keeps a decaying average of activation mean and variance

▪ Much simpler than doing manually

▪ Can still replace with full training mean/variance if desired

22

Results of Batch Normalization

Speeds up training dramatically

Enables increased learning rate with less chance of exploding gradients

Reduces effectiveness/need for dropout

Final model is more accurate

In summary: use batch normalization.

Deeper Networks and Receptive Field
VGGNet

24

VGG Net

Very Deep Convolutional Networks for Large-Scale Image
Recognition

▪ Karen Simonyan and Andrew Zisserman, 2014

Problem: networks involve many manual decisions

How to choose between different size convolutions?

Idea: Simplify network and add many more layers

25

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

Idea: Each subsequent 3x3 convolution effectively “sees” a larger portion of the inputs

26

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

A single output in Layer 2 is the result of “seeing” a 3x3 grid from Layer 1

27

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

We can say that the “receptive field” of layer 2 is 3x3.
Each output has been influenced by a 3x3 patch of inputs.

28

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

What about on layer 3?

29

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

This output on Layer 3 uses a 3x3 patch from layer 2.
How much from layer 1 does it use?

30

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

31

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

32

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

33

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

34

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

35

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

36

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

37

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

38

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

39

Receptive field

(Input)

Layer 1 Layer 2 Layer 3

Each square in layer 3 “sees”
a 5x5 grid from layer 1.

40

Receptive Field

Two 3x3, stride 1 convolutions in a row is effectively a 5x5

Three 3x3 convolutions is effectively a 7x7 convolution

Benefit: fewer parameters!

3 × 3 × 𝐶 × 𝐶 = 9𝐶2 7 × 7 × 𝐶 × 𝐶 = 49𝐶2

One 3x3 layer One 7x7 layer

3 × (9𝐶2) = 27𝐶2

Three 3x3 layers

assume C input/output channels

49𝐶2  27𝐶2  ≈45% reduction!

41

Ramifications of VGGNet

One of the first papers to experiment with many layers

▪ More is better!

Can use multiple 3x3 convolutions to simulate larger kernels with
fewer parameters

Served as ”base model” for future works

