(intel') Nervana Al Academ

DETAILS OF TRAINING
R NEURAL NETS

e 2

\

WHAT NEXT?

= Given an example (or group of examples), we know how to compute
the derivative for each weight.

* How exactly do we update the weights?

= How often? (after each training data point? after all the training
data points?)

i@ Nervana Al Academy \ 2

WHAT NEXT?—GRADIENT DESCENT

W_new = W _old - lr * derivative

= Classical approach—get derivative for entire data set, then take a step in
that direction

* Pros: Each step is informed by all the data

= Cons: Very slow, especially as data gets big

in/téb Nervana Al Academy \ 3

ANOTHER APPROACH: STOCHASTIC GRADIENT DESCENT

= Get derivative for just one point, and take a step in that direction
= Steps are “less informed” but you take more of them

= Should “balance out”

= Probably want a smaller step size

= Also helps “regularize”

(intel) Nervana Al Academy \ 4

COMPROMISE APPROACH: MINI-BATCH

= Get derivative for a "small” set of points, then take a step in that direction
= Typical mini batch sizes are 16, 32

= Strikes a balance between two extremes

(intel) Nervana Al Academy \ 5

COMPARISON OF BATCHING APPROACHES

Stochastic (online) Mini-batch Full batch

1 eesssssssssssssssssssssssssm— Batch siz

\gﬂ

N

Faster, less accurate step Slower, more accurate step

BATCHING TERMINOLOGY

Full-batch:
Use entire data set to compute gradient before updating

Mini-batch:

Use a smaller portion of data (but more than single example) to compute gradient before
updating

Stochastic Gradient Descent (SGD):
Use a single example to compute gradient before updating (though sometimes people
use SGD to refer to minibatch, also)

i@ Nervana Al Academy \ 7

BATCHING TERMINOLOGY

i@ Nervana Al Academy \ 8

An Epoch refers to a single pass through all of the training data.
In full batch gradient descent, there would be one step taken per epoch.

In SGD / Online learning, there would be n steps taken per epoch (n =
training set size)

In Minibatch there would be (n/batch size) steps taken per epoch

When training, it is common to refer to the number of epochs needed for
the model to be “trained”.

NOTE ON DATA SHUFFLING

= To avoid any cyclical movement and aid convergence, it is recommended
to shuffle the data after each epoch.

= This way, the data is not seen in the same order every time, and the
batches are not the exact same ones.

i@ Nervana Al Academy \ 9

FEEDFORWARD NEURAL NETWORK

TRAINING IN ACTION

]~Step 1

TRAINING IN ACTION

TRAINING IN ACTION

sten ‘JJ

TRAINING IN ACTION

o 2

TRAINING IN ACTION

}Step 5

TRAINING IN ACTION

First Epoch Complete! N—
N—

SHUFFLE THE DATA!

m

..-
e

SHUFFLE THE DATA!

I_l_l
n
~+
M
©
(o))

R
.~'
E—
—)
——

THE KERAS PACKAGE

= Keras allows easy construction, training, and execution of Deep Neural
Networks

= Written in Python, and allows users to configure complicated models
directly in Python

= Uses either Tensorflow or Theano “under the hood”

= Uses either CPU or GPU for computation

= Uses numpy data structures, and a similar command structure to scikit-
learn (model.fit, model.predict, etc.)

i@ Nervana Al Academy \ 19

TYPICAL COMMAND STRUCTURE IN KERAS

* Build the structure of your network.

= Compile the model, specifying your loss function, metrics, and optimizer
(which includes the learning rate).

» Fit the model on your training data (specifying batch size, number of
epochs)

= Predict on new data

= Evaluate your results

in/téb Nervana Al Academy \ 20

BUILDING THE MODEL

= Keras provides two approaches to building the structure of your model:

= Sequential Model: allows a linear stack of layers — simpler and more
convenient if model has this form

* Functional APl: more detailed and complex, but allows more complicated
architectures

= We will focus on the Sequential Model.

interNervana'AIAcademy \ 21

RUNNING EXAMPLE, THIS TIME IN KERAS

Let’s build this Neural Network structure shown below in Keras:

0} v 0}

i dln

KERAS—SEQUENTIAL MODEL

First, import the Sequential function and initialize your model object:

from keras.models import Sequential
model = Sequential ()

(intel) Nervana Al Academy \ 23

KERAS—SEQUENTIAL MODEL

Then we add layers to the model one by one.

from keras.layers import Dense, Activation

For the first layer, specify the input dimension
model.add (Dense (units=4, input dim=3))

Specify an activation function
model.add (Activation (sigmoid'))

For subsequent layers, the input dimension 1s presumed from
the previous layer

model .add (Dense (units=4))

model.add (Activation (sigmoid'))

model.add (Dense (units=3))

model.add (Activation ('softmax"'))

interNervana‘AIAcademy \ 24

MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

= For binary classification problems, we have a final layer with a single node
and a sigmoid activation.

= This has many desirable properties
= Gives an output strictly between O and 1

= Can be interpreted as a probability
Derivative is “nice”

= Analogous to logistic regression

= |s there a natural extension of this to a multiclass setting?

(intel) Nervana Al Academy \ 25

MULTICLASS CLASSIFICATION
WITH NEURAL NETWORKS

= Reminder: one hot encoding for
categories
= Take a vector with length equal to
the number of categories
= Represent each category with one
at a particular position (and zero
everywhere else) Toaster

intel'Nervana"AIAcademy . 26

MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

= For multiclass classification problems, let the final layer be a vector with
length equal to the number of possible classes.

= Extension of sigmoid to multiclass is the softmax function.

eZi

Zlk(zl ezk

" softmax(z;) =

= Yields a vector with entries that are between 0 and 1, and sum to 1

(intel) Nervana Al Academy \ 27

MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

= For loss function use “categorical cross entropy”

= This is just the log-loss function in disguise

n
C.E.==) yilog(§)
=1

= Derivative has a nice property when used with softmax

JdC.E. Odsoftmax
aZi _yl yl

dsoftmax |

(intel) Nervana Al Academy ~ 28

WAYS T0 SCALE INPUTS

» Linear scaling to the interval [0,1]

Xi — Xmin

Xl' =
Xmax — Xmin

» Linear scaling to the interval [-1,1]

(intel) Nervana Al Academy \ 29

WAYS T0 SCALE INPUTS

» Standardization (making variable approx. std. normal)

n

Xi — X 1 _\ 9

Xi =) 0O = Ez(xl — X)
=1

(intel) Nervana Al Academy \ 30

