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What next?

 Given an example (or group of examples), we know how to compute 
the derivative for each weight.

 How exactly do we update the weights?

 How often?  (after each training data point? after all the training 
data points?)
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What next?—Gradient Descent

 W_new = W_old - lr * derivative

 Classical approach—get derivative for entire data set, then take a step in 
that direction

 Pros: Each step is informed by all the data

 Cons: Very slow, especially as data gets big
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Another approach: Stochastic Gradient Descent

 Get derivative for just one point, and take a step in that direction

 Steps are “less informed” but you take more of them

 Should “balance out”

 Probably want a smaller step size

 Also helps “regularize”
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Compromise approach: Mini-batch

 Get derivative for a ”small” set of points, then take a step in that direction

 Typical mini batch sizes are 16, 32

 Strikes a balance between two extremes
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Comparison of Batching Approaches
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Batching Terminology

Full-batch: 
Use entire data set to compute gradient before updating

Mini-batch: 
Use a smaller portion of data (but more than single example) to compute gradient before 
updating

Stochastic Gradient Descent (SGD): 
Use a single example to compute gradient before updating (though sometimes people 
use SGD to refer to minibatch, also)
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Batching Terminology

 An Epoch refers to a single pass through all of the training data.

 In full batch gradient descent, there would be one step taken per epoch.

 In SGD / Online learning, there would be n steps taken per epoch (n = 
training set size)

 In Minibatch there would be (n/batch size) steps taken per epoch

 When training, it is common to refer to the number of epochs needed for 
the model to be “trained”.
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Note on Data Shuffling

 To avoid any cyclical movement and aid convergence, it is recommended 
to shuffle the data after each epoch.

 This way, the data is not seen in the same order every time, and the 
batches are not the exact same ones.
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Feedforward Neural Network
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Training in Action

Step 1
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Training in Action

Step 2
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Training in Action

Step 3
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Training in Action

Step 4



Batch 5

Batch 4

Batch 3

Batch 2

Batch 1

15

Training in Action

Step 5
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Training in Action

First Epoch Complete!
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Shuffle the Data!
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Shuffle the Data!

Step 6
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The Keras Package 

 Keras allows easy construction, training, and execution of Deep Neural 
Networks

 Written in Python, and allows users to configure complicated models 
directly in Python

 Uses either Tensorflow or Theano “under the hood”

 Uses either CPU or GPU for computation

 Uses numpy data structures, and a similar command structure to scikit-
learn (model.fit , model.predict, etc.)
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Typical Command Structure in Keras

 Build the structure of your network.

 Compile the model, specifying your loss function, metrics, and optimizer 
(which includes the learning rate).

 Fit the model on your training data (specifying batch size, number of 
epochs)

 Predict on new data

 Evaluate your results
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Building the model

 Keras provides two approaches to building the structure of your model:

 Sequential Model: allows a linear stack of layers – simpler and more 
convenient if model has this form

 Functional API: more detailed and complex, but allows more complicated 
architectures

 We will focus on the Sequential Model.
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Running Example, this time in Keras

Let’s build this Neural Network structure shown below in Keras:

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
 𝑦1

 𝑦2

 𝑦3
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Keras—Sequential Model

First, import the Sequential function and initialize your model object:

from keras.models import Sequential

model = Sequential()
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Keras—Sequential Model

Then we add layers to the model one by one.

from keras.layers import Dense, Activation 

# For the first layer, specify the input dimension

model.add(Dense(units=4, input_dim=3)) 

# Specify an activation function

model.add(Activation(sigmoid'))

# For subsequent layers, the input dimension is presumed from

# the previous layer 

model.add(Dense(units=4))

model.add(Activation(sigmoid'))

model.add(Dense(units=3))

model.add(Activation('softmax'))
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Multiclass Classification with Neural Networks

 For binary classification problems, we have a final layer with a single node 
and a sigmoid activation.

 This has many desirable properties
 Gives an output strictly between 0 and 1

 Can be interpreted as a probability

 Derivative is “nice”

 Analogous to logistic regression

 Is there a natural extension of this to a multiclass setting?
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Multiclass Classification 
with Neural Networks
 Reminder: one hot encoding for 

categories

 Take a vector with length equal to 
the number of categories

 Represent each category with one 
at a particular position (and zero 
everywhere else)

1
0
0

0
1
0

0
0
1

Cat Dog Toaster
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Multiclass Classification with Neural Networks

 For multiclass classification problems, let the final layer be a vector with 
length equal to the number of possible classes.

 Extension of sigmoid to multiclass is the softmax function.

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

 𝑘=1
𝐾 𝑒𝑧𝑘

 Yields a vector with entries that are between 0 and 1, and sum to 1
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Multiclass Classification with Neural Networks

 For loss function use “categorical cross entropy”

 This is just the log-loss function in disguise

𝐶. 𝐸.= − 

𝑖=1

𝑛

𝑦𝑖log(  𝑦𝑖)

𝜕𝐶. 𝐸.

𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥
⋅
𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝜕𝑧𝑖
=  𝑦𝑖 − 𝑦𝑖

 Derivative has a nice property when used with softmax
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Ways to scale inputs

 Linear scaling to the interval [0,1]

 Linear scaling to the interval [-1,1]

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑖 = 2
𝑥𝑖 −  𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1
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Ways to scale inputs

 Standardization (making variable approx. std. normal)

𝑥𝑖 =
𝑥𝑖 −  𝑥

𝜎
; 𝜎 =

1

𝑛
 

𝑖=1

𝑛

𝑥𝑖 −  𝑥 2




