
INTRODUCTION TO ROBOT LEARNING
HENI BEN AMOR, PH.D.

ARIZONA STATE UNIVERSITY

The development of this course was supported by
an Intel AI Academy grant. We thank the sponsor
for the continuing support of open-source efforts
in research and education.

Disclaimer: These slides were originally created for the “Robot Learning” class at
Arizona State University and have been released as open-source material under the
MIT license. No guarantees regarding completeness or correctness are made.

Robotics Today

Towards Next-Generation Robots

Robots Today

● Structured environment
● Static in position and task
● Pre-programmed behavior
● Limited vision capabilities
● Limited human interaction

Next-Generation Robots

● Unstructured environment
● Navigation and mobility
● Adaptation to changes
● Safe human-robot contact
● Longterm autonomy

EnvironmentRobot

Programmer

●Time consuming
●Expert knowledge required
●Foresee all possible situations
●No adaptation to changes

Machine
Learning

● Time Consuming
● Expert Knowledge
● Foresee all possible situations

What is Robot Learning?

Challenges

● Learning is an iterative process

● Automatization of the learning process

● Robot wear and tear

● Simulation ≠ reality a.k.a. reality gap

● Stochastic, dynamic environments

● Often involves human contact → safety

Comparison to Traditional
Machine Learning Scenarios

● Data is coming in at 20Hz to 1000Hz

● Continuous stream of data, online

● High dimensionality of controlled system

● Learning needs to be sample efficient

● Learning needs to be robust to shifting input
distribution

● Learning needs to detect relevant features

[Schaal and Atkeson, 2010] “Learning Control in Robotics”

Robot Learning: Applications

Learning to Control

Examples:
➢ Learning Motor Skills
➢ Inverse Kinematics
➢ Forward Dynamics
➢ Inverse Dynamics

State Estimation

Examples:
➢ Robot States
➢ Sensor Fusion
➢ Human Intention
➢ Detecting Events

Metrics & Conditions

Examples:
➢ Pre- / Post-conditions
➢ Desirability of States
➢ Stability of Grasp

Learning Perception

Examples:
➢ Detecting Objects
➢ Segmentation
➢ Recognition
➢ Tracking

 Control Architectures

Examples:
➢ Hierarchies of Behaviors
➢ Behavior Switching
➢ Multi-Robot Motion

Morphologies

Examples:
➢ Robot Design
➢ Kinematic Structure
➢ Emergent Self-Model

Examples

(c) SpringActive

Our Robot: To-be-named

Brain:
Requires algorithms for
navigation and
collision avoidance

Arms:
Requires algorithms for
grasping and manipulation

Uniwheel:
Requires algorithms for
stabilization and control

Robot Control

● We send control commands to robot for execution

● Position control (PC): command specifies the
joint angle position the robot should take on

● Torque control (TC): command specifies the
torques to be executed by the robot

● Torque control enables a richer variety of motor
skills but is more challenging in implementation

● We will use position control, e.g.
send angle δ of lower arm position δ

Biological Neural Networks

● Human brain ~86,000,000,000 neurons

● Each neuron connected to ~1000 others

● Electrochemical inputs

● Only fire if signal exceeds voltage threshold

● Signals are spikes

● All-or-nothing response

Linear Perceptron

● Inspired by biological neuron

Σ

Input 1

Input 2

Bias 1

Output

Linear Perceptron

● Inspired by biological neuron

Σ

Input 1

Input 2

Bias 1

Output

Linear Perceptron

● Inspired by biological neuron

Σ

Input 1

Input 2

Bias 1

Output

Linear Perceptron

● Inspired by biological neuron

Σ

Input 1

Input 2

Bias 1

Output

Linear Perceptron

● Inspired by biological neuron

Σ

Input 1

Input 2

Bias 1

Output

Learning = determining the weights (for now)

Nonlinear Perceptron

● Add nonlinear activation function

● Output is calculated via:

● Possible activation function:

Input
1

Output
zΣ

Input 1

Input 2

Bias 1

Sigmoid Units

● A soft version of a threshold unit

Nice property

Multi Layer Perceptron

● Artificial Neural Network

● Hierarchy of neurons

● Input layer, hidden layers, output layer

● 2 Layers = all continuous functions

● 3+ Layers = all functions

Input units

Hidden units

Ouput units

Neural Networks for Robot AI

● We can train ANNs to impart robot with decision-
making skills

Example 1: Learning to Predict Collision

● Example task for Deep Learning in robotics

● Learning a predictive model of collisions

● Input to neural network: distance sensor values

● Output of neural network: {collision, !collision}

Top View

 Wall

Current time step

Prediction of next time step

Example 1: Creating the Network

● Our goal: predict collision before they occur

● Input to neural network: distance sensor values

● Output of neural network: {collision, !collision}

● Network output will be in the range [0..1]

Top View

Object

Distance from
laser sensors

Input units
(5 sensor values)

Ouput unit
(collision)

Hidden units
(200 neurons)

...

Example 1: Collecting Training Data

● Let the robot wander randomly

● Each step record: sensor values + {collision, !collision}

● Collision can be measured by a bumper sensor

Play Video

https://youtu.be/a4CDP-FcVbo

Example 1: Training the Network

● We want our ANN to predict collision

● We have training data where for each input we
have the corresponding desired output (label)

● This is called: supervised learning

● Now: change ANN weights to mimick labelled data

● To check accuracy of ANN we will test it on a set of
unseen data (test set)

Training set Test set

Supervised Learning

Backpropagation

● Given input and output learn weights

● Gradient descent minimizing quadratic error

● Aka minimize quadratic difference between target
and output of the network

Approach

● Given a set of training data

● Each sample a tuple

● Where is the input and is the desired output

● Train network such that

● Assumes labeled training data

● Typically labels are provided by human annotation

BP = Gradient Descent

● Calculate gradient of network

● Update weights according to gradient descent

● Update equation

Learning Rate Gradient

Gradient Calculation

● How to get partial derivatives:

 ?

● Apply chain rule:

j
i

Derivation of Gradient
Following [Russel, Norvig]

Difference to target Derivative of activation function Activation

Backpropagation Algorithm

● Initialize all weight randomly

● Until convergence do

● Input example and calculate network output

● For each output unit do

● Foe each hidden unit do

● Update weights

Ensuring Generalization

● Overfitting to data is bad

● Early stopping

Iteration

Error Test set

Training set

Training Test

K-Fold Cross-validation

● Divide data in K-folds

● Train and test on remaining fold

● True error is average of individual errors

Experiment 1

Experiment 2

Experiment 3

Experiment 4

All data samples

Neural Networks with PyTorch

● PyTorch is an open source machine learning tensor
library for Python

● Freely available under: http://pytorch.org/

● Wide range of networks and training algorithms

● Allows for dynamic networks

● Very accessible

● We will use it in the remainder of course

http://pytorch.org/

A Simple Network in PyTorch

● Defining a simple network

class Net(nn.Module):
 def __init__(self, input_size, hidden_size, num_classes):
 super(Net, self).__init__()
 self.fc1 = nn.Linear(input_size, hidden_size)
 self.relu = nn.ReLU()
 self.fc2 = nn.Linear(hidden_size, num_classes)

 def forward(self, x):
 out = self.fc1(x)
 out = self.relu(out)
 out = self.fc2(out)
 return out

net = Net(input_size, hidden_size, num_classes)

Frequently used Functions

Net.parameters() - Returns all the learnable parameters

nn.Relu() - Applies Rectified Linear Unit function element wise

nn.Linear(in_features,out_features) - Applies linear transformation to incoming data

nn.Module() - Neural Network Module in pytorch

The Loss Function

● A Loss function takes the (input, output) pair and
computes a measure which indicates how far away
the output is from the target

● There are several loss function that can be used.

● When we call loss.backward(), the whole graph is
differentiated w.r.t. the loss, and all Variables in the
graph will have their .grad Variable accumulated
with the gradient

 Let's use nn.MSELoss()
criterion = nn.MSELoss()
loss = criterion(output,target)
loss.backward()

Training the Weights of a Network

● The most frequent update rule used in practice is
stochastic gradient descent (SGD)

● Many sophisticated learning methods are also
implemented: Nesterov-SGD, Adam, RMSProp

● Torch.optim allows you to learning method

● optimizer.zero_grad() - zeros the gradient buffer
and optimizer.step() - updates the weights

optimizer = optim.SGD(net.parameters(), lr=0.01)
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()

Example 1: After Training

● Our goal was to predict collisions

● After training, we use network to predict collision

● If collision is imminent → turn away from direction

● If no collision → turn to goal location

Object

Distance from
laser sensors

Input units
(sensor values)

Hidden units

Ouput unit
(collision)

Example 1: During Training (Video)

Play Video

https://youtu.be/2nMF-WuFe2M

Example 1: After Training (Video)

Play Video

https://youtu.be/UivRvE9fbQs

Wall

Action-Conditioned Predictive Models

● Our neural network does not take into account the
robots action

● As a result it cannot disambiguate between
situations where collision is dependent on action

● Example scenario:

● Collision only occurs if
robot turns right!

Wall

Action-Conditioned Predictive Models

● Solution: add the action of the robot into the
predictive model

● Action becomes an input to the network

● Generally, action-conditioned predictive models
are functions of form

Wall

Action-Conditioned Predictive Models

sensor values

Hidden units
(200 neurons)

Ouput unit
(collision)

steering angle

...

Example Application

● Python code implementing the above example can
be found in folder “Supervised”

● The README includes instructions on learning and
testing a model

Faster Computation with Intel MKL

Open Source Version under: https://github.com/intel/mkl-dnn

https://github.com/intel/mkl-dnn

Summary

● We introduced supervised learning

● Used learning to predict robot collisions

● The network architecture defines input/output

● Learning the network weights with BackProp

● However, so far no memory

● Later we will introduce recurrent neural nets

The development of this course was supported by
an Intel AI Academy grant. We thank the sponsor
for the continuing support of open-source efforts
in research and education.

