LY, -

INTRODUCTION TO ROBOT LEARNING

HENI BEN AMOR, PH.D.
ARIZONA STATE UNIVERSITY

The development of this course was supported by
an Intel Al Academy grant. We thank the sponsor

for the continuing support of open-source efforts
In research and education.

Disclaimer: These slides were originally created for the “Robot Learning” class at
Arizona State University and have been released as open-source material under the
MIT license. No guarantees regarding completeness or correctness are made.

FSU

Robotics Today

Towards Next-Generation Robots

Robots Today

Structured environment

Static in position and task
Pre-programmed behavior
Limited vision capabilities
Limited human interaction

Next-Generation Robots

Unstructured environment
Navigation and mobility
Adaptation to changes
Safe human-robot contact
Longterm autonomy

What is Robot Learning?

Environment

Robot
‘ |I ‘ Machine

Challenges

Learning is an iterative process
Automatization of the learning process
Robot wear and tear

Simulation # reality a.k.a. reality gap
Stochastic, dynamic environments

Often involves human contact — safety

Comparison to Traditional
Machine Learning Scenarios

Data is coming in at 20Hz to 1000Hz
Continuous stream of data, online

High dimensionality of controlled system
Learning needs to be sample efficient

Learning needs to be robust to shifting input
distribution

Learning needs to detect relevant features

[Schaal and Atkeson, 2010] “Learning Control in Robotics”

FSU

Robot Learning: Applications

Learning to Control
Examples:
> Learning Motor Skills
> Inverse Kinematics

> Forward Dynamics
\> Inverse Dynamics

/

Learning Perception

Examples:
> Detecting Objects
> Segmentation
> Recognition
\> Tracking

\

State Estimation
E

xamples:
> Robot States
> Sensor Fusion
> Human Intention
\> Detecting Events .

Control Architectures

Examples:
> Hierarchies of Behaviors
> Behavior Switching
> Multi-Robot Motion

S

/

Metrics & Conditions

Examples:

> Pre- [/ Post-conditions

> Desirability of States
> Stability of Grasp

S

/

Morphologies

Examples:
> Robot Design
> Kinematic Structure
> Emergent Self-Model

&

/

Examples

»Brain:

Requires algorithms for
navigation and
collision avoidance

Arms:

Requires algorithms for
grasping and manipulation

Uniwheel:

Requires algorithms for
stabilization and control

Robot Control

We send control commands to robot for execution

Position control (PC): command specifies the
joint angle position the robot should take on

Torque control (TC): command specifies the
torques to be executed by the robot

Torque control enables a richer variety of motor
skills but is more challenging in implementation

We will use position control, e.qg.
send angle & of lower arm position

FSU

Biological Neural Networks

Human brain ~86,000,000,000 neurons

Each neuron connected to ~1000 others
Electrochemical inputs

Only fire if sighal exceeds voltage threshold
Signals are spikes

All-or-nothing response

Linear Perceptron

Inspired by biological neuron

Input 1

Input 2 » Output

Bias 1

Linear Perceptron

Inspired by biological neuron

Input 1 w1

w2

Input 2

» Output

w3 0 = wW1x1 + Wl + W3x3

Bias 1

Linear Perceptron

Inspired by biological neuron

Input 1 w1

w2

Input 2

» Output

w3 0 = W11 + WaZa + W33

3
Bias 1 0 = E :wkfﬁk
k=1

Linear Perceptron

Inspired by biological neuron

Input 1
Input 2 » Output
0 = W1T1 + W2T2 + W3T3
3
Bias 1 0 = E :wkfﬁk
k=1

O:WTX

Linear Perceptron

Inspired by biological neuron

Input 1
Input 2 » Output
0 = W1T1 + W2T2 + W3T3
3
Bias 1 O — Z WrT
k=1
0O = WTX

Learning = determining the weights (for now)

Fsi

Nonlinear Perceptron

Add nonlinear activation function ¢

Input 1 w1
w2
Input 2 Output
w3
Bias 1
Output is calculated via: o = ¢(w' x)
. L . B 1
Possible activation function: ¢(z) = T+ oxp(—2)

FSU

Sigmoid Units

A soft version of a threshold unit

0.8

0.6

0.4

0.2 1

\ \
2 4

1if 2>0
ﬂ@{Oﬁzgo

Nice property

09(2)

0z

= ¢(2)(1 = ¢(2))

Multi Layer Perceptron

Artificial Neural Network

Hierarchy of neurons

Input layer, hidden layers, output layer
2 Layers = all continuous functions

3+ Layers = all functions

Ouput units

Hidden units

Input units

Neural Networks for Robot Al

We can train ANNs to impart robot with decision-
making skills

Example 1: Learning to Predict Collision

Example task for Deep Learning in robotics
Learning a predictive model of collisions
Input to neural network: distance sensor values

Output of neural network: {collision, !collision}

Top View
Current time step

Prediction of next time step

Example 1: Creating the Network

Our goal: predict collision before they occur
Input to neural network: distance sensor values
Output of neural network: {collision, !collision}

Network output will be in the range [0..1]

Top View

Ouput unit
(collision)

Hidden units
(200 neurons)

L 4 &

Distance from

% laser sensors

Input units
(5 sensor values)

Example 1: Collecting Training Data

Let the robot wander randomly
Each step record: sensor values + {collision, !collision}

Collision can be measured by a bumper sensor

e
B

Play Video

https://youtu.be/a4CDP-FcVbo

Example 1: Training the Network

We want our ANN to predict collision

We have training data where for each input we
have the corresponding desired output (label)

This Is called: supervised learning
Now: change ANN weights to mimick labelled data

To check accuracy of ANN we will test it on a set of
unseen data (test set)

Supervised Learning

Backpropagation

Given input and output learn weights

Gradient descent minimizing quadratic error

1 N
B= o3 llas— il
1=1

Aka minimize quadratic difference between target
and output of the network

Approach

Given a set of training data
Each sample a tuple <x,t >
Where x is the input and t is the desired output

Train network such that
NN(x)~t VxeX

Assumes labeled training data
Typically labels are provided by human annotation

BP = Gradient Descent

Calculate gradient of network

wy Wy wy

Update weights according to gradient descent

Update equation
OF

W;

T

Learning Rate Gradient

W; < W; —

Gradient Calculation

How to get partial derivatives:
E OF E
VE:<8 ,8 ...7a_>?

w1 W2 ’ wq

Apply chain rule:
D{f(g(x))} = f'(9(x))g (z)

Yi

Derivation of Gradient

Following [Russel, Norvig]

6’E o _(o a') aai
0wj,i B Y ’ (9?1]]"7;
B 0o (in;)
T _(y’& a@) 8?1]]7@

= —(y; — ai)¢/(ini)awji

0
= —(yi — az')cb'(mv:)awj , (Z wj,iaj)
yL j

(yi — as)@'(ing)a;
N T

Difference to target Derivative of activation function Activation

Backpropagation Algorithm

Initialize all weight randomly
Until convergence do

Input example and calculate network output
For each output unit do

(Sk < ak(l — ak)(yk — ak)
Foe each hidden unit do

5h < ah(l — CLh) Z wh,k&{
kesucc(h)

Update weightew; ; < w; ; + o §;x; ;

Ensuring Generalization

Overfitting to data is bad

=arly stopping ___ranng RS
A
Error Test set
Training set

>
Iteration

K-Fold Cross-validation

Divide data in K-folds

Train and test on remaining fold

Experiment 1
Experiment 2
Experiment 3

Experiment 4

All data samples

True error is average of individual errors

Fsi

Neural Networks with PyTorch

PyTorch is an open source machine learning tensor
library for Python

Freely available under: http://pytorch.org/
Wide range of networks and training algorithms
Allows for dynamic networks

Very accessible
We will use it in the remainder of course

PYTHRCH

Fsi

http://pytorch.org/

A Simple Network in PyTorch

Defining a simple network

class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init_ ()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)

def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out

net = Net(input_size, hidden_size, num_classes)

Frequently used Functions

nn.Module) - Neural Network Module in pytorch

nn.Linear(in_features out_features) - Applies linear transformation to incoming data

mnRelu() - Applies Rectified Linear Unit function element wise

Net.parameters() - Returns all the learnable parameters

The Loss Function

A Loss function takes the (input, output) pair and
computes a measure which indicates how far away
the output is from the target

There are several loss function that can be used.
Let's use nn.MSELoss()

criterion = nn.MSELoss()
loss = criterion(output,target)
loss.backward()

When we call loss.backward(), the whole graph is
differentiated w.r.t. the loss, and all Variables in the
graph will have their .grad Variable accumulated
with the gradient

FSU

Training the Weights of a Network

The most frequent update rule used in practice is
stochastic gradient descent (SGD)

Many sophisticated learning methods are also
iImplemented: Nesterov-SGD, Adam, RMSProp

Torch.optim allows you to learning method

optimizer = optim.SGD(net.parameters(), Ir=0.01)
optimizer.zero_grad()

output = net(input)

loss = criterion(output, target)

loss.backward()

optimizer.step()

optimizer.zero grad() - zeros the gradient buffer
and optimizer.step() - updates the weights

Fsi

Example 1: After Training

Our goal was to predict collisions
After training, we use network to predict collision
If collision is iImminent — turn away from direction

If no collision -» turn to goal location

Ouput unit
e : (collision)
&’ 1
L 4
¢' ’ ' . .
Ll ! : Hidden units

\4 1
. 1

Object : Input units

' (sensor values)

Distance from
% laser sensors

Example 1: During Training (Video)

)

Play Video

@‘G‘Olnteractive Robotics Lab

https://youtu.be/2nMF-WuFe2M

Example 1: After Training (Video)

Play Video

@‘G‘Olnteractive Robotics Lab

https://youtu.be/UivRvE9fbQs

Action-Conditioned Predictive Models

Our neural network does not take into account the
robots action

As a result it cannot disambiguate between
situations where collision is dependent on action

Example scenario:

Collision only occurs if
robot turns right!

|

Action-Conditioned Predictive Models

Solution: add the action of the robot into the
predictive model

Action becomes an input to the network

Generally, action-conditioned predictive models
are functions of form f(sy,a) — sp11

Action-Conditioned Predictive Models

f(st7 at) —7 St41

Ouput unit
(collision)

Hidden units
(200 neurons)

sensor values steering angle

St A

Example Application

Python code implementing the above example can
be found in folder “Supervised”

The README includes instructions on learning and
testing a model

Supervised

Faster Computation with Intel MKL

Intel® MKL Optimized Mathematical Building Blocks

Linear Algebra Fast Fourier Transforms Vector Math

BLAS + Multidimensional Trigonometric
LAPACK and ScaLAPACK « FFTW* interfaces Hyperbolic
Sparse BLAS « Cluster FFT Exponential
PARDISO’ Direct Sparse Solver Log
Parallel Direct Cluster Sparse Solver Power
Iterative sparse solvers Root

Vector RNGs

Deep Neural Networks Summary Statistics And More

+ Convolution Kurtosis Splines

: POO””Q_ _ Central moments Interpolation
* Normalization Variation coefficient Trust Region

+ RelLU
. In?wer Product Order statistics and quantiles Fast Poisson Solver
Min/max

Variance-covariance
Robust estimators

Intel® Math Kernel Library
Intel® MKL

* Speeds computations for scientific,
engineering, financial and machine learning
applications

* Provides key functionality for dense and
sparse linear algebra (BLAS, LAPACK,
PARDISO), FFTs, vector math, summary
statistics, deep learning, splines and more

* |ncluded in Intel® Parallel Studio XE and
Intel® System Studio Suites

= Available at no cost and royalty free

BOOST PERFORMANCE

Optimized for single core
vectorization and cache utilization

Automatic parallelism for multi-core
and many-core

Scales from cores to clusters

Great performance with minimal
effort

Intel® MKL DNN (Deep Neural Network) Functions

Highly optimized basic building blocks for DNNs

Use cases Inference and training
Image recognition, semantic segmentation, object
detection

Functions Convolution, Inner Product

Activation, Normalization, Pooling, Sum, Split/
Concat, Data transformation

Applications Supported in Tensorflow, MXNet, IntelCaffe
and more

Open Source Version under: https://github.com/intel/mkl-dnn

https://github.com/intel/mkl-dnn

Summary

We introduced supervised learning

Used learning to predict robot collisions

The network architecture defines input/output
Learning the network weights with BackProp
However, so far no memory

Later we will introduce recurrent neural nets

The development of this course was supported by
an Intel Al Academy grant. We thank the sponsor

for the continuing support of open-source efforts
In research and education.

