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AlexNet

▪ Created in 2012 for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

▪ Task: predict the correct label from among 1000 classes

▪ Dataset: around 1.2 million images

▪ Considered the “flash point” for modern deep learning

▪ Demolished the competition

▪ Top 5 error rate of 15.4%

▪ Next best: 26.2%
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AlexNet—Model Diagram
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AlexNet—Details

▪ They performed data augmentation for training

▪ Includes cropping, horizontal flipping, and other manipulations
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AlexNet—Details

▪ They performed data augmentation for training

– Cropping, horizontal flipping, and other manipulations

▪ Basic Template:

– Convolutions with ReLUs

– Sometimes add maxpool after convolutional layer

– Fully connected layers at the end before a softmax classifier
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VGG

▪ Simplify Network Structure

▪ Avoid Manual Choices of Convolution Size

▪ Very Deep Network with 3x3 Convolutions

▪ These “effectively” give rise to larger convolutions

Reference: Very Deep Convolutional Networks for Large-Scale Image Recognition

Karen Simonyan and Andrew Zisserman, 2014
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VGG16 Diagram
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vgg
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vgg
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vgg

(Input)

Layer 1 Layer 2 Layer 3

We can say that the “receptive field” of layer 2 is 3x3.
Each output has been influenced by a 3x3 patch of inputs. 
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vgg

(Input)

Layer 1 Layer 2 Layer 3

What about on layer 3?



13

vgg

(Input)

Layer 1 Layer 2 Layer 3

This output on Layer 3 uses a 3x3 patch from layer 2.
How much from layer 1 does it use?
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vgg
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vgg
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vgg
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vgg
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vgg

(Input)

Layer 1 Layer 2 Layer 3



23

vgg

(Input)

Layer 1 Layer 2 Layer 3

Each square in layer 3 “sees” 
a 5x5 grid from layer 1.
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vgg

Two 3x3, stride 1 convolutions in a row  one 5x5.

Three 3x3 convolutions  one 7x7 convolution.

Benefit: fewer parameters.

3 × 3 × 𝐶 × 𝐶 = 9𝐶2 7 × 7 × 𝐶 × 𝐶 = 49𝐶2
One 3x3 layer One 7x7 layer

3 × (9𝐶2) = 27𝐶2
Three 3x3 layers

49𝐶2  27𝐶2  ≈45% reduction!
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vgg

▪ One of the first architectures to experiment with many layers (More is better!)

▪ Can use multiple 3x3 convolutions to simulate larger kernels with fewer parameters

▪ Served as ”base model” for future works
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Inception

▪ Szegedy et al 2014

▪ Idea: network would want to use different receptive fields

▪ Want computational efficiency

▪ Also want to have sparse activations of groups of neurons

▪ Hebbian principle: “Fire together, wire together”

▪ Solution: Turn each layer into branches of convolutions

▪ Each branch handles smaller portion of workload

▪ Concatenate different branches at the end
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Inception

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

Filter 
concatenation

Previous layer

Basic idea: replace single 3x3 
convolutions with module.

3x3 max 
pooling
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Inception

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

Filter 
concatenation

Previous layer

Problem: reducing filters from 
previous layer via 3x3 and 5x5 
convolutions is inefficient.

3x3 max 
pooling
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Inception
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Inception

Instead, reduce parameters by reducing 
filter depth with 1x1 convolutions.

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

1x1 
convolutions

1x1 
convolutions

1x1 
convolutions

3x3 max 
pooling

Filter 
concatenation

Previous layer
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Inception

We also control the number of filters 
from max pool branch with a 1x1 conv.

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

1x1 
convolutions

1x1 
convolutions

1x1 
convolutions

3x3 max 
pooling

Filter 
concatenation

Previous layer



32

Inception

This whole “block” serves the function 
of a previous convolutional layer.

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

1x1 
convolutions

1x1 
convolutions

1x1 
convolutions

3x3 max 
pooling

Filter 
concatenation

Previous layer
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Inception V3 schematic
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ResNet—Motivation

Issue: Deeper Networks performing worse on training data! (as well as test data)
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ResNet

▪ Surprising because deeper networks should overfit more

▪ So what’s happening?

▪ Early layers of Deep Networks are very slow to adjust

▪ Analogous to “Vanishing Gradient” issue

▪ In theory, should be able to just have an “identity” transformation that makes the 
deeper network behave like a shallower one
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ResNet

▪ Assumption: best transformation over multiple 
layers is close to ℱ(𝑥)+𝑥

▪ 𝑥 input to series of layers

▪ ℱ(𝑥)  function represented by several layers 
(such as convs)

▪ Enforce this by adding “shortcut connections”

▪ Add the inputs from an earlier layer to the 
output of current layer
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ResNet

▪ Add previous layer back in to current layer!

▪ Similar idea to “boosting”




