

2

AlexNet

▪ Created in 2012 for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

▪ Task: predict the correct label from among 1000 classes

▪ Dataset: around 1.2 million images

▪ Considered the “flash point” for modern deep learning

▪ Demolished the competition

▪ Top 5 error rate of 15.4%

▪ Next best: 26.2%

3

AlexNet—Model Diagram

4

AlexNet—Details

▪ They performed data augmentation for training

▪ Includes cropping, horizontal flipping, and other manipulations

5

AlexNet—Details

▪ They performed data augmentation for training

– Cropping, horizontal flipping, and other manipulations

▪ Basic Template:

– Convolutions with ReLUs

– Sometimes add maxpool after convolutional layer

– Fully connected layers at the end before a softmax classifier

6

VGG

▪ Simplify Network Structure

▪ Avoid Manual Choices of Convolution Size

▪ Very Deep Network with 3x3 Convolutions

▪ These “effectively” give rise to larger convolutions

Reference: Very Deep Convolutional Networks for Large-Scale Image Recognition

Karen Simonyan and Andrew Zisserman, 2014

7

VGG16 Diagram

8

vgg

(Input)

Layer 1 Layer 2 Layer 3

9

vgg

(Input)

Layer 1 Layer 2 Layer 3

10

vgg

(Input)

Layer 1 Layer 2 Layer 3

11

vgg

(Input)

Layer 1 Layer 2 Layer 3

We can say that the “receptive field” of layer 2 is 3x3.
Each output has been influenced by a 3x3 patch of inputs.

12

vgg

(Input)

Layer 1 Layer 2 Layer 3

What about on layer 3?

13

vgg

(Input)

Layer 1 Layer 2 Layer 3

This output on Layer 3 uses a 3x3 patch from layer 2.
How much from layer 1 does it use?

14

vgg

(Input)

Layer 1 Layer 2 Layer 3

15

vgg

(Input)

Layer 1 Layer 2 Layer 3

16

vgg

(Input)

Layer 1 Layer 2 Layer 3

17

vgg

(Input)

Layer 1 Layer 2 Layer 3

18

vgg

(Input)

Layer 1 Layer 2 Layer 3

19

vgg

(Input)

Layer 1 Layer 2 Layer 3

20

vgg

(Input)

Layer 1 Layer 2 Layer 3

21

vgg

(Input)

Layer 1 Layer 2 Layer 3

22

vgg

(Input)

Layer 1 Layer 2 Layer 3

23

vgg

(Input)

Layer 1 Layer 2 Layer 3

Each square in layer 3 “sees”
a 5x5 grid from layer 1.

24

vgg

Two 3x3, stride 1 convolutions in a row one 5x5.

Three 3x3 convolutions one 7x7 convolution.

Benefit: fewer parameters.

3 × 3 × 𝐶 × 𝐶 = 9𝐶2 7 × 7 × 𝐶 × 𝐶 = 49𝐶2
One 3x3 layer One 7x7 layer

3 × (9𝐶2) = 27𝐶2
Three 3x3 layers

49𝐶2 27𝐶2 ≈45% reduction!

25

vgg

▪ One of the first architectures to experiment with many layers (More is better!)

▪ Can use multiple 3x3 convolutions to simulate larger kernels with fewer parameters

▪ Served as ”base model” for future works

26

Inception

▪ Szegedy et al 2014

▪ Idea: network would want to use different receptive fields

▪ Want computational efficiency

▪ Also want to have sparse activations of groups of neurons

▪ Hebbian principle: “Fire together, wire together”

▪ Solution: Turn each layer into branches of convolutions

▪ Each branch handles smaller portion of workload

▪ Concatenate different branches at the end

27

Inception

1x1
convolutions

3x3
convolutions

5x5
convolutions

Filter
concatenation

Previous layer

Basic idea: replace single 3x3
convolutions with module.

3x3 max
pooling

28

Inception

1x1
convolutions

3x3
convolutions

5x5
convolutions

Filter
concatenation

Previous layer

Problem: reducing filters from
previous layer via 3x3 and 5x5
convolutions is inefficient.

3x3 max
pooling

29

Inception

1x1
convolutions

3x3
convolutions

5x5
convolutions

1x1
convolutions

1x1
convolutions

1x1
convolutions

3x3 max
pooling

Filter
concatenation

Previous layer

30

Inception

Instead, reduce parameters by reducing
filter depth with 1x1 convolutions.

1x1
convolutions

3x3
convolutions

5x5
convolutions

1x1
convolutions

1x1
convolutions

1x1
convolutions

3x3 max
pooling

Filter
concatenation

Previous layer

31

Inception

We also control the number of filters
from max pool branch with a 1x1 conv.

1x1
convolutions

3x3
convolutions

5x5
convolutions

1x1
convolutions

1x1
convolutions

1x1
convolutions

3x3 max
pooling

Filter
concatenation

Previous layer

32

Inception

This whole “block” serves the function
of a previous convolutional layer.

1x1
convolutions

3x3
convolutions

5x5
convolutions

1x1
convolutions

1x1
convolutions

1x1
convolutions

3x3 max
pooling

Filter
concatenation

Previous layer

33

Inception V3 schematic

34

ResNet—Motivation

Issue: Deeper Networks performing worse on training data! (as well as test data)

35

ResNet

▪ Surprising because deeper networks should overfit more

▪ So what’s happening?

▪ Early layers of Deep Networks are very slow to adjust

▪ Analogous to “Vanishing Gradient” issue

▪ In theory, should be able to just have an “identity” transformation that makes the
deeper network behave like a shallower one

36

ResNet

▪ Assumption: best transformation over multiple
layers is close to ℱ(𝑥)+𝑥

▪ 𝑥 input to series of layers

▪ ℱ(𝑥) function represented by several layers
(such as convs)

▪ Enforce this by adding “shortcut connections”

▪ Add the inputs from an earlier layer to the
output of current layer

37

ResNet

▪ Add previous layer back in to current layer!

▪ Similar idea to “boosting”

