
Document Number: 332427-001

Intel® Xeon® Processor D-1500
Product Family Uncore Performance
Monitoring Reference Manual
Revision 1.0

May 2015

2 Document Number: 332427-001, Revision 1.0

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2015, Intel Corporation. All Rights Reserved..

http://www.intel.com/design/literature.htm

Document Number: 332427-001, Revision 1.0 3

Contents

1 Introduction... 9
1.1 Introduction ...9
1.2 Uncore PMON Overview.. 10
1.3 Section References .. 10
1.4 Uncore PMON - Typical Counter Control Logic.. 11
1.5 Uncore PMON - Typical Counter Logic... 13
1.6 Uncore PMU Summary Tables ... 14

1.6.1 On Finding the Package’s Bus number for Uncore PMON registers in
PCICfg Space... 16

1.7 On Parsing and Using Derived Events... 18
1.7.1 On Common Terms found in Derived Events .. 19

2 Intel® Xeon® Processor D-1500 Product Family Uncore Performance
Monitoring ... 21
2.1 Uncore Per-Socket Performance Monitoring Control.. 21

2.1.1 Counter Overflow ... 21
2.1.1.1 Freezing on Counter Overflow... 21
2.1.1.2 PMI on Counter Overflow ... 21

2.1.2 Setting up a Monitoring Session ... 21
2.1.3 Reading the Sample Interval.. 23
2.1.4 Enabling a New Sample Interval from Frozen Counters 23
2.1.5 Global Performance Monitors ... 24

2.1.5.1 Global PMON Global Control/Status Registers................................ 24
2.2 UBox Performance Monitoring ... 25

2.2.1 UBox Performance Monitoring Overview .. 26
2.2.1.1 UBox PMON Registers - On Overflow and the Consequences

(PMI/Freeze) .. 26
2.2.2 UBox Performance Monitors ... 26

2.2.2.1 UBox Box Level PMON State ... 26
2.2.2.2 UBox PMON state - Counter/Control Pairs..................................... 27

2.2.3 UBox Performance Monitoring Events .. 28
2.2.4 UBOX Box Events Ordered By Code .. 28
2.2.5 UBOX Box Performance Monitor Event List ... 29

2.3 Caching Agent (Cbo) Performance Monitoring.. 30
2.3.1 CBo Performance Monitoring Overview .. 30

2.3.1.1 Special Note on CBo Occupancy Events.. 30
2.3.1.2 CBo PMON Registers - On Overflow and the Consequences

(PMI/Freeze) .. 31
2.3.2 CBo Performance Monitors... 31

2.3.2.1 CBo Box Level PMON State... 38
2.3.2.2 CBo PMON state - Counter/Control Pairs 39
2.3.2.3 CBo Filter Registers (Cn_MSR_PMON_BOX_FILTER{0,1})............... 40

2.3.3 CBo Performance Monitoring Events.. 42
2.3.3.1 Acronyms frequently used in CBo Events...................................... 42
2.3.3.2 The Queues ... 43

2.3.4 CBO Box Events Ordered By Code .. 43
2.3.5 CBO Box Common Metrics (Derived Events)... 44
2.3.6 CBO Box Performance Monitor Event List ... 46

2.4 Home Agent (HA) Performance Monitoring .. 62
2.4.1 HA Performance Monitoring Overview.. 62

2.4.1.1 HA PMON Registers - On Overflow and the Consequences
(PMI/Freeze) .. 62

2.4.1.2 HA Box Level PMON State .. 63
2.4.1.3 HA PMON state - Counter/Control Pairs .. 64

4 Document Number: 332427-001, Revision 1.0

2.4.2 HA Performance Monitoring Events..66
2.4.2.1 On the Major HA Structures:...67

2.4.3 HA Box Events Ordered By Code...67
2.4.4 HA Box Common Metrics (Derived Events) ...68
2.4.5 HA Box Performance Monitor Event List ...69

2.5 Memory Controller (IMC) Performance Monitoring ..87
2.5.1 Functional Overview..87
2.5.2 IMC Performance Monitoring Overview...87

2.5.2.1 IMC PMON Registers - On Overflow and the Consequences
(PMI/Freeze) ..87

2.5.3 IMC Performance Monitors ...88
2.5.3.1 MC Box Level PMON State ..89
2.5.3.2 MC PMON state - Counter/Control Pairs ..90

2.5.4 IMC Performance Monitoring Events ..91
2.5.5 iMC Box Events Ordered By Code..92
2.5.6 iMC Box Common Metrics (Derived Events) ..93
2.5.7 iMC Box Performance Monitor Event List ..94

2.6 IRP Performance Monitoring ..112
2.6.1 IRP Performance Monitoring Overview ...112

2.6.1.1 IRP PMON Registers - On Overflow and the Consequences
(PMI/Freeze) ..112

2.6.2 IRP Performance Monitors ..112
2.6.2.1 IRP Box Level PMON State..113
2.6.2.2 IRP PMON state - Counter/Control Pairs......................................113

2.6.3 IRP Performance Monitoring Events ...115
2.6.4 IRP Box Events Ordered By Code ..116
2.6.5 IRP Box Performance Monitor Event List...116

2.7 Power Control (PCU) Performance Monitoring ..123
2.7.1 PCU Performance Monitoring Overview ..123

2.7.1.1 PCU PMON Registers - On Overflow and the Consequences
(PMI/Freeze) ..123

2.7.2 PCU Performance Monitors ...124
2.7.2.1 PCU Box Level PMON State ...124
2.7.2.2 PCU PMON state - Counter/Control Pairs.....................................125

2.7.3 PCU Performance Monitoring Events ..128
2.7.4 PCU Box Events Ordered By Code ...129
2.7.5 PCU Box Common Metrics (Derived Events)..131
2.7.6 PCU Box Performance Monitor Event List..131

2.8 R2PCIe Performance Monitoring...142
2.8.1 R2PCIe Performance Monitoring Overview ..142

2.8.1.1 R2PCIe PMON Registers - On Overflow and the
Consequences (PMI/Freeze)..142

2.8.2 R2PCIe Performance Monitors...142
2.8.2.1 R2PCIe Box Level PMON State...143
2.8.2.2 R2PCIe PMON state - Counter/Control Pairs144

2.8.3 R2PCIe Performance Monitoring Events..145
2.8.4 R2PCIe Box Events Ordered By Code...145
2.8.5 R2PCIe Box Common Metrics (Derived Events) ...145
2.8.6 R2PCIe Box Performance Monitor Event List ...146

Document Number: 332427-001, Revision 1.0 5

Figures
1-1 Intel® Xeon® Processor D-1500 Product Family -8C Block Diagram9
1-2 Perfmon Counter Control Block Diagram.. 12
1-3 Perfmon Counter Block Diagram... 13

Tables
1-1 Per-Box Performance Monitoring Capabilities ... 10
1-2 MSR Space UncorePerformance Monitoring Registers .. 14
1-3 PCICFG Space Uncore Performance Monitoring Registers ... 16
2-1 Global Performance Monitoring Control MSRs ... 24
2-2 U_MSR_PMON_GLOBAL_CTL Register – Field Definitions.. 24
2-3 U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions.. 25
2-4 U_MSR_PMON_GLOBAL_CONFIG Register – Field Definitions.. 25
2-5 UBox Performance Monitoring Registers (MSR)... 26
2-6 U_MSR_PMON_BOX_STATUS Register – Field Definitions... 27
2-7 U_MSR_PMON_CTL{1-0} Register – Field Definitions .. 27
2-8 U_MSR_PMON_CTR{1-0} Register – Field Definitions.. 28
2-9 U_MSR_PMON_FIXED_CTL Register – Field Definitions .. 28
2-10U_MSR_PMON_FIXED_CTR Register – Field Definitions.. 28
2-13CBo Performance Monitoring Registers (MSR) .. 31
2-14Cn_MSR_PMON_BOX_CTL Register – Field Definitions ... 38
2-15Cn_MSR_PMON_BOX_STATUS Register – Field Definitions ... 39
2-16Cn_MSR_PMON_CTL{3-0} Register – Field Definitions .. 39
2-17Cn_MSR_PMON_CTR{3-0} Register – Field Definitions .. 40
2-18Cn_MSR_PMON_BOX_FILTER0 Register – Field Definitions... 40
2-19Cn_MSR_PMON_BOX_FILTER1 Register – Field Definitions... 41
2-20Opcode Match by IDI Packet Type for Cn_MSR_PMON_BOX_FILTER.opc 41
2-42HA Performance Monitoring Registers (PCICFG).. 63
2-43HAn_PCI_PMON_BOX_CTL Register – Field Definitions .. 64
2-44HAn_PCI_PMON_BOX_STATUS Register – Field Definitions .. 64
2-45HAn_PCI_PMON_CTL{3-0} Register – Field Definitions.. 64
2-46HA_PCI_PMON_CTR{3-0} Register – Field Definitions ... 65
2-47HA_PCI_PMON_BOX_OPCODEMATCH Register – Field Definitions................................... 66
2-48HA_PCI_PMON_BOX_ADDRMATCH1 Register – Field Definitions...................................... 66
2-49HA_PCI_PMON_BOX_ADDRMATCH0 Register – Field Definitions...................................... 66
2-88IMC Performance Monitoring Registers (PCICFG) .. 88
2-89MC_CHy_PCI_PMON_BOX_CTL Register – Field Definitions .. 89
2-90MC_CHy_PCI_PMON_BOX_STATUS Register – Field Definitions....................................... 89
2-91MC_CHy_PCI_PMON_CTL{3-0} Register – Field Definitions.. 90
2-92MC_CHy_PCI_PMON_FIXED_CTL Register – Field Definitions.. 91
2-93MC_CHy_PCI_PMON_CTR{FIXED,3-0} Register – Field Definitions 91
2-121IRP Performance Monitoring Registers (PCICFG) ... 112
2-122IRP_PCI_PMON_BOX_CTL Register – Field Definitions.. 113
2-123IRP_PCI_PMON_BOX_STATUS Register – Field Definitions.. 113
2-124IRP_PCI_PMON_CTL{3-0} Register – Field Definitions ... 114
2-125IRP{0,1}_PCI_PMON_CTR{1-0} Register – Field Definitions....................................... 114
2-132PCU Performance Monitoring Registers (MSR) .. 124
2-133PCU_MSR_PMON_BOX_CTL Register – Field Definitions ... 125
2-134PCU_MSR_PMON_BOX_STATUS Register – Field Definitions 125
2-135PCU_MSR_PMON_CTL{3-0} Register – Field Definitions... 126
2-136PCU_MSR_PMON_CTR{3-0} Register – Field Definitions .. 127
2-137PCU_MSR_PMON_BOX_FILTER Register – Field Definitions... 127
2-138PCU_MSR_CORE_C6_CTR Register – Field Definitions.. 128
2-139PCU_MSR_CORE_C3_CTR Register – Field Definitions.. 128
2-140PCU Configuration Examples .. 129

6 Document Number: 332427-001, Revision 1.0

2-142R2PCIe Performance Monitoring Registers (PCICFG) ..142
2-143R2_PCI_PMON_BOX_CTL Register – Field Definitions ...143
2-144R2_PCI_PMON_BOX_STATUS Register – Field Definitions ...143
2-145R2_PCI_PMON_CTL{3-0} Register – Field Definitions ..144
2-146R2_PCI_PMON_CTR{3-0} Register – Field Definitions ..145

Document Number: 332427-001, Revision 1.0 7

Revision History

§

DocID Revision Description Date

332427-001 1.0 • Initial release May 2015

8 Document Number: 332427-001, Revision 1.0

Document Number: 332427-001, Revision 1.0 9

1 Introduction

1.1 Introduction
The uncore sub-system of the next generation Intel® Xeon® Processor D-1500 Product Family is
shown in Figure 1-1. The uncore sub-system consists of a variety of components, ranging from the
CBox caching agent to the power controller unit (PCU), integrated memory controller (IMC) and home
agent (HA), to name a few. Most of these components provide similar performance monitoring
capabilities.

Note: This diagram represents one possible configuration. The number of supported cores
vary by SKU. Not all features supported on all SKUs.

Figure 1-1. Intel® Xeon® Processor D-1500 Product Family -8C Block Diagram

10 Document Number: 332427-001, Revision 1.0

1.2 Uncore PMON Overview
The uncore performance monitoring facilities are organized into per-component performance
monitoring (or ‘PMON’) units. A PMON unit within an uncore component may contain one or more
sets of counter registers. With the exception of the UBox, each PMON unit provides a unit-level control
register to synchronize actions across the counters within the box (e.g. to start/stop counting).

Events can be collected by reading a set of local counter registers. Each counter register is paired with
a dedicated control register used to specify what to count (i.e. through the event select/umask fields)
and how to count it. Some units provide the ability to specify additional information that can be used
to ‘filter’ the monitored events (e.g., CBox; see Section 2.3.2.3, “CBo Filter Registers
(Cn_MSR_PMON_BOX_FILTER{0,1})”).

Each of these boxes communicates with the U-Box which contains registers to control all uncore PMU
activity (as outlined in Section 2.1, “Uncore Per-Socket Performance Monitoring Control”).

Uncore performance monitors represent a per-socket resource that is not meant to be affected by
context switches and thread migration performed by the OS, it is recommended that the monitoring
software agent establish a fixed affinity binding to prevent cross-talk of event counts from different
uncore PMU.

The programming interface of the counter registers and control registers fall into two address spaces:

• Accessed by MSR are PMON registers within the Cbo units, PCU, and U-Box, see Table 1-2.

• Access by PCI device configuration space are PMON registers within the HA, IMC and R2PCIe
units, see Table 1-3.

Irrespective of the address-space difference and with only minor exceptions, the bit-granular layout of
the control registers to program event code, unit mask, start/stop, and signal filtering via
threshold/edge detect are the same.

Software may be notified of an overflowing uncore counter on any core.

The general performance monitoring capabilities of each box are outlined in the following table.

1.3 Section References
The following sections provide a breakdown of the performance monitoring capabilities for each box.

• Section 2.1, “Uncore Per-Socket Performance Monitoring Control”

• Section 2.2, “UBox Performance Monitoring”

Table 1-1. Per-Box Performance Monitoring Capabilities

Box # Boxes #
Counters/Box

Queue
Enabled

Packet
Match/Mask

Filters?
Bit Width

CBox up to 8 4 1 Y 48

HA 1 4 4 Y 48

IMC 1 4 (+1)
(per channel)

4 N 48

PCU 1 4 (+2) 4 N 48

R2PCIe 1 4 1 N 48

UBox 1 2 (+1) 0 N 48

IRP 1 4 4 N 48

Document Number: 332427-001, Revision 1.0 11

• Section 2.3, “Caching Agent (Cbo) Performance Monitoring”

• Section 2.4, “Home Agent (HA) Performance Monitoring”

• Section 2.5, “Memory Controller (IMC) Performance Monitoring”

• Section 2.6, “IRP Performance Monitoring”

• Section 2.7, “Power Control (PCU) Performance Monitoring”

• Section 2.8, “R2PCIe Performance Monitoring”

1.4 Uncore PMON - Typical Counter Control Logic
Following is a diagram of the standard perfmon counter control block illustrating how event
information is routed, selected, filtered (by other bits in the control register) and sent to the paired
data register for storage.

Details for how control bits affect event information is presented in each of the box subsections of
Chapter 2, with some summary information below.

Note: The PCU uses an adaptation of this block (refer to Section 2.7.2, “PCU Performance
Monitors” more information). Also note that only a subset of the available control bits
are presented in the diagram.

Figure 1-2. Perfmon Counter Control Block Diagram

12 Document Number: 332427-001, Revision 1.0

Selecting What To Monitor: The main task of a configuration register is to select the event to be
monitored by its respective data counter. Setting the .ev_sel and .umask fields performs the event
selection.

Note: Only the .ev_sel is pictured in the previous figure. The .umask field is generally used to
select subevents of the event. Once the proper subevent combination has been
selected, it is passed on to the per Counter EventSel Mux.

Additional control bits used to filter and create information related to the selected Event:

Applying a Threshold to Incoming Events: .thresh - since most counters can increment by a
value greater than 1, a threshold can be applied to generate an event based on the outcome of the
comparison. If .thresh is set to a non-zero value, that value is compared against the incoming count
for that event in each cycle. If the incoming count is >= the threshold value, then the event count
captured in the data register will be incremented by 1.

Using the threshold field to generate additional events can be particularly useful when applied to a
queue occupancy count. For example, if a queue is known to contain eight entries, it may be useful to
know how often it contains 6 or more entries (i.e. Almost Full) or when it contains 1 or more entries
(i.e. Not Empty).

Note: For Intel® Xeon® Processor D-1500 Product Family the .invert and .edge_det bits
follow the threshold comparison in sequence. If a user wishes to apply these bits to
events that only increment by 1 per cycle, thresh must be set to 0x1.

Inverting the Threshold Comparison: .invert - Changes .thresh test condition to ‘<‘.

Counting State Transitions Instead of per-Cycle Events: .edge_det - Rather than accumulating
the raw count each cycle (for events that can increment by 1 per cycle), the register can capture
transitions from no event to an event incoming (i.e. the ‘Rising Edge’).

1.5 Uncore PMON - Typical Counter Logic
Following is a diagram of the standard perfmon counter block illustrating the control for managing the
Data Register including how to start/stop the register, reset it, indicate an overflow and capture the
information sent from the Counter Control block. The diagram contains bits from all level in the
Counter Control Hierarchy - Global (found in the UBox), Box level as well as the Counter’s Control
register.

Details on how to perform counter management, including how to set up a Monitoring Session and
periodically sample the counters can be found in Chapter 2.

Document Number: 332427-001, Revision 1.0 13

Telling HW that the Control Register Is Set: .en bit must be set to 1 to enable counting. Once
counting has been enabled at all levels of the Performance Monitoring Hierarchy (refer to Section
2.1.2, “Setting up a Monitoring Session” for more information), the paired data register will begin to
collect events.

Notification after X events: .ov_en - Instead of manually stopping the counters at intervals (often
wall clock time) pre-determined by software, hardware can be set to notify monitoring software when
a set number of events has occurred. The Overflow Enable bit is provided for just that purpose. See
Section 2.1.1, “Counter Overflow” for more information on how to use this mechanism.

1.6 Uncore PMU Summary Tables
Following is the list of registers provided in the Intel® Xeon® Processor D-1500 Product Family
Uncore for Performance Monitoring. Performance monitors are split between MSR space (U, CBo and
PCU) and PCICFG space.

Note: The number of CBoxes varies with the number of Cores in a system. To determine the
number of CBoxes, SW should read bits 15:0 in the CAPID5 register located at Device
30, Function 3, Offset 0x98. These 16 bits form a bit vector of available LLC slices and
the CBoxes that manage those slices. For example: If bits 15:0 read 0x0F0F, the PMON
blocks corresponding to CBoxes 0-3 and 8-11 are available and CBoxes 4-7 and 12-15
are not available.

Figure 1-3. Perfmon Counter Block Diagram

14 Document Number: 332427-001, Revision 1.0

Table 1-2. MSR Space UncorePerformance Monitoring Registers (Sheet 1 of 2)

Box MSR Addresses Description

CBox Counters

CBox 15 0xEFB-0xEF8 Counter Registers

0xEF5,0xEF6 Counter Filters

0xEF4-0xEF1 Counter Config Registers

0xEF0,0xEF7 Box Control/Status

CBox 14 0xEEB-0xEE8 Counter Registers

0xEE5,0xEE6 Counter Filters

0xEE4-0xEE1 Counter Config Registers

0xEE0,0xEE7 Box Control/Status

CBox 13 0xEDB-0xED8 Counter Registers

0xED5,0xED6 Counter Filters

0xED4-0xED1 Counter Config Registers

0xED0,0xED7 Box Control/Status

CBox 12 0xECB-0xEC8 Counter Registers

0xEC5,0xEC6 Counter Filters

0xEC4-0xEC1 Counter Config Registers

0xEC0,0xEC7 Box Control/Status

CBox 11 0xEBB-0xEB8 Counter Registers

0xEB5,0xEB6 Counter Filters

0xEB4-0xEB1 Counter Config Registers

0xEB0,0xEB7 Box Control/Status

CBox 10 0xEAB-0xEA8 Counter Registers

0xEA5,0xEA6 Counter Filters

0xEA4-0xEA1 Counter Config Registers

0xEA0,0xEA7 Box Control/Status

CBox 9 0xE9B-0xE98 Counter Registers

0xE95,0xE96 Counter Filters

0xE94-0xE91 Counter Config Registers

0xE90,0xE97 Box Control/Status

CBox 8 0xE8B-0xE88 Counter Registers

0xE85,0xE86 Counter Filters

0xE84-0xE81 Counter Config Registers

0xE80,0xE87 Box Control/Status

CBox 7 0xE7B-0xE78 Counter Registers

0xE75,0xE76 Counter Filters

0xE74-0xE71 Counter Config Registers

0xE70,0xE77 Box Control/Status

CBox 6 0xE6B-0xE68 Counter Registers

0xE65,0xE66 Counter Filters

0xE64-0xE61 Counter Config Registers

0xE60,0xE67 Box Control/Status

Document Number: 332427-001, Revision 1.0 15

CBox 5 0xE5B-0xE58 Counter Registers

0xE55,0xE56 Counter Filters

0xE54-0xE51 Counter Config Registers

0xE50,0xE57 Box Control/Status

CBox 4 0xE4B-0xE48 Counter Registers

0xE45,0xE46 Counter Filters

0xE44-0xE41 Counter Config Registers

0xE40,0xE47 Box Control/Status

CBox 3 0xE3B-0xE38 Counter Registers

0xE35,0xE36 Counter Filters

0xE34-0xE31 Counter Config Registers

0xE30,0xE37 Box Control/Status

CBox 2 0xE2B-0xE28 Counter Registers

0xE25,0xE26 Counter Filters

0xE24-0xE21 Counter Config Registers

0xE20,0xE27 Box Control/Status

CBox 1 0xE1B-0xE18 Counter Registers

0xE15,0xE16 Counter Filters

0xE14-0xE11 Counter Config Registers

0xE10,0xE17 Box Control/Status

CBox 0 0xE0B-0xE08 Counter Registers

0xE05,0xE06 Counter Filters

0xE04-0xE01 Counter Config Registers

0xE00,0xE07 Box Control/Status

PCU Counters

0x71A-0x717 Counter Registers

0x715 Counter Filters

0x714-0x711 Counter Config Registers

0x710,0x716 Box Control/Status

0x3FD-0x3FC Fixed Counters (Non-PMON)

U-Box Counters

For U-Box 0x70A-0x709 Counter Registers

0x708 Box Status

0x706-0x705 Counter Config Registers

0x704,0x703 Fixed Counter/Config Register

U-Box Counters

For Global Control

0x700,0x701 Global Control/Status

Table 1-2. MSR Space UncorePerformance Monitoring Registers (Sheet 2 of 2)

Box MSR Addresses Description

16 Document Number: 332427-001, Revision 1.0

1.6.1 On Finding the Package’s Bus number for Uncore PMON
registers in PCICfg Space

PCI-based uncore units can be found using bus, device and functions numbers. However, the busno
has to be found dynamically in each package. The code is embedded below.

First, for each package, it is necessary to read the node ID offset in the Ubox. That needs to match
the GID offset of the Ubox in a specific pattern to get the busno for the package. This busno can then
be used with the given D:F (device:function) listed with each box’s counters that are accessed
through PCICfg space (Table 1-3, “PCICFG Space Uncore Performance Monitoring Registers,” on
page 16).

#define BROADWELL_SERVER_SOCKETID_UBOX_DID 0x6F1e

//the below LNID and GID apply for SNB-EP, IVB and Broadwell uServer

#define UNC_SOCKETID_UBOX_LNID_OFFSET 0x40

#define UNC_SOCKETID_UBOX_GID_OFFSET 0x54

for (bus_no = 0; bus_no < 256; bus_no++) {

 for (device_no = 0; device_no < 32; device_no++) {

 for (function_no = 0; function_no < 8; function_no++) {

 // find bus, device, and function number for socket ID UBOX device

 pci_address = FORM_PCI_ADDR(bus_no, device_no, function_no, 0);

Table 1-3. PCICFG Space Uncore Performance Monitoring Registers

Box PCICFG Register
Addresses Device ID Description

HA0 D18:F1 0x6F30

F8-F4 Box Control/Status

E4-D8 Counter Config Registers

BC-A0 Counter Registers

48-40 Opcode/Addr Match Filters

iMC0 D20:F0,1 0x6FB4, 0x6FB5 D20:F0,F1 For Channel 0,1

F8-F4 Box Control/Status

F0 Counter Config Register (Fixed)

E4-D8 Counter Config Registers (General)

D4-D0 Counter Register (Fixed)

BC-A0 Counter Registers (General)

IRP D5:F6 0x6F39

F8-F4 Box Control/Status

E4-E0 & DC-D8 Counter Config Registers

C0-B8 & B0-A0 Counter Registers

R2PCIe D16:F1 0x6F34
F8-F4 Box Control/Status

E4-D8 Counter Config Registers

BC-A0 Counter Registers

Document Number: 332427-001, Revision 1.0 17

 value = PCI_Read_Ulong(pci_address);

 vendor_id = value & VENDOR_ID_MASK;

 device_id = (value & DEVICE_ID_MASK) >> DEVICE_ID_BITSHIFT;

 if (vendor_id != DRV_IS_PCI_VENDOR_ID_INTEL) {

 continue;

 }

 if (device_id == socketid_ubox_did) {

 // first get node id for the local socket

 pci_address = FORM_PCI_ADDR(bus_no, device_no, function_no,

 UNC_SOCKETID_UBOX_LNID_OFFSET);

 gid = PCI_Read_Ulong(pci_address) & 0x00000007;

 // Get the node id mapping register:

 // Basic idea is to read the Node ID Mapping Register (below)

 // and match one of the nodes with gid that we read above

 // from the Node ID configuration register (above).

 // Every three bits in the Node ID Mapping Register maps to a

 // particular node (or package). Bits 2:0 maps to package 0,

 // bits 5:3 maps to package 1, and so on. Thus, we have to

 // parse every triplet of bits to find the match.

 pci_address = FORM_PCI_ADDR(bus_no, device_no, function_no,

 UNC_SOCKETID_UBOX_GID_OFFSET);

 mapping = PCI_Read_Ulong(pci_address);

 // bits 2:0

 if ((mapping & 0x00000007) == gid) {

 gid = 0;

 }

 // bits 5:3

 else if ((mapping & 0x00000038) == gid) {

 gid = 1;

 }

 // bits 8:6

 else if ((mapping & 0x000001C0) == gid) {

 gid = 2;

 }

 // bits 11:9

 else if ((mapping & 0x00000E00) == gid) {

 gid = 3;

 }

 // bits 14:12

 else if ((mapping & 0x00007000) == gid) {

 gid = 4;

 }

 // bits 17:15

 else if ((mapping & 0x00038000) == gid) {

 gid = 5;

 }

18 Document Number: 332427-001, Revision 1.0

 // bits 20:18

 else if ((mapping & 0x001C0000) == gid) {

 gid = 6;

 }

 // bits 23:21

 else if ((mapping & 0x00700000) == gid) {

 gid = 7;

 }

 UNC_UBOX_package_to_bus_map[gid] = bus_no;

 }

 }

 }

}

1.7 On Parsing and Using Derived Events
For many of the sections covering each box’s Performance Monitoring capabilities, a set of commonly
measured metrics (or ‘Derived Events’) has been included. For the most part, these derived events
are simple mathematical combinations of events found within the box. However, there are some
extensions to the notation used by the metrics.

The following is a breakdown of a CBox Derived Event to illustrate a couple of the notations used.

To calculate “Average Number of Data Read Entries that Miss the LLC when the TOR is not empty”.

(TOR_OCCUPANCY.MISS_OPCODE / COUNTER0_OCCUPANCY{edge_det,thresh=0x1}))
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x182.

First term is a normal Event/Subevent.

Second Term requires setting extra control bits in the register the event has been programmed in:

• event_name[.subevent_name]{ctrl_bit[=value],}

• e.g. COUNTER0_OCCUPANCY{edge_det,thresh=0x1}

NOTE: If there is no [=value] specified it is assumed that the bit must be set to 1.

Third Term requires programming an extra control register (often for filtering):

• For a single field: with:Register_Name.field=value1

• For multiple fields: with:Register_Name.{field1,field2,...}={value1,value2,...}

• e.g. with:Cn_MSR_PMON_BOX_FILTER1.{opc,nid}={0x182,my_node}

Following is a breakdown of an IMC Derived Event to illustrate a couple more of the notations used.

To calculate “Percent Cycles DRAM Rank x in CKE”.

POWER_CKE_CYCLES.RANKx / MC_Chy_PCI_PMON_CTR_FIXED

First Term requires more input to software to determine the specific event/subevent

• In some cases, there may be multiple events/subevents that cover the same information across
multiple like hardware units. Rather than manufacturing a derived event for each combination,
the derived event will use a lower case variable in the event name.

Document Number: 332427-001, Revision 1.0 19

• e.g. POWER_CKE_CYCLES.RANKx where ‘x’ is a variable to cover events
POWER_CKE_CYCLES.RANK0 through POWER_CKE_CYCLES.RANK7

Second Term requires reading a fixed data register

• For the case where the metric requires the information contained in a fixed data register, the
pnemonic for the register will be included in the equation. Software will be responsible for
configuring the data register and setting it to start counting with the other events used by the
metric.

• e.g. MC_Chy_PCI_PMON_CTR_FIXED

In addition to these formats, some equations require gathering of extra information outside the box
(often for common terms):

• See following section for a breakdown of common terms found in Derived Events.

1.7.1 On Common Terms found in Derived Events
To convert a Latency term from a count of clocks to a count of nanoseconds:

• (Latency Metric) - {Box}_CLOCKTICKS * (1000 / UNCORE_FREQUENCY)

To convert a Bandwidth term from a count of raw bytes at the operating clock to GB/sec:

• ((Traffic Metric in Bytes) / (TOTAL_INTERVAL / (TSC_SPEED * 1000000))) / GB_CONVERSION

• e.g. For READ_MEM_BW, an event derived from IMC:CAS_COUNT.RD * 64, which is the amount of
memory bandwidth consumed by read requests, put ‘READ_MEM_BW’ into the bandwidth term to
convert the measurement from raw bytes to GB/sec.

Following are some other terms that may be found within Metrics and how they should be interpreted.

• GB_CONVERSION: 1024^3

• TSC_SPEED: Time Stamp Counter frequency in MHz

• TOTAL_INTERVAL: Overall sample interval (TSC) for the instructions retired event. Typically used
to compute a per send metric. Dividing the TOTAL_INTERVAL by CPU_SPEED * 1,000,000 is the
number of seconds in the sample interval.

• TOTAL_PROC_CYC: Total number of CPU cycles for a processor event value. Used with processor
event data to determine time or work per time as in MB/sec.

• IMC_CHANNELS: Up to 2 for Intel® Xeon® Processor D-1500 Product Family

§

20 Document Number: 332427-001, Revision 1.0

Document Number: 332427-001, Revision 1.0 21

2 Intel® Xeon® Processor D-
1500 Product Family Uncore
Performance Monitoring

2.1 Uncore Per-Socket Performance Monitoring
Control

To manage the large number of counter registers distributed across many units and collect event data
efficiently, this section describes the hierarchical technique to start/stop/restart event counting that a
software agent may need to perform during a monitoring session.

2.1.1 Counter Overflow
If a box’s counter overflows, it can send an overflow message to a global PMON manager (the UBox).
To do so, the .ov_en bit in the counter’s control register must be set to 1. The overflow will then be
picked up and the box sending the overflow will be recorded in the UBox.

Each box in the Intel® Xeon® Processor D-1500 Product Family uncore with performance monitors
may be configured to respond to this overflow with two basic actions:

2.1.1.1 Freezing on Counter Overflow

Upon receipt of an overflow message from any box, the UBox will assert the global freeze signal. Once
the global freeze has been detected, each box will disable (or ‘freeze’) all of its counters.

2.1.1.2 PMI on Counter Overflow

Upon receipt of the overflow message, the UBox can send a PMI signal to the core executing the
monitoring software. To do so, the U_MSR_PMON_GLOBAL_CTL.pmi_core_sel file must be set to point
to the core the monitoring software is executing on.

2.1.2 Setting up a Monitoring Session
On HW reset, all the counters are disabled. Enabling is hierarchical. So the following steps, which
include programming the event control registers and enabling the counters to begin collecting events,
must be taken to set up a monitoring session. Section 2.1.3 covers the steps to stop/re-start counter
registers during a monitoring session.

Global Settings in the UBox: (NOTE: Necessary for U-Box monitoring).

a) Freeze all the uncore counters by setting U_MSR_PMON_GLOBAL_CTL.frz_all to 1

OR (if box level freeze control preferred)

a) Freeze the box’s counters while setting up the monitoring session.

e.g., set Cn_MSR_PMON_BOX_CTL.frz to 1

For each event to be measured within each box:

22 Document Number: 332427-001, Revision 1.0

b) Enable counting for each monitor

e.g. Set C0_MSR_PMON_CTL2.en to 1

Note: Recommended: set the .en bit for all counters in each box a user intends to monitor,
and left alone for the duration of the monitoring session.

Note: For cases where there is no sharing of these counters among software agents
independently sampling the counters, software could set the enable bits for all counters
it intends to use during the setup phase. For cases where sharing is expected, each
agent could use the individual enable bits in order to perform sampling rather than
using the box-level freeze from steps (a) and (d).

c) Select event to monitor if the event control register hasn’t been programmed:

Program the .ev_sel and .umask bits in the control register with the encoding necessary to
capture the requested event along with any signal conditioning bits (.thresh/.edge_det) used to
qualify the event.

e.g. Set C0_MSR_PMON_CT2.{ev_sel, umask} to {0x03, 0x1} in order to capture
LLC_VICTIMS.M_STATE in CBo 0’s C0_MSR_PMON_CTR2.

Note: It is also important to program any additional filter registers used to further qualify the
events (e.g. setting the opcode match field in Cn_MSR_BOX_FILTER1 to qualify
TOR_INSERTS by a specific opcode).

Back to the box level:

d) Reset counters in each box to ensure no stale values have been acquired from previous sessions.
Resetting the control registers, particularly those that won’t be used is also recommended if for
no other reason than to prevent errant overflows. To reset both the counters and control registers
write the following registers:

• For each CBox, set Cn_MSR_PMON_BOX_CTL[1:0] to 0x3.

• For each HA, set HAn_PCI_PMON_BOX_CTL[1:0] to 0x3.

• For each DRAM Channel, set MCn_CHy_PCI_PMON_BOX_CTL[1:0] to 0x3.

• Set PCU_MSR_PMON_BOX_CTL[1:0] to 0x3.

• Set R2_PCI_PMON_BOX_CTL[1:0] to 0x3.

Note: The UBox does not have a Box Control register. The counters will need to be manually
reset by writing a 0 in each data register.

e) Select how to gather data. If polling, skip to f. If sampling:

To set up a sample interval, software can pre-program the data register with a value of
[2^(register bit width - up to 48) - sample interval length]. Doing so allows software, through use
of the pmi mechanism, to be notified when the number of events in the sample have been
captured. Capturing a performance monitoring sample every ‘X cycles’ (the fixed counter in the
UBox counts uncore clock cycles) is a common use of this mechanism.

i.e. To stop counting and receive notification when the 1,000,000th idle flit is transmitted from
Intel QPI on Port 0

— set Q_P0_PCI_PMON_CTR1 to (2^48- 1000)
— set Q_P0_PCI_PMON_CTL1.ev_sel to 0x0
— set Q_P0_PCI_PMON_CTL1.umask to 0x1
— set U_MSR_PMON_GLOBAL_CTL.pmi_core_sel to which core the monitoring thread is

executing on.

f) Enable counting at the global level by setting the U_MSR_PMON_GLOBAL_CTL.unfrz_all bit to 1.

Document Number: 332427-001, Revision 1.0 23

OR

f) Enable counting at the box level by unfreezing the counters in each box

e.g. set Cn_MSR_PMON_BOX_CTL.frz to 0

And with that, counting will begin.

Note: The UBox does not have a Box Control register, so there’s no box-level freeze to help
isolate the UBox from agents counting in other boxes. Once enabled and programmed
with a valid event, the UBox counters will collect events. For somewhat better
synchronization, a user can keep the U_MSR_PMON_CTL.ev_sel at 0x0 while enabled
and write it with a valid value just prior to unfreezing the registers in other boxes.

2.1.3 Reading the Sample Interval
Software can poll the counters whenever it chooses, or wait to be notified that a counter has
overflowed (by receiving a PMI).

a) Polling - before reading, it is recommended that software freeze the counters at either the Global
level (U_MSR_PMON_GLOBAL_CTL.frz_all) or in each box with active counters (by setting
*_PMON_BOX_CTL.frz to 1). After reading the event counts from the counter registers, the
monitoring agent can choose to reset the event counts to avoid event-count wrap-around; or
resume the counter register without resetting their values. The latter choice will require the
monitoring agent to check and adjust for potential wrap-around situations.

b) Frozen counters - If software set the counters to freeze on overflow and send notification when it
happens, the next question is: Who caused the freeze?

Overflow bits are stored hierarchically within the Intel® Xeon® Processor D-1500 Product Family
uncore. First, software should read the U_MSR_PMON_GLOBAL_STATUS.ov_* bits to determine which
box(es) sent an overflow. Then read that box’s *_PMON_GLOBAL_STATUS.ov field to find the
overflowing counter.

Note: More than one counter may overflow at any given time.

Note: Certain boxes may have more than one PMON block (e.g. IMC has a PMON block in
each Channel). It may be necessary to read all STATUS registers in the box to
determine which counter overflowed.

2.1.4 Enabling a New Sample Interval from Frozen Counters
a) Clear all uncore counters: For each box in which counting occurred, set

*_PMON_BOX_CTL.rst_ctrs to 1.

b) Clear all overflow bits. This includes clearing U_MSR_PMON_GLOBAL_STATUS.ov_* as well as
any *_BOX_STATUS registers that have their overflow bits set.

e.g. If counter 3 in Intel QPI Port 1 overflowed, software should set
Q_P1_PCI_PMON_BOX_STATUS.ov[3] to 1 to clear the overflow.

c) Create the next sample: Reinitialize the sample by setting the monitoring data register to
(2^48 - sample_interval). Or set up a new sample interval as outlined in Section 2.1.2, “Setting
up a Monitoring Session”.

d) Re-enable counting: Set U_MSR_PMON_GLOBAL_CTL.unfrz_all to 1.

24 Document Number: 332427-001, Revision 1.0

2.1.5 Global Performance Monitors

2.1.5.1 Global PMON Global Control/Status Registers

The following registers represent state governing all PMUs in the uncore, both to exert global control
and collect box-level information.

U_MSR_PMON_GLOBAL_CTL contains a bit that can freeze (.frz_all) all the uncore counters.

If an overflow is detected in any of the uncore’s PMON registers, it will be summarized in
U_MSR_PMON_GLOBAL_STATUS. This register accumulates overflows sent to it from the other uncore
boxes. To reset these overflow bits, a user must set the corresponding bits in
U_MSR_PMON_GLOBAL_STATUS to 1, which will act to clear them.

Table 2-1. Global Performance Monitoring Control MSRs

MSR Name MSR
Address

Size
(bits) Description

U_MSR_PMON_GLOBAL_CONFIG 0x0702 32 UBox PMON Global Configuration

U_MSR_PMON_GLOBAL_STATUS 0x0701 32 UBox PMON Global Status

U_MSR_PMON_GLOBAL_CTL 0x0700 32 UBox PMON Global Control

Table 2-2. U_MSR_PMON_GLOBAL_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

frz_all 31 WO 0 Freeze all uncore performance monitors.

wk_on_pmi 30 RW 0 If PMI event requested to send to core...
0 - Send event to cores already awakened
1 - Wake any sleeping core and send PMI to all cores.

unfrz_all 29 WO 0 Unfreeze all uncore performance monitors.

rsv 28:27 RV 0 Reserved. SW must write to 0 else behavior is undefined

rsv 26:18 RV 0 Reserved

pmi_core_sel 17:0 RW 0 PMI Core Select

Ex:
If counter overflow is sent to UBox...
000000000000000000 - No PMI sent
000000000000000001 - Send PMI to core 0
000000000001000000 - Send PMI to core 6
000000000001100010 - Send PMI to core 2, 5 & 6

etc.

NOTE: If wk_on_pmi is set to 1, a wake will be sent to any
sleeping core in the mask prior to sending the PMI.

Document Number: 332427-001, Revision 1.0 25

2.2 UBox Performance Monitoring
The UBox serves as the system configuration controller for the Intel® Xeon® Processor D-1500
Product Family.

In this capacity, the UBox acts as the central unit for a variety of functions:

• The master for reading and writing physically distributed registers across the processor using the
Message Channel.

• The UBox is the intermediary for interrupt traffic, receiving interrupts from the system and
dispatching interrupts to the appropriate core.

• The UBox serves as the system lock master used when quiescing the platform (e.g. bus lock).

Table 2-3. U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 63:35 RV 0 Reserved

ov_irp 34 RW1C 0 Set if overflow is detected from an IRP PMON register.
NOTE: Write of ‘1’ will clear the bit.

rsv 33:30 RV 0 Reserved

ov_rp 29 RW1C 0 Set if overflow is detected from an R2PCIe PMON register.
NOTE: Write of ‘1’ will clear the bit.

rsv 28:24 RV 0 Reserved

ov_m0 23 RW1C 0 Set if overflow is detected from an iMC0 PMON register.
NOTE: Write of ‘1’ will clear the bit.

rsv 22 RV 0 Reserved

ov_h0 21 RW1C 0 Set if overflow is detected from an HA0 PMON register.
NOTE: Write of ‘1’ will clear the bit.

rsv 20:3 RV 0 Reserved

ov_p 2 RW1C 0 Set if overflow is detected from a PCU PMON register.
NOTE: Write of ‘1’ will clear the bit.

ov_u 1 RW1C 0 Set if overflow is detected from a UBox PMON register.
NOTE: Write of ‘1’ will clear the bit.

ov_u_fixed 0 RW1C 0 Set if overflow is detected from UBox fixed PMON register.
NOTE: Write of ‘1’ will clear the bit.

Table 2-4. U_MSR_PMON_GLOBAL_CONFIG Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:5 RV 0 Reserved

num_c 4:0 RW 18 Number of sets of CBo PMON counters.

26 Document Number: 332427-001, Revision 1.0

2.2.1 UBox Performance Monitoring Overview
The UBox supports event monitoring through two programmable 48-bit wide counters
(U_MSR_PMON_CTR{1:0}), and a 48-bit fixed counter which increments each U-clock. Each of these
counters can be programmed (U_MSR_PMON_CTL{1:0}) to monitor any UBox event.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

2.2.1.1 UBox PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from a UBox performance counter, the overflow bit is set at the box level
(U_MSR_PMON_BOX_STATUS.ov). If its overflow enable bit (U_MSR_PMON_CTLx.ov_en) has been
set to 1, the U_MSR_PMON_GLOBAL_STATUS.ov_u bit is set (see Table 2-3,
“U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions”), the freeze signal is broadcast to other
boxes and a PMI can be generated.

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for the freeze,
must be cleared by setting the corresponding bit in U_MSR_PMON_BOX_STATUS.ov and
U_MSR_PMON_GLOBAL_STATUs.ov_u to 1 (which acts to clear it). Assuming all the counters have
been locally enabled (.en bit in control registers meant to monitor events) and the overflow bit(s) has
been cleared, the UBox is prepared for a new sample interval. Once the global controls have been re-
enabled (Section 2.1.4, “Enabling a New Sample Interval from Frozen Counters”), counting will
resume.

2.2.2 UBox Performance Monitors

2.2.2.1 UBox Box Level PMON State

The following registers represent the state governing all box-level PMUs in the UBox.

If an overflow is detected from one of the UBox PMON registers, the corresponding bit in the
U_MSR_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write a
value of ‘1’ to them (which will clear the bits).

Table 2-5. UBox Performance Monitoring Registers (MSR)

MSR Name MSR
Address

Size
(bits) Description

U_MSR_PMON_CTR1 0x070A 64 U-Box PMON Counter 1

U_MSR_PMON_CTR0 0x0709 64 U-Box PMON Counter 0

U_MSR_PMON_BOX_STATUS 0x0708 32 U-Box PMON Box-Wide Status

U_MSR_PMON_CTL1 0x0706 64 U-Box PMON Control for Counter 1

U_MSR_PMON_CTL0 0x0705 32 U-Box PMON Control for Counter 0

U_MSR_PMON_UCLK_FIXED_CTR 0x0704 64 U-Box PMON UCLK Fixed Counter

U_MSR_PMON_UCLK_FIXED_CTL 0x0703 32 U-Box PMON UCLK Fixed Counter Control

Document Number: 332427-001, Revision 1.0 27

2.2.2.2 UBox PMON state - Counter/Control Pairs

The following table defines the layout of the UBox performance monitor control registers. The main
task of these configuration registers is to select the event to be monitored by their respective data
counter (.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g.
.invert, .edge_det, .thresh) as well as provide additional functionality for monitoring software (.rst).

Table 2-6. U_MSR_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:2 RV 0 Reserved

ov 1:0 RW1C 0 If an overflow is detected from the corresponding UBOX PMON
register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

Table 2-7. U_MSR_PMON_CTL{1-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:29 RV 0 Reserved

thresh 28:24 RW 0 Threshold used in counter comparison.

invert 23 RW 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW 0 Local Counter Enable

rsv 21 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW 0 When this bit is set to 1 and the corresponding counter
overflows, a UBox overflow message is sent to the UBox’s
global logic.
Once received, the global status register will record the
overflow in U_MSR_PMON_GLOBAL_STATUS.ov_u.

rsv 19 RV 0 Reserved

edge_det 18 RW 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved. SW must write to 0 else behavior is undefined.

umask 15:8 RW 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW 0 Select event to be counted.

28 Document Number: 332427-001, Revision 1.0

The UBox performance monitor data registers are 48-bit wide. A counter overflow occurs when a
carry out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the global logic (.ov_en). During the interval of time between overflow and global disable,
the counter value will wrap and continue to collect events.

If accessible, software can continuously read the data registers without disabling event collection.

The UBox PMON includes a fixed counter that increments at UCLK for each cycle it is enabled.

2.2.3 UBox Performance Monitoring Events
The set of events that can be monitored in the UBox are summarized in Section 2.2.

2.2.4 UBOX Box Events Ordered By Code
The following table summarizes the directly measured UBOX Box events.

Table 2-8. U_MSR_PMON_CTR{1-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 63:48 RV 0 Reserved

event_count 47:0 RW-V 0 48-bit performance event counter

Table 2-9. U_MSR_PMON_FIXED_CTL Register – Field Definitions

Field Bits Attr
HW

Rese
t Val

Description

rsv 31:23 RV 0 Reserved

en 22 RW-V 0 Enable counter when global enable is set.

rsv 21 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW-V 0 When this bit is set to 1 and the corresponding counter
overflows, a UBox overflow message is sent to the UBox’s global
logic.
Once received, the global status register will record the overflow
in U_MSR_PMON_GLOBAL_STATUS.ov_u_fixed.

rsv 19:0 RV 0 Reserved

Table 2-10. U_MSR_PMON_FIXED_CTR Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 63:48 RV 0 Reserved

event_count 47:0 RW-V 0 48-bit performance event counter

Symbol Name Event
Code Ctrs

Extra
Select

Bit

Max
Inc/C

yc
Description

EVENT_MSG 0x42 0-1 0 1 VLW Received

PHOLD_CYCLES 0x45 0-1 0 1 Cycles PHOLD Assert to Ack

Document Number: 332427-001, Revision 1.0 29

2.2.5 UBOX Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the UBOX Box.

EVENT_MSG
• Title: VLW Received
• Category: EVENT_MSG Events
• Event Code: 0x42
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Virtual Logical Wire (legacy) message were received from Uncore. Specify the thread

to filter on using NCUPMONCTRLGLCTR.ThreadID.

PHOLD_CYCLES
• Title: Cycles PHOLD Assert to Ack
• Category: PHOLD Events
• Event Code: 0x45
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: PHOLD cycles. Filter from source CoreID.

RACU_REQUESTS
• Title: RACU Request
• Category: RACU Events
• Event Code: 0x46
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition:
• NOTE: This will be dropped because PHOLD is not implemented this way

RACU_REQUESTS 0x46 0-1 0 1 RACU Request

Table 2-11. Unit Masks for EVENT_MSG

Extension umask
[15:8] Description

DOORBELL_RCVD bxxxx1xxx

Table 2-12. Unit Masks for PHOLD_CYCLES

Extension umask
[15:8] Description

ASSERT_TO_ACK bxxxxxxx1 Assert to ACK

Symbol Name Event
Code Ctrs

Extra
Select

Bit

Max
Inc/C

yc
Description

30 Document Number: 332427-001, Revision 1.0

2.3 Caching Agent (Cbo) Performance Monitoring
The LLC coherence engine (CBo) manages the interface between the core and the last level cache
(LLC). All core transactions that access the LLC are directed from the core to a CBo via the ring
interconnect. The CBo is responsible for managing data delivery from the LLC to the requesting core.
It is also responsible for maintaining coherence between the cores within the socket that share the
LLC; generating snoops and collecting snoop responses from the local cores when the MESIF protocol
requires it.

So, if the CBo fielding the core request indicates that a core within the socket owns the line (for a
coherent read), the request is snooped to that local core. That same CBo will then snoop all peers
which might have the address cached (other cores, remote sockets, etc.) and send the request to the
appropriate Home Agent for conflict checking, memory requests and writebacks.

The CBo manages local conflicts by ensuring that only one request is issued to the system for a
specific cacheline.

The Intel® Xeon® Processor D-1500 Product Family uncore contains up to 8 instances of the CBo,
each assigned to manage a (up to) distinct 1.5MB slice of the processor’s total LLC capacity. A slice
that can be up to 12-way set associative. For processors with fewer than 8 1.5MB LLC slices, the CBo
Boxes or missing slices will still be active and track ring traffic caused by their co-located core even if
they have no LLC related traffic to track (i.e. hits/misses/snoops).

Every physical memory address in the system is uniquely associated with a single CBo instance via a
proprietary hashing algorithm that is designed to keep the distribution of traffic across the CBo
instances relatively uniform for a wide range of possible address patterns. This enables the individual
CBo instances to operate independently, each managing its slice of the physical address space without
any CBo in a given socket ever needing to communicate with the other CBos in that same socket.

2.3.1 CBo Performance Monitoring Overview
Each of the CBos in the Intel® Xeon® Processor D-1500 Product Family uncore supports event
monitoring through four 48-bit wide counters (Cn_MSR_PMON_CTR{3:0}). With but a small number
of exceptions, each of these counters can be programmed (Cn_MSR_PMON_CTL{3:0}) for any
available event.

NOTE: Occupancy Events can only be measured in Counter 0.

CBo counter 0 can increment by a maximum of 20 per cycle; counters 1-3 can increment by 1 per
cycle.

Some uncore performance events that monitor transaction activities require additional details that
must be programmed in a filter register. Each Cbo provides two filter registers and allows only one
such event to be programmed at a given time, see Section 2.3.2.3.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

2.3.1.1 Special Note on CBo Occupancy Events

Although only counter 0 supports occupancy events, it is possible to program counters 1-3 to monitor
the same occupancy event by selecting the “OCCUPANCY_COUNTER0” event code on counters 1-3.

This allows:
Thresholding

Document Number: 332427-001, Revision 1.0 31

2.3.1.2 CBo PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from a CBo performance counter, the overflow bit is set at the box level
(Cn_MSR_PMON_BOX_STATUS.ov)

2.3.2 CBo Performance Monitors

Note: The number of CBoxes varies with the number of Cores in a system. To determine the
number of CBoxes, SW should read bits 15:0 in the CAPID5 register located at Device
30, Function 3, Offset 0x98. These 16 bits form a bit vector of available LLC slices and
the CBoxes that manage those slices. For example: If bits 15:0 read 0x0F0F, the PMON
blocks corresponding to CBoxes 0-3 and 8-11 are available and CBoxes 4-7 and 12-15
are not available.

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 1 of 8)

MSR Name MSR
Address

Size
(bits) Description

CBo 0 PMON Registers

Generic Counters

C0_MSR_PMON_CTR3 0x0E0B 64 CBo 0 PMON Counter 3

C0_MSR_PMON_CTR2 0x0E0A 64 CBo 0 PMON Counter 2

C0_MSR_PMON_CTR1 0x0E09 64 CBo 0 PMON Counter 1

C0_MSR_PMON_CTR0 0x0E08 64 CBo 0 PMON Counter 0

Box-Level Filter

C0_MSR_PMON_BOX_FILTER1 0x0E06 32 CBo 0 PMON Filter1

C0_MSR_PMON_BOX_FILTER0 0x0E05 32 CBo 0 PMON Filter0

Generic Counter Control

C0_MSR_PMON_CTL3 0x0E04 32 CBo 0 PMON Control for Counter 3

C0_MSR_PMON_CTL2 0x0E03 32 CBo 0 PMON Control for Counter 2

C0_MSR_PMON_CTL1 0x0E02 32 CBo 0 PMON Control for Counter 1

C0_MSR_PMON_CTL0 0x0E01 32 CBo 0 PMON Control for Counter 0

Box-Level Control/Status

C0_MSR_PMON_BOX_STATUS 0x0E07 32 CBo 0 PMON Box-Wide Status

C0_MSR_PMON_BOX_CTL 0x0E00 32 CBo 0 PMON Box-Wide Control

CBo 1 PMON Registers

Generic Counters

C1_MSR_PMON_CTR3 0x0E1B 64 CBo 1 PMON Counter 3

C1_MSR_PMON_CTR2 0x0E1A 64 CBo 1 PMON Counter 2

C1_MSR_PMON_CTR1 0x0E19 64 CBo 1 PMON Counter 1

C1_MSR_PMON_CTR0 0x0E18 64 CBo 1 PMON Counter 0

Box-Level Filter

C1_MSR_PMON_BOX_FILTER1 0x0E16 32 CBo 1 PMON Filter1

C1_MSR_PMON_BOX_FILTER0 0x0E15 32 CBo 1 PMON Filter0

Generic Counter Control

C1_MSR_PMON_CTL3 0x0E14 32 CBo 1 PMON Control for Counter 3

32 Document Number: 332427-001, Revision 1.0

C1_MSR_PMON_CTL2 0x0E13 32 CBo 1 PMON Control for Counter 2

C1_MSR_PMON_CTL1 0x0E12 32 CBo 1 PMON Control for Counter 1

C1_MSR_PMON_CTL0 0x0E11 32 CBo 1 PMON Control for Counter 0

Box-Level Control/Status

C1_MSR_PMON_BOX_STATUS 0x0E17 32 CBo 1 PMON Box-Wide Status

C1_MSR_PMON_BOX_CTL 0x0E10 32 CBo 1 PMON Box-Wide Control

CBo 2 PMON Registers

Generic Counters

C2_MSR_PMON_CTR3 0x0E2B 64 CBo 2 PMON Counter 3

C2_MSR_PMON_CTR2 0x0E2A 64 CBo 2 PMON Counter 2

C2_MSR_PMON_CTR1 0x0E29 64 CBo 2 PMON Counter 1

C2_MSR_PMON_CTR0 0x0E28 64 CBo 2 PMON Counter 0

Box-Level Filter

C2_MSR_PMON_BOX_FILTER1 0x0E26 32 CBo 2 PMON Filter1

C2_MSR_PMON_BOX_FILTER0 0x0E25 32 CBo 2 PMON Filter0

Generic Counter Control

C2_MSR_PMON_CTL3 0x0E24 32 CBo 2 PMON Control for Counter 3

C2_MSR_PMON_CTL2 0x0E23 32 CBo 2 PMON Control for Counter 2

C2_MSR_PMON_CTL1 0x0E22 32 CBo 2 PMON Control for Counter 1

C2_MSR_PMON_CTL0 0x0E21 32 CBo 2 PMON Control for Counter 0

Box-Level Control/Status

C2_MSR_PMON_BOX_STATUS 0x0E27 32 CBo 2 PMON Box-Wide Status

C2_MSR_PMON_BOX_CTL 0x0E20 32 CBo 2 PMON Box-Wide Control

CBo 3 PMON Registers

Generic Counters

C3_MSR_PMON_CTR3 0x0E3B 64 CBo 3 PMON Counter 3

C3_MSR_PMON_CTR2 0x0E3A 64 CBo 3 PMON Counter 2

C3_MSR_PMON_CTR1 0x0E39 64 CBo 3 PMON Counter 1

C3_MSR_PMON_CTR0 0x0E38 64 CBo 3 PMON Counter 0

Box-Level Filter

C3_MSR_PMON_BOX_FILTER1 0x0E36 32 CBo 3 PMON Filter1

C3_MSR_PMON_BOX_FILTER0 0x0E35 32 CBo 3 PMON Filter0

Generic Counter Control

C3_MSR_PMON_CTL3 0x0E34 32 CBo 3 PMON Control for Counter 3

C3_MSR_PMON_CTL2 0x0E33 32 CBo 3 PMON Control for Counter 2

C3_MSR_PMON_CTL1 0x0E32 32 CBo 3 PMON Control for Counter 1

C3_MSR_PMON_CTL0 0x0E31 32 CBo 3 PMON Control for Counter 0

Box-Level Control/Status

C3_MSR_PMON_BOX_STATUS 0x0E37 32 CBo 3 PMON Box-Wide Status

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 2 of 8)

MSR Name MSR
Address

Size
(bits) Description

Document Number: 332427-001, Revision 1.0 33

C3_MSR_PMON_BOX_CTL 0x0E30 32 CBo 3 PMON Box-Wide Control

CBo 4 PMON Registers

Generic Counters

C4_MSR_PMON_CTR3 0x0E4B 64 CBo 4 PMON Counter 3

C4_MSR_PMON_CTR2 0x0E4A 64 CBo 4 PMON Counter 2

C4_MSR_PMON_CTR1 0x0E49 64 CBo 4 PMON Counter 1

C4_MSR_PMON_CTR0 0x0E48 64 CBo 4 PMON Counter 0

Box-Level Filter

C4_MSR_PMON_BOX_FILTER1 0x0E46 32 CBo 4 PMON Filter1

C4_MSR_PMON_BOX_FILTER0 0x0E45 32 CBo 4 PMON Filter0

Generic Counter Control

C4_MSR_PMON_CTL3 0x0E44 32 CBo 4 PMON Control for Counter 3

C4_MSR_PMON_CTL2 0x0E43 32 CBo 4 PMON Control for Counter 2

C4_MSR_PMON_CTL1 0x0E42 32 CBo 4 PMON Control for Counter 1

C4_MSR_PMON_CTL0 0x0E41 32 CBo 4 PMON Control for Counter 0

Box-Level Control/Status

C4_MSR_PMON_BOX_STATUS 0x0E47 32 CBo 4 PMON Box-Wide Status

C4_MSR_PMON_BOX_CTL 0x0E40 32 CBo 4 PMON Box-Wide Control

CBo 5 PMON Registers

Generic Counters

C5_MSR_PMON_CTR3 0x0E5B 64 CBo 5 PMON Counter 3

C5_MSR_PMON_CTR2 0x0E5A 64 CBo 5 PMON Counter 2

C5_MSR_PMON_CTR1 0x0E59 64 CBo 5 PMON Counter 1

C5_MSR_PMON_CTR0 0x0E58 64 CBo 5 PMON Counter 0

Box-Level Filter

C5_MSR_PMON_BOX_FILTER1 0x0E56 32 CBo 5 PMON Filter1

C5_MSR_PMON_BOX_FILTER0 0x0E55 32 CBo 5 PMON Filter0

Generic Counter Control

C5_MSR_PMON_CTL3 0x0E54 32 CBo 5 PMON Control for Counter 3

C5_MSR_PMON_CTL2 0x0E53 32 CBo 5 PMON Control for Counter 2

C5_MSR_PMON_CTL1 0x0E52 32 CBo 5 PMON Control for Counter 1

C5_MSR_PMON_CTL0 0x0E51 32 CBo 5 PMON Control for Counter 0

Box-Level Control/Status

C5_MSR_PMON_BOX_STATUS 0x0E57 32 CBo 5 PMON Box-Wide Status

C5_MSR_PMON_BOX_CTL 0x0E50 32 CBo 5 PMON Box-Wide Control

CBo 6 PMON Registers

Generic Counters

C6_MSR_PMON_CTR3 0x0E6B 64 CBo 6 PMON Counter 3

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 3 of 8)

MSR Name MSR
Address

Size
(bits) Description

34 Document Number: 332427-001, Revision 1.0

C6_MSR_PMON_CTR2 0x0E6A 64 CBo 6 PMON Counter 2

C6_MSR_PMON_CTR1 0x0E69 64 CBo 6 PMON Counter 1

C6_MSR_PMON_CTR0 0x0E68 64 CBo 6 PMON Counter 0

Box-Level Filter

C6_MSR_PMON_BOX_FILTER1 0x0E66 32 CBo 6 PMON Filter1

C6_MSR_PMON_BOX_FILTER0 0x0E65 32 CBo 6 PMON Filter0

Generic Counter Control

C6_MSR_PMON_CTL3 0x0E64 32 CBo 6 PMON Control for Counter 3

C6_MSR_PMON_CTL2 0x0E63 32 CBo 6 PMON Control for Counter 2

C6_MSR_PMON_CTL1 0x0E62 32 CBo 6 PMON Control for Counter 1

C6_MSR_PMON_CTL0 0x0E61 32 CBo 6 PMON Control for Counter 0

Box-Level Control/Status

C6_MSR_PMON_BOX_STATUS 0x0E67 32 CBo 6 PMON Box-Wide Status

C6_MSR_PMON_BOX_CTL 0x0E60 32 CBo 6 PMON Box-Wide Control

CBo 7 PMON Registers

Generic Counters

C7_MSR_PMON_CTR3 0x0E7B 64 CBo 7 PMON Counter 3

C7_MSR_PMON_CTR2 0x0E7A 64 CBo 7 PMON Counter 2

C7_MSR_PMON_CTR1 0x0E79 64 CBo 7 PMON Counter 1

C7_MSR_PMON_CTR0 0x0E78 64 CBo 7 PMON Counter 0

Box-Level Filter

C7_MSR_PMON_BOX_FILTER1 0x0E76 32 CBo 7 PMON Filter1

C7_MSR_PMON_BOX_FILTER0 0x0E75 32 CBo 7 PMON Filter0

Generic Counter Control

C7_MSR_PMON_CTL3 0x0E74 32 CBo 7 PMON Control for Counter 3

C7_MSR_PMON_CTL2 0x0E73 32 CBo 7 PMON Control for Counter 2

C7_MSR_PMON_CTL1 0x0E72 32 CBo 7 PMON Control for Counter 1

C7_MSR_PMON_CTL0 0x0E71 32 CBo 7 PMON Control for Counter 0

Box-Level Control/Status

C7_MSR_PMON_BOX_STATUS 0x0E77 32 CBo 7 PMON Box-Wide Status

C7_MSR_PMON_BOX_CTL 0x0E70 32 CBo 7 PMON Box-Wide Control

CBo 8 PMON Registers

Generic Counters

C8_MSR_PMON_CTR3 0x0E8B 64 CBo 8 PMON Counter 3

C8_MSR_PMON_CTR2 0x0E8A 64 CBo 8 PMON Counter 2

C8_MSR_PMON_CTR1 0x0E89 64 CBo 8 PMON Counter 1

C8_MSR_PMON_CTR0 0x0E88 64 CBo 8 PMON Counter 0

Box-Level Filter

C8_MSR_PMON_BOX_FILTER1 0x0E86 32 CBo 8 PMON Filter1

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 4 of 8)

MSR Name MSR
Address

Size
(bits) Description

Document Number: 332427-001, Revision 1.0 35

C8_MSR_PMON_BOX_FILTER0 0x0E85 32 CBo 8 PMON Filter0

Generic Counter Control

C8_MSR_PMON_CTL3 0x0E84 32 CBo 8 PMON Control for Counter 3

C8_MSR_PMON_CTL2 0x0E83 32 CBo 8 PMON Control for Counter 2

C8_MSR_PMON_CTL1 0x0E82 32 CBo 8 PMON Control for Counter 1

C8_MSR_PMON_CTL0 0x0E81 32 CBo 8 PMON Control for Counter 0

Box-Level Control/Status

C8_MSR_PMON_BOX_STATUS 0x0E87 32 CBo 8 PMON Box-Wide Status

C8_MSR_PMON_BOX_CTL 0x0E80 32 CBo 8 PMON Box-Wide Control

CBo 9 PMON Registers

Generic Counters

C9_MSR_PMON_CTR3 0x0E9B 64 CBo 9 PMON Counter 3

C9_MSR_PMON_CTR2 0x0E9A 64 CBo 9 PMON Counter 2

C9_MSR_PMON_CTR1 0x0E99 64 CBo 9 PMON Counter 1

C9_MSR_PMON_CTR0 0x0E98 64 CBo 9 PMON Counter 0

Box-Level Filter

C9_MSR_PMON_BOX_FILTER1 0x0E96 32 CBo 9 PMON Filter1

C9_MSR_PMON_BOX_FILTER0 0x0E95 32 CBo 9 PMON Filter0

Generic Counter Control

C9_MSR_PMON_CTL3 0x0E94 32 CBo 9 PMON Control for Counter 3

C9_MSR_PMON_CTL2 0x0E93 32 CBo 9 PMON Control for Counter 2

C9_MSR_PMON_CTL1 0x0E92 32 CBo 9 PMON Control for Counter 1

C9_MSR_PMON_CTL0 0x0E91 32 CBo 9 PMON Control for Counter 0

Box-Level Control/Status

C9_MSR_PMON_BOX_STATUS 0x0E97 32 CBo 9 PMON Box-Wide Status

C9_MSR_PMON_BOX_CTL 0x0E90 32 CBo 9 PMON Box-Wide Control

CBo 10 PMON Registers

Generic Counters

C10_MSR_PMON_CTR3 0x0EAB 64 CBo 10 PMON Counter 3

C10_MSR_PMON_CTR2 0x0EAA 64 CBo 10 PMON Counter 2

C10_MSR_PMON_CTR1 0x0EA9 64 CBo 10 PMON Counter 1

C10_MSR_PMON_CTR0 0x0EA8 64 CBo 10 PMON Counter 0

Box-Level Filter

C10_MSR_PMON_BOX_FILTER1 0x0EA6 32 CBo 10 PMON Filter1

C10_MSR_PMON_BOX_FILTER0 0x0EA5 32 CBo 10 PMON Filter0

Generic Counter Control

C10_MSR_PMON_CTL3 0x0EA4 32 CBo 10 PMON Control for Counter 3

C10_MSR_PMON_CTL2 0x0EA3 32 CBo 10 PMON Control for Counter 2

C10_MSR_PMON_CTL1 0x0EA2 32 CBo 10 PMON Control for Counter 1

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 5 of 8)

MSR Name MSR
Address

Size
(bits) Description

36 Document Number: 332427-001, Revision 1.0

C10_MSR_PMON_CTL0 0x0EA1 32 CBo 10 PMON Control for Counter 0

Box-Level Control/Status

C10_MSR_PMON_BOX_STATUS 0x0EA7 32 CBo 10 PMON Box-Wide Status

C10_MSR_PMON_BOX_CTL 0x0EA0 32 CBo 10 PMON Box-Wide Control

CBo 11 PMON Registers

Generic Counters

C11_MSR_PMON_CTR3 0x0EBB 64 CBo 11 PMON Counter 3

C11_MSR_PMON_CTR2 0x0EBA 64 CBo 11 PMON Counter 2

C11_MSR_PMON_CTR1 0x0EB9 64 CBo 11 PMON Counter 1

C11_MSR_PMON_CTR0 0x0EB8 64 CBo 11 PMON Counter 0

Box-Level Filter

C11_MSR_PMON_BOX_FILTER1 0x0EB6 32 CBo 11 PMON Filter1

C11_MSR_PMON_BOX_FILTER0 0x0EB5 32 CBo 11 PMON Filter0

Generic Counter Control

C11_MSR_PMON_CTL3 0x0EB4 32 CBo 11 PMON Control for Counter 3

C11_MSR_PMON_CTL2 0x0EB3 32 CBo 11 PMON Control for Counter 2

C11_MSR_PMON_CTL1 0x0EB2 32 CBo 11 PMON Control for Counter 1

C11_MSR_PMON_CTL0 0x0EB1 32 CBo 11 PMON Control for Counter 0

Box-Level Control/Status

C11_MSR_PMON_BOX_STATUS 0x0EB7 32 CBo 11 PMON Box-Wide Status

C11_MSR_PMON_BOX_CTL 0x0EB0 32 CBo 11 PMON Box-Wide Control

CBo 12 PMON Registers

Generic Counters

C12_MSR_PMON_CTR3 0x0ECB 64 CBo 12 PMON Counter 3

C12_MSR_PMON_CTR2 0x0ECA 64 CBo 12 PMON Counter 2

C12_MSR_PMON_CTR1 0x0EC9 64 CBo 12 PMON Counter 1

C12_MSR_PMON_CTR0 0x0EC8 64 CBo 12 PMON Counter 0

Box-Level Filter

C12_MSR_PMON_BOX_FILTER1 0x0EC6 32 CBo 12 PMON Filter1

C12_MSR_PMON_BOX_FILTER0 0x0EC5 32 CBo 12 PMON Filter0

Generic Counter Control

C12_MSR_PMON_CTL3 0x0EC4 32 CBo 12 PMON Control for Counter 3

C12_MSR_PMON_CTL2 0x0EC3 32 CBo 12 PMON Control for Counter 2

C12_MSR_PMON_CTL1 0x0EC2 32 CBo 12 PMON Control for Counter 1

C12_MSR_PMON_CTL0 0x0EC1 32 CBo 12 PMON Control for Counter 0

Box-Level Control/Status

C12_MSR_PMON_BOX_STATUS 0x0EC7 32 CBo 12 PMON Box-Wide Status

C12_MSR_PMON_BOX_CTL 0x0EC0 32 CBo 12 PMON Box-Wide Control

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 6 of 8)

MSR Name MSR
Address

Size
(bits) Description

Document Number: 332427-001, Revision 1.0 37

CBo 13 PMON Registers

Generic Counters

C13_MSR_PMON_CTR3 0x0EDB 64 CBo 13 PMON Counter 3

C13_MSR_PMON_CTR2 0x0EDA 64 CBo 13 PMON Counter 2

C13_MSR_PMON_CTR1 0x0ED9 64 CBo 13 PMON Counter 1

C13_MSR_PMON_CTR0 0x0ED8 64 CBo 13 PMON Counter 0

Box-Level Filter

C13_MSR_PMON_BOX_FILTER1 0x0ED6 32 CBo 13 PMON Filter1

C13_MSR_PMON_BOX_FILTER0 0x0ED5 32 CBo 13 PMON Filter0

Generic Counter Control

C13_MSR_PMON_CTL3 0x0ED4 32 CBo 13 PMON Control for Counter 3

C13_MSR_PMON_CTL2 0x0ED3 32 CBo 13 PMON Control for Counter 2

C13_MSR_PMON_CTL1 0x0ED2 32 CBo 13 PMON Control for Counter 1

C13_MSR_PMON_CTL0 0x0ED1 32 CBo 13 PMON Control for Counter 0

Box-Level Control/Status

C13_MSR_PMON_BOX_STATUS 0x0ED7 32 CBo 13 PMON Box-Wide Status

C13_MSR_PMON_BOX_CTL 0x0ED0 32 CBo 13 PMON Box-Wide Control

CBo 14 PMON Registers

Generic Counters

C14_MSR_PMON_CTR3 0x0EEB 64 CBo 14 PMON Counter 3

C14_MSR_PMON_CTR2 0x0EEA 64 CBo 14 PMON Counter 2

C14_MSR_PMON_CTR1 0x0EE9 64 CBo 14 PMON Counter 1

C14_MSR_PMON_CTR0 0x0EE8 64 CBo 14 PMON Counter 0

Box-Level Filter

C14_MSR_PMON_BOX_FILTER1 0x0EE6 32 CBo 14 PMON Filter1

C14_MSR_PMON_BOX_FILTER0 0x0EE5 32 CBo 14 PMON Filter0

Generic Counter Control

C14_MSR_PMON_CTL3 0x0EE4 32 CBo 14 PMON Control for Counter 3

C14_MSR_PMON_CTL2 0x0EE3 32 CBo 14 PMON Control for Counter 2

C14_MSR_PMON_CTL1 0x0EE2 32 CBo 14 PMON Control for Counter 1

C14_MSR_PMON_CTL0 0x0EE1 32 CBo 14 PMON Control for Counter 0

Box-Level Control/Status

C14_MSR_PMON_BOX_STATUS 0x0EE7 32 CBo 14 PMON Box-Wide Status

C14_MSR_PMON_BOX_CTL 0x0EE0 32 CBo 14 PMON Box-Wide Control

CBo 15 PMON Registers

Generic Counters

C15_MSR_PMON_CTR3 0x0EFB 64 CBo 15 PMON Counter 3

C15_MSR_PMON_CTR2 0x0EFA 64 CBo 15 PMON Counter 2

C15_MSR_PMON_CTR1 0x0EF9 64 CBo 15 PMON Counter 1

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 7 of 8)

MSR Name MSR
Address

Size
(bits) Description

38 Document Number: 332427-001, Revision 1.0

2.3.2.1 CBo Box Level PMON State

The following registers represent the state governing all box-level PMUs in the CBo.

In the case of the CBo, the Cn_MSR_PMON_BOX_CTL register provides the ability to manually freeze
the counters in the box (.frz) and reset the generic state (.rst_ctrs and .rst_ctrl).

If an overflow is detected from one of the CBo PMON registers, the corresponding bit in the
Cn_MSR_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write a
value of ‘1’ to them (which will clear the bits).

C15_MSR_PMON_CTR0 0x0EF8 64 CBo 15 PMON Counter 0

Box-Level Filter

C15_MSR_PMON_BOX_FILTER1 0x0EF6 32 CBo 15 PMON Filter1

C15_MSR_PMON_BOX_FILTER0 0x0EF5 32 CBo 15 PMON Filter0

Generic Counter Control

C15_MSR_PMON_CTL3 0x0EF4 32 CBo 15 PMON Control for Counter 3

C15_MSR_PMON_CTL2 0x0EF3 32 CBo 15 PMON Control for Counter 2

C15_MSR_PMON_CTL1 0x0EF2 32 CBo 15 PMON Control for Counter 1

C15_MSR_PMON_CTL0 0x0EF1 32 CBo 15 PMON Control for Counter 0

Box-Level Control/Status

C15_MSR_PMON_BOX_STATUS 0x0EF7 32 CBo 15 PMON Box-Wide Status

C15_MSR_PMON_BOX_CTL 0x0EF0 32 CBo 15 PMON Box-Wide Control

Table 2-14. Cn_MSR_PMON_BOX_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:18 RV 0 Reserved

rsv 17:16 RV 0 Reserved; SW must write to 1 else behavior is undefined.

rsv 15:9 RV 0 Reserved

frz 8 WO 0 Freeze.
If set to 1 the counters in this box will be frozen.

rsv 7:2 RV 0 Reserved

rst_ctrs 1 WO 0 Reset Counters.
When set to 1, the Counter Registers will be reset to 0.

rst_ctrl 0 WO 0 Reset Control.
When set to 1, the Counter Control Registers will be reset to
0.

Table 2-13. CBo Performance Monitoring Registers (MSR) (Sheet 8 of 8)

MSR Name MSR
Address

Size
(bits) Description

Document Number: 332427-001, Revision 1.0 39

2.3.2.2 CBo PMON state - Counter/Control Pairs

The following table defines the layout of the CBo performance monitor control registers. The main
task of these configuration registers is to select the event to be monitored by their respective data
counter (.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g.
.invert, .edge_det, .thresh) as well as provide additional functionality for monitoring software (.rst).

The CBo performance monitor data registers are 48b wide. A counter overflow occurs when a carry
out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the UBox (refer to Section 2.1.1, “Counter Overflow”). During the interval of time
between overflow and global disable, the counter value will wrap and continue to collect events.

Table 2-15. Cn_MSR_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:4 RV 0 Reserved

ov 3:0 RW1C 0 If an overflow is detected from the corresponding
Cn_MSR_PMON_CTR register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

Table 2-16. Cn_MSR_PMON_CTL{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

thresh 31:24 RW-V 0 Threshold used in counter comparison.

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

rsv 21:20 RV 0 Reserved; SW must write to 0 else behavior is undefined.

tid_en 19 RW-V 0 TID Filter Enable

edge_det 18 RW-V 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved. SW must write to 0 else behavior is undefined.

umask 15:8 RW-V 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW-V 0 Select event to be counted.

40 Document Number: 332427-001, Revision 1.0

If accessible, software can continuously read the data registers without disabling event collection.

2.3.2.3 CBo Filter Registers (Cn_MSR_PMON_BOX_FILTER{0,1})

In addition to generic event counting, each CBo provides a pair of FILTER registers that allow a user to
filter various traffic as it applies to specific events (see Event Section for more information).
LLC_LOOKUP may be filtered by the cacheline state, while TOR_INSERTS and TOR_OCCUPANCY may
be filtered by the opcode of the queued request as well as the corresponding NodeID.

Any of the CBo events may be filtered by Thread/Core-ID. To do so, the control register’s .tid_en bit
must be set to 1 and the tid field in the FILTER register filled out.

Note: Only one of these filtering criteria may be applied at a time.

Table 2-17. Cn_MSR_PMON_CTR{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 63:48 RV 0 Reserved

event_count 47:0 RW-V 0 48-bit performance event counter

Table 2-18. Cn_MSR_PMON_BOX_FILTER0 Register – Field Definitions

Field Bits Atrtr
HW

Reset
Val

Description

rsv 31:24 RV 0 Reserved SW must set to 0 else behavior is undefined

state 23:17 RW 0 Select state to monitor for LLC_LOOKUP event. Setting
multiple bits in this field will allow a user to track multiple
states.

b1xxxxxx - M’state.
bx1xxxxx - D state.
bxx1xxxx - F state.
bxxx1xxx - M state
bxxxx1xx - E state.
bxxxxx1x - S state.
bxxxxxx1 - I state.

rsv 16:6 RV 0 Reserved SW must set to 0 else behavior is undefined

tid 5:0 0 0 [5] Non-thread related data
[4:1] Core-ID
[0] Thread 1/0

When .tid_en is 0; the specified counter will count ALL events.
On BDX, ‘ALL events’ includes traffic from the CPU (e.g. Data
Reqeusts) and IIO.

Thread-ID 0x3F is reserved for non-associated requests such
as: - LLC victims - PMSeq - External Snoops

Document Number: 332427-001, Revision 1.0 41

Table 2-19. Cn_MSR_PMON_BOX_FILTER1 Register – Field Definitions

Field Bits Atrtr
HW

Reset
Val

Description

isoc 31 RW 0 Match on ISOC Requests

nc 30 RW 0 Match on Non-Coherent Requests

rsv 29 RV 0 Reserved; SW must write else behavior is undefined

opc
(7b IDI Opcode
w/top 2b 0x3)

28:20 RW 0 Match on Opcode (see Table 2-14, “Cn_MSR_PMON_BOX_CTL
Register – Field Definitions”)

NOTE: Only tracks opcodes that come from the IRQ. It is not
possible to track snoops (from IPQ) or other transactions
from the ISMQ.

rsv 19:15 RV 0 Reserved

nid 15:0 RW 0 Match on Target NodeID

Table 2-20. Opcode Match by IDI Packet Type for Cn_MSR_PMON_BOX_FILTER.opc (Sheet
1 of 2)

opc
Value Opcode Defn

0x180 RFO Demand Data RFO
- Read for Ownership requests from core for lines to be cached in E

0x181 CRd Demand Code Read
- Full cache-line read requests from core for lines to be cached in S, typically
for code

0x182 DRd Demand Data Read
- Full cache-line read requests from core for lines to be cached in S or E,
typically for data

0x187 PRd Partial Reads (UC)
- Partial read requests of 0-32B (IIO can be up to 64B). Uncacheable.

0x18C WCiLF Streaming Store - Full
- Write invalidate for full cache line of write combining stores

0x18D WCiL Streaming Store - Partial
- Write invalidate for partial cache line of write combining stores

0x190 PrefRFO Prefetch RFO into LLC but don’t pass to L2. Includes Hints

0x191 PrefCode Prefetch Code into LLC but don’t pass to L2. Includes Hints

0x192 PrefData Prefetch Data into LLC but don’t pass to L2. Includes Hints

0x193 PCIWiL PCIe Write (full - non-allocating)
- Partial line MMIO write transactions from IIO (P2P). Not used for coherent
transactions. Uncacheable.

0x194 PCIWiLF PCIe Write (partial - non-allocating)
- Full line MMIO write transactions from IIO (P2P). Not used for coherent
transactions. Uncacheable.

0x19C PCIItoM PCIe Write (allocating)
- Similar to ItoM - requests exclusive ownership but does not require data
read and IIO does not guarantee it will modify line

0x19E PCIRdCur PCIe read current
- Read Current requests from IIO. Used to read data without changing state.

0x1C4 WbMtoI Request writeback Modified invalidate line
- Evict full M-state cache line from core. Guarantees core has no cached
copies.

42 Document Number: 332427-001, Revision 1.0

2.3.3 CBo Performance Monitoring Events
The performance monitoring events within the CBo include all events internal to the LLC as well as
events which track ring related activity at the CBo/Core ring stops.

CBo performance monitoring events can be used to track LLC access rates, LLC hit/miss rates, LLC
eviction and fill rates, and to detect evidence of back pressure on the LLC pipelines. In addition, the
CBo has performance monitoring events for tracking MESI state transitions that occur as a result of
data sharing across sockets in a multi-socket system. And finally, there are events in the CBo for
tracking ring traffic at the CBo/Core sink inject points.

Every event in the CBo is from the point of view of the LLC and is not associated with any specific core
since all cores in the socket send their LLC transactions to all CBos in the socket. However, the CBo
provides a thread-id field in the Cn_MSR_PMON_BOX_FILTER register which can be applied to the CBo
events to obtain the interactions between specific cores and threads.

There are separate sets of counters for each CBo instance. For any event, to get an aggregate count
of that event for the entire LLC, the counts across the CBo instances must be added together. The
counts can be averaged across the CBo instances to get a view of the typical count of an event from
the perspective of the individual CBos. Individual per-CBo deviations from the average can be used to
identify hot-spotting across the CBos or other evidences of non-uniformity in LLC behavior across the
CBos. Such hot-spotting should be rare, though a repetitive polling on a fixed physical address is one
obvious example of a case where an analysis of the deviations across the CBos would indicate hot-
spotting.

2.3.3.1 Acronyms frequently used in CBo Events

The Rings:

AD (Address) Ring - Core Read/Write Requests and Intel QPI Snoops. Carries Intel QPI requests and
snoop responses from C to Intel QPI.

BL (Block or Data) Ring - Data == 2 transfers for 1 cache line

AK (Acknowledge) Ring - Acknowledges Intel QPI to CBo and CBo to Core. Carries snoop responses
from Core to CBo.

IV (Invalidate) Ring - CBo Snoop requests of core caches

0x1C5 WbMtoE Request writeback Modified set to Exclusive
- Evict full M-state cache line from core.

0x1C8 ItoM Request Invalidate Line
- Request Exclusive Ownership of cache line

0x1E4 PCINSRd PCIe Non-Snoop Read
- Non-snoop read requests of full cache lines from IIO. (SW must guarantee
coherency)

0x1E5 PCINSWr PCIe Non-Snoop Write (partial)
- Non-snoop write requests of partial cache lines from IIO. Always
uncacheable.

0x1E6 PCINSWrF PCIe Non-Snoop Write (full)
- Non-snoop write requests of full cache lines from IIO. Always uncacheable.

Table 2-20. Opcode Match by IDI Packet Type for Cn_MSR_PMON_BOX_FILTER.opc (Sheet
2 of 2)

opc
Value Opcode Defn

Document Number: 332427-001, Revision 1.0 43

Internal CBo Queues:

IRQ - Ingress Request Queue on AD Ring. Associated with requests from core.

IPQ - Ingress Probe Queue on AD Ring. Associated with snoops from Intel QPI LL.

ISMQ - Ingress Subsequent Messages (response queue). Associated with messages responses to
ingress requests (e.g. data responses, Intel QPI complete messages, core snoop response messages
and GO reset queue).

TOR - Table Of Requests. Tracks pending CBo transactions.

QPI_IGR - Intel QPI credits for AD or BL ring. Credits to access the Intel QPI are necessary to
broadcast snoops.

RxR (aka IGR) /TxR (aka EGR) - Ingress (requests from the Cores) and Egress (requests headed
for the Ring) queues

2.3.3.2 The Queues

There are several internal occupancy queue counters, each of which is 5bits wide and dedicated to its
queue: IRQ, IPQ, ISMQ, QPI_IGR, IGR, EGR and the TOR.

2.3.4 CBO Box Events Ordered By Code
The following table summarizes the directly measured CBO Box events.

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

CLOCKTICKS 0x00 0-3 1 Uncore Clocks

TxR_INSERTS 0x02 0-3 1 Egress Allocations

TxR_ADS_USED 0x04 0-3 1

RING_BOUNCES 0x05 0-3 1 Number of LLC responses that bounced on
the Ring.

RING_SRC_THRTL 0x07 0-3 1 Number of cycles the Cbo is actively throttling
traffic onto the Ring in order to limit bounce
traffic.

FAST_ASSERTED 0x09 0-1 1 FaST wire asserted

BOUNCE_CONTROL 0x0a 0-3 1 Bounce Control

RxR_OCCUPANCY 0x11 0 20 Ingress Occupancy

RxR_EXT_STARVED 0x12 0-3 1 Ingress Arbiter Blocking Cycles

RxR_INSERTS 0x13 0-3 1 Ingress Allocations

RING_AD_USED 0x1b 0-3 2 AD Ring In Use

RING_AK_USED 0x1c 0-3 2 AK Ring In Use

RING_BL_USED 0x1d 0-3 2 BL Ring in Use

RING_IV_USED 0x1e 0-3 1 BL Ring in Use

COUNTER0_OCCUPANCY 0x1f 0-3 20 Counter 0 Occupancy

RxR_IPQ_RETRY2 0x28 0-3 1 Probe Queue Retries

RxR_IRQ_RETRY2 0x29 0-3 1 Ingress Request Queue Rejects

RxR_ISMQ_RETRY2 0x2a 0-3 1 ISMQ Request Queue Rejects

RxR_IPQ_RETRY 0x31 0-3 1 Probe Queue Retries

RxR_IRQ_RETRY 0x32 0-3 1 Ingress Request Queue Rejects

44 Document Number: 332427-001, Revision 1.0

2.3.5 CBO Box Common Metrics (Derived Events)
The following table summarizes metrics commonly calculated from CBO Box events.

RxR_ISMQ_RETRY 0x33 0-3 1 ISMQ Retries

LLC_LOOKUP 0x34 0-3 1 Cache Lookups

TOR_INSERTS 0x35 0-3 1 TOR Inserts

TOR_OCCUPANCY 0x36 0 20 TOR Occupancy

LLC_VICTIMS 0x37 0-3 1 Lines Victimized

MISC 0x39 0-3 1 Cbo Misc

Symbol Name:
 Definition Equation

AVG_INGRESS_DEPTH:
 Average Depth of the Ingress Queue
through the sample interval

RxR_OCCUPANCY.IRQ / SAMPLE_INTERVAL

AVG_INGRESS_LATENCY:
 Average Latency of Requests through the
Ingress Queue in Uncore Clocks

RxR_OCCUPANCY.IRQ / RxR_INSERTS.IRQ

AVG_INGRESS_LATENCY_WHEN_NE:
 Average Latency of Requests through the
Ingress Queue in Uncore Clocks when Ingress
Queue has at least one entry

RxR_OCCUPANCY.IRQ /
COUNTER0_OCCUPANCY{edge_det,thresh=0x1}

AVG_TOR_DRDS_MISS_WHEN_NE:
 Average Number of Data Read Entries that
Miss the LLC when the TOR is not empty.

(TOR_OCCUPANCY.MISS_OPCODE /
COUNTER0_OCCUPANCY{edge_det,thresh=0x1}))
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x182

AVG_TOR_DRDS_WHEN_NE:
 Average Number of Data Read Entries when
the TOR is not empty.

(TOR_OCCUPANCY.OPCODE /
COUNTER0_OCCUPANCY{edge_det,thresh=0x1})
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x182

AVG_TOR_DRD_HIT_LATENCY:
 Average Latency of Data Reads through the
TOR that hit the LLC

((TOR_OCCUPANCY.OPCODE -
TOR_OCCUPANCY.MISS_OPCODE) / (TOR_INSERTS.OPCODE -
TOR_INSERTS.MISS_OPCODE))
with:Cn_MSR_PMON_BOX_FILTER.opc=0x182

AVG_TOR_DRD_LATENCY:
 Average Latency of Data Read Entries
making their way through the TOR

(TOR_OCCUPANCY.OPCODE / TOR_INSERTS.OPCODE)
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x182

AVG_TOR_DRD_LOC_MISS_LATENCY:
 Average Latency of Data Reads through the
TOR that miss the LLC and were satsified by
Local Memory

(TOR_OCCUPANCY.MISS_OPCODE /
TOR_INSERTS.MISS_OPCODE)
with:Cn_MSR_PMON_BOX_FILTER1.{opc,nid}={0x182,my_nod
e}

AVG_TOR_DRD_MISS_LATENCY:
 Average Latency of Data Reads through the
TOR that miss the LLC

(TOR_OCCUPANCY.MISS_OPCODE /
TOR_INSERTS.MISS_OPCODE)
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x182

AVG_TOR_DRD_REM_MISS_LATENCY:
 Average Latency of Data Reads through the
TOR that miss the LLC and were satsified by a
Remote cache or Remote Memory

(TOR_OCCUPANCY.MISS_OPCODE /
TOR_INSERTS.MISS_OPCODE)
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x182,other_no
des}

CYC_INGRESS_BLOCKED:
 Cycles the Ingress Request Queue arbiter
was Blocked

RxR_EXT_STARVED.IRQ / SAMPLE_INTERVAL

CYC_USED_DN:
 Cycles Used in the Down direction, Even
polarity

RING_BL_USED.CCW / SAMPLE_INTERVAL

CYC_USED_UP:
 Cycles Used in the Up direction, Even
polarity

RING_BL_USED.CW / SAMPLE_INTERVAL

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

Document Number: 332427-001, Revision 1.0 45

FAST_STR_LLC_MISS:
 Number of ItoM (fast string) operations that
miss the LLC

TOR_INSERTS.MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x1C8

FAST_STR_LLC_REQ:
 Number of ItoM (fast string) operations that
reference the LLC

TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x1C8

INGRESS_REJ_V_INS:
 Ratio of Ingress Request Entries that were
rejected vs. inserted

RxR_INSERTS.IRQ_REJ / RxR_INSERTS.IRQ

IO_READ_BW:
 IO Read Bandwidth in MB - Disk or Network
Reads

(TOR_INSERTS.OPCODE
with:{Cn_MSR_PMON_BOX_FILTER0.tid=0x3F,
Cn_MSR_PMON_BOX_FILTER1.opc=0x1C8} +
TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER.opc=0x1E6) * 64 / 1000000

IO_WRITE_BW:
 IO Write Bandwidth in MB - Disk or Network
Writes

(TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x19E +
TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER.opc=0x1E4) * 64 / 1000000

LLC_DRD_MISS_PCT:
 LLC Data Read miss ratio

LLC_LOOKUP.DATA_READ
with:Cn_MSR_PMON_BOX_FILTER0.state=0x1 /
LLC_LOOKUP.DATA_READ
with:Cn_MSR_PMON_BOX_FILTER.state=0x3F

LLC_DRD_RFO_MISS_TO_LOC_MEM:
 LLC Data Read and RFO misses satisfied by
local memory.

(TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.{opc,nid}={0x182,my_nod
e} + TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x180,my_node
}) / (TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x182,0xF} +
TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x180,0xF})

LLC_DRD_RFO_MISS_TO_REM_MEM:
 LLC Data Read and RFO misses satisfied by
a remote cache or remote memory.

(TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.{opc,nid}={0x182,other_n
odes} + TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x180,other_no
des}) / (TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x182,0xF} +
TOR_INSERTS.NID_MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER.{opc,nid}={0x180,0xF})

LLC_MPI:
 LLC Misses Per Instruction (code, read, RFO
and prefetches)

LLC_LOOKUP.ANY (Cn_MSR_PMON_BOX_FILTER0.state=0x1) /
INST_RETIRED.ALL (on Core)

LLC_PCIE_DATA_BYTES:
 LLC write miss (disk/network reads)
bandwidth in MB

TOR_INSERTS.OPCODE
with:{Cn_MSR_PMON_BOX_FILTER0.tid=0x3F,
Cn_MSR_PMON_BOX_FILTER1.opc=0x1C8} * 64

LLC_RFO_MISS_PCT:
 LLC RFO Miss Ratio

(TOR_INSERTS.MISS_OPCODE / TOR_INSERTS.OPCODE)
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x180

MEM_WB_BYTES:
 Data written back to memory in Number of
Bytes

LLC_VICTIMS.M_STATE * 64

PARTIAL_PCI_READS:
 Number of partial PCI reads

TOR_INSERTS.OPCODE
with:{Cn_MSR_PMON_BOX_FILTER0.tid=0x3F,
Cn_MSR_PMON_BOX_FILTER1.opc=0x187}

PARTIAL_PCI_WRITES:
 Number of partial PCI writes

TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x1E5

PCIE_DATA_BYTES:
 Data from PCIe in Number of Bytes

(TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x194 +
TOR_INSERTS.OPCODE
with:{Cn_MSR_PMON_BOX_FILTER0.tid=0x3F,
Cn_MSR_PMON_BOX_FILTER1.opc=0x1C8}) * 64

RING_THRU_DN_BYTES:
 Ring throughput in the Down direction,
Even polarity in Bytes

RING_BL_USED.CCW* 32

Symbol Name:
 Definition Equation

46 Document Number: 332427-001, Revision 1.0

2.3.6 CBO Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the CBO Box.

BOUNCE_CONTROL
• Title: Bounce Control
• Category: RING Events
• Event Code: 0x0a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

CLOCKTICKS
• Title: Uncore Clocks
• Category: UCLK Events
• Event Code: 0x00
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

COUNTER0_OCCUPANCY
• Title: Counter 0 Occupancy
• Category: OCCUPANCY Events
• Event Code: 0x1f
• Max. Inc/Cyc:. 20, Register Restrictions: 0-3
• Definition: Since occupancy counts can only be captured in the Cbo's 0 counter, this event allows a

user to capture occupancy related information by filtering the Cb0 occupancy count captured in
Counter 0. The filtering available is found in the control register - threshold, invert and edge
detect. E.g. setting threshold to 1 can effectively monitor how many cycles the monitored queue
has an entry.

FAST_ASSERTED
• Title: FaST wire asserted
• Category: EGRESS Events
• Event Code: 0x09
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of cycles either the local distress or incoming distress signals are

asserted. Incoming distress includes both up and dn.

RING_THRU_UP_BYTES:
 Ring throughput in the Up direction, Even
polarity in Bytes

RING_BL_USED.CW * 32

STREAMED_FULL_STORES:
 Number of Streamed Store (of Full Cache
Line) Transactions

TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x18C

STREAMED_PART_STORES:
 Number of Streamed Store (of Partial Cache
Line) Transactions

TOR_INSERTS.OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x18D

UC_READS:
 Uncachable Read Transactions

TOR_INSERTS.MISS_OPCODE
with:Cn_MSR_PMON_BOX_FILTER1.opc=0x187

Symbol Name:
 Definition Equation

Document Number: 332427-001, Revision 1.0 47

LLC_LOOKUP
• Title: Cache Lookups
• Category: CACHE Events
• Event Code: 0x34
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times the LLC was accessed - this includes code, data,

prefetches and hints coming from L2. This has numerous filters available. Note the non-standard
filtering equation. This event will count requests that lookup the cache multiple times with multiple
increments. One must ALWAYS set umask bit 0 and select a state or states to match. Otherwise,
the event will count nothing. CBoGlCtrl[22:18] bits correspond to [FMESI] state.

• NOTE: Bit 0 of the umask must always be set for this event. This allows us to match a given state
(or states). The state is programmed in Cn_MSR_PMON_BOX_FILTER.state. The state field is a bit
mask, so you can select (and monitor) multiple states at a time. 0 = I (miss), 1 = S, 2 = E, 3 = M,
4 = F. For example, if you wanted to monitor F and S hits, you could set 10010b in the 5-bit state
field. To monitor any lookup, set the field to 0x1F.

LLC_VICTIMS
• Title: Lines Victimized
• Category: CACHE Events
• Event Code: 0x37
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of lines that were victimized on a fill. This can be filtered by the

state that the line was in.

Table 2-21. Unit Masks for LLC_LOOKUP

Extension umask
[15:8] Filter Dep Description

DATA_READ b00000011 CBoFilter0[
23:17]

Data Read Request
Read transactions

WRITE b00000101 CBoFilter0[
23:17]

Write Requests
Writeback transactions from L2 to the LLC This
includes all write transactions -- both Cachable and
UC.

REMOTE_SNOOP b00001001 CBoFilter0[
23:17]

External Snoop Request
Filters for only snoop requests coming from the remote
socket(s) through the IPQ.

ANY b00010001 CBoFilter0[
23:17]

Any Request
Filters for any transaction originating from the IPQ or
IRQ. This does not include lookups originating from
the ISMQ.

READ b00100001 CBoFilter0[
22:18]

Any Read Request
Read transactions

NID b01000001 CBoFilter0[
23:17]

Lookups that Match NID
Qualify one of the other subevents by the Target NID.
The NID is programmed in
Cn_MSR_PMON_BOX_FILTER.nid. In conjunction with
STATE = I, it is possible to monitor misses to specific
NIDs in the system.

Table 2-22. Unit Masks for LLC_VICTIMS

Extension umask
[15:8] Filter Dep Description

M_STATE bxxxxxxx1 Lines in M state

E_STATE bxxxxxx1x Lines in E state

S_STATE bxxxxx1xx Lines in S State

48 Document Number: 332427-001, Revision 1.0

MISC
• Title: Cbo Misc
• Category: MISC Events
• Event Code: 0x39
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Miscellaneous events in the Cbo.

RING_AD_USED
• Title: AD Ring In Use
• Category: RING Events
• Event Code: 0x1b
• Max. Inc/Cyc:. 2, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the AD ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop. There are two rings -- a clockwise ring and a counter-
clockwise ring. On the left side of the ring, the "UP" direction is on the clockwise ring and "DN" is on
the counter-clockwise ring. On the right side of the ring, this is reversed. The first half of the CBos
are on the left side of the ring, and the 2nd half are on the right side of the ring. In other words (for
example), in a 4c part, Cbo 0 UP AD is NOT the same ring as CBo 2 UP AD because they are on
opposite sides of the ring.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the UP direction and one
packet moving in the DN direction.

F_STATE bxxxx1xxx

MISS bxxx1xxxx

NID bx1xxxxxx CBoFilter1[
17:10]

Victimized Lines that Match NID
Qualify one of the other subevents by the Target NID.
The NID is programmed in
Cn_MSR_PMON_BOX_FILTER.nid. In conjunction with
STATE = I, it is possible to monitor misses to specific
NIDs in the system.

Table 2-23. Unit Masks for MISC

Extension umask
[15:8] Description

RSPI_WAS_FSE bxxxxxxx1 Silent Snoop Eviction
Counts the number of times when a Snoop hit in FSE states and
triggered a silent eviction. This is useful because this information is
lost in the PRE encodings.

WC_ALIASING bxxxxxx1x Write Combining Aliasing
Counts the number of times that a USWC write (WCIL(F)) transaction
hit in the LLC in M state, triggering a WBMtoI followed by the USWC
write. This occurs when there is WC aliasing.

STARTED bxxxxx1xx

RFO_HIT_S bxxxx1xxx RFO HitS
Number of times that an RFO hit in S state. This is useful for
determining if it might be good for a workload to use RspIWB instead
of RspSWB.

CVZERO_PREFETCH_VICT
IM

bxxx1xxxx Clean Victim with raw CV=0

CVZERO_PREFETCH_MISS bxx1xxxxx DRd hitting non-M with raw CV=0

Table 2-22. Unit Masks for LLC_VICTIMS

Extension umask
[15:8] Filter Dep Description

Document Number: 332427-001, Revision 1.0 49

RING_AK_USED
• Title: AK Ring In Use
• Category: RING Events
• Event Code: 0x1c
• Max. Inc/Cyc:. 2, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the AK ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop. There are two rings -- a clockwise ring and a counter-
clockwise ring. On the left side of the ring, the "UP" direction is on the clockwise ring and "DN" is on
the counter-clockwise ring. On the right side of the ring, this is reversed. The first half of the CBos
are on the left side of the ring, and the 2nd half are on the right side of the ring. In other words (for
example), in a 4c part, Cbo 0 UP AD is NOT the same ring as CBo 2 UP AD because they are on
opposite sides of the ring.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the UP direction and one
packet moving in the DN direction.

RING_BL_USED
• Title: BL Ring in Use
• Category: RING Events
• Event Code: 0x1d
• Max. Inc/Cyc:. 2, Register Restrictions: 0-3

Table 2-24. Unit Masks for RING_AD_USED

Extension umask
[15:8] Description

UP_EVEN bxxxxxxx1 Up and Even
Filters for the Up and Even ring polarity.

UP_ODD bxxxxxx1x Up and Odd
Filters for the Up and Odd ring polarity.

UP b00000011 Up

DOWN_EVEN bxxxxx1xx Down and Even
Filters for the Down and Even ring polarity.

DOWN_ODD bxxxx1xxx Down and Odd
Filters for the Down and Odd ring polarity.

DOWN b00001100 Down

ALL b00001111 All

Table 2-25. Unit Masks for RING_AK_USED

Extension umask
[15:8] Description

UP_EVEN bxxxxxxx1 Up and Even
Filters for the Up and Even ring polarity.

UP_ODD bxxxxxx1x Up and Odd
Filters for the Up and Odd ring polarity.

UP b00000011 Up

DOWN_EVEN bxxxxx1xx Down and Even
Filters for the Down and Even ring polarity.

DOWN_ODD bxxxx1xxx Down and Odd
Filters for the Down and Odd ring polarity.

DOWN b00001100 Down

ALL b00001111 All

50 Document Number: 332427-001, Revision 1.0

• Definition: Counts the number of cycles that the BL ring is being used at this ring stop. This
includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop. There are two rings -- a clockwise ring and a counter-
clockwise ring. On the left side of the ring, the "UP" direction is on the clockwise ring and "DN" is on
the counter-clockwise ring. On the right side of the ring, this is reversed. The first half of the CBos
are on the left side of the ring, and the 2nd half are on the right side of the ring. In other words (for
example), in a 4c part, Cbo 0 UP AD is NOT the same ring as CBo 2 UP AD because they are on
opposite sides of the ring.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the UP direction and one
packet moving in the DN direction.

RING_BOUNCES
• Title: Number of LLC responses that bounced on the Ring.
• Category: RING Events
• Event Code: 0x05
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

RING_IV_USED
• Title: BL Ring in Use
• Category: RING Events
• Event Code: 0x1e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the IV ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop. There is only 1 IV ring. Therefore, if one wants to moni-
tor the "Even" ring, they should select both UP_EVEN and DN_EVEN. To monitor the "Odd" ring,
they should select both UP_ODD and DN_ODD.

• NOTE: IV messages are split into two parts. In any cycle, a ring stop can see up to one (half-
)packet moving in the UP direction and one (half-)packet moving in the DN direction.

Table 2-26. Unit Masks for RING_BL_USED

Extension umask
[15:8] Description

UP_EVEN bxxxxxxx1 Up and Even
Filters for the Up and Even ring polarity.

UP_ODD bxxxxxx1x Up and Odd
Filters for the Up and Odd ring polarity.

UP b00000011 Up

DOWN_EVEN bxxxxx1xx Down and Even
Filters for the Down and Even ring polarity.

DOWN_ODD bxxxx1xxx Down and Odd
Filters for the Down and Odd ring polarity.

DOWN b00001100 Down

ALL b00001111 Down

Table 2-27. Unit Masks for RING_BOUNCES

Extension umask
[15:8] Description

AD bxxxxxxx1 AD

AK bxxxxxx1x AK

BL bxxxxx1xx BL

IV bxxx1xxxx Snoops of processor's cache.

Document Number: 332427-001, Revision 1.0 51

RING_SRC_THRTL
• Title: Number of cycles the Cbo is actively throttling traffic onto the Ring in order to limit bounce

traffic.
• Category: RING Events
• Event Code: 0x07
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

RxR_EXT_STARVED
• Title: Ingress Arbiter Blocking Cycles
• Category: INGRESS Events
• Event Code: 0x12
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts cycles in external starvation. This occurs when one of the ingress queues is

being starved by the other queues.

RxR_INSERTS
• Title: Ingress Allocations
• Category: INGRESS Events
• Event Code: 0x13
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts number of allocations per cycle into the specified Ingress queue.
• NOTE: IRQ_REJECTED should not be Ored with the other umasks.

Table 2-28. Unit Masks for RING_IV_USED

Extension umask
[15:8] Description

UP b00000011 Filters any polarity

DN b00001100 Filters any polarity

ANY b00001111 Any
Filters any polarity

DOWN b11001100 Down
Filters for Down polarity

Table 2-29. Unit Masks for RxR_EXT_STARVED

Extension umask
[15:8] Description

IRQ bxxxxxxx1 IPQ
IRQ is externally starved and therefore we are blocking the IPQ.

IPQ bxxxxxx1x IRQ
IPQ is externally startved and therefore we are blocking the IRQ.

PRQ bxxxxx1xx PRQ

ISMQ_BIDS bxxxx1xxx ISMQ_BID
Number of times that the ISMQ Bid.

52 Document Number: 332427-001, Revision 1.0

RxR_IPQ_RETRY
• Title: Probe Queue Retries
• Category: INGRESS_RETRY Events
• Event Code: 0x31
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of times a snoop (probe) request had to retry. Filters exist to cover some of

the common cases retries.

RxR_IPQ_RETRY2
• Title: Probe Queue Retries
• Category: INGRESS_RETRY Events
• Event Code: 0x28
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of times a snoop (probe) request had to retry. Filters exist to cover some of

the common cases retries.

Table 2-30. Unit Masks for RxR_INSERTS

Extension umask
[15:8] Description

IRQ bxxxxxxx1 IRQ

IRQ_REJ bxxxxxx1x IRQ Rejected

IPQ bxxxxx1xx IPQ

PRQ bxxx1xxxx PRQ

PRQ_REJ bxx1xxxxx PRQ

Table 2-31. Unit Masks for RxR_IPQ_RETRY

Extension umask
[15:8] Description

ANY bxxxxxxx1 Any Reject
Counts the number of times that a request form the IPQ was retried
because of a TOR reject. TOR rejects from the IPQ can be caused by
the Egress being full or Address Conflicts.

FULL bxxxxxx1x No Egress Credits
Counts the number of times that a request form the IPQ was retried
because of a TOR reject from the Egress being full. IPQ requests
make use of the AD Egress for regular responses, the BL egress to
forward data, and the AK egress to return credits.

ADDR_CONFLICT bxxxxx1xx Address Conflict
Counts the number of times that a request form the IPQ was retried
because of a TOR reject from an address conflicts. Address conflicts
out of the IPQ should be rare. They will generally only occur if two
different sockets are sending requests to the same address at the
same time. This is a true "conflict" case, unlike the IPQ Address
Conflict which is commonly caused by prefetching characteristics.

QPI_CREDITS bxxx1xxxx No Intel QPI Credits

Document Number: 332427-001, Revision 1.0 53

RxR_IRQ_RETRY
• Title: Ingress Request Queue Rejects
• Category: INGRESS_RETRY Events
• Event Code: 0x32
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-32. Unit Masks for RxR_IPQ_RETRY2

Extension umask
[15:8] Filter Dep Description

AD_SBO bxxxxxxx1 No AD Sbo Credits
Counts the number of times that a request from the
IPQ was retried because of it lacked credits to send an
AD packet to the Sbo.

TARGET bx1xxxxxx CBoFilter1[
15:0]

Target Node Filter
Counts the number of times that a request from the
IPQ was retried filtered by the Target NodeID as
specified in the Cbox's Filter register.

Table 2-33. Unit Masks for RxR_IRQ_RETRY

Extension umask
[15:8] Filter Dep Description

ANY bxxxxxxx1 Any Reject
Counts the number of IRQ retries that occur. Requests
from the IRQ are retried if they are rejected from the
TOR pipeline for a variety of reasons. Some of the
most common reasons include if the Egress is full,
there are no RTIDs, or there is a Physical Address
match to another outstanding request.

FULL bxxxxxx1x No Egress Credits
Counts the number of times that a request from the
IRQ was retried because it failed to acquire an entry in
the Egress. The egress is the buffer that queues up for
allocating onto the ring. IRQ requests can make use of
all four rings and all four Egresses. If any of the
queues that a given request needs to make use of are
full, the request will be retried.

ADDR_CONFLICT bxxxxx1xx Address Conflict
Counts the number of times that a request from the
IRQ was retried because of an address match in the
TOR. In order to maintain coherency, requests to the
same address are not allowed to pass each other up in
the Cbo. Therefore, if there is an outstanding request
to a given address, one cannot issue another request
to that address until it is complete. This comes up
most commonly with prefetches. Outstanding
prefetches occasionally will not complete their memory
fetch and a demand request to the same address will
then sit in the IRQ and get retried until the prefetch
fills the data into the LLC. Therefore, it will not be
uncommon to see this case in high bandwidth
streaming workloads when the LLC Prefetcher in the
core is enabled.

54 Document Number: 332427-001, Revision 1.0

RxR_IRQ_RETRY2
• Title: Ingress Request Queue Rejects
• Category: INGRESS_RETRY Events
• Event Code: 0x29
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

RxR_ISMQ_RETRY
• Title: ISMQ Retries
• Category: INGRESS_RETRY Events
• Event Code: 0x33
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3

RTID bxxxx1xxx No RTIDs
Counts the number of times that requests from the
IRQ were retried because there were no RTIDs
available. RTIDs are required after a request misses
the LLC and needs to send snoops and/or requests to
memory. If there are no RTIDs available, requests will
queue up in the IRQ and retry until one becomes
available. Note that there are multiple RTID pools for
the different sockets. There may be cases where the
local RTIDs are all used, but requests destined for
remote memory can still acquire an RTID because
there are remote RTIDs available. This event does not
provide any filtering for this case.

QPI_CREDITS bxxx1xxxx No Intel QPI Credits
Number of requests rejects because of lack of Intel QPI
Ingress credits. These credits are required in order to
send transactions to the Intel QPI agent. Please see
the QPI_IGR_CREDITS events for more information.

IIO_CREDITS bxx1xxxxx No IIO Credits
Number of times a request attempted to acquire the
NCS/NCB credit for sending messages on BL to the
IIO. There is a single credit in each CBo that is shared
between the NCS and NCB message classes for
sending transactions on the BL ring (such as read
data) to the IIO.

NID bx1xxxxxx CBoFilter1[
15:0]

Qualify one of the other subevents by a given RTID
destination NID. The NID is programmed in
Cn_MSR_PMON_BOX_FILTER1.nid.

Table 2-34. Unit Masks for RxR_IRQ_RETRY2

Extension umask
[15:8] Filter Dep Description

AD_SBO bxxxxxxx1 No AD Sbo Credits
Counts the number of times that a request from the
IPQ was retried because of it lacked credits to send an
AD packet to the Sbo.

BL_SBO bxxxxxx1x No BL Sbo Credits
Counts the number of times that a request from the
IPQ was retried because of it lacked credits to send an
BL packet to the Sbo.

TARGET bx1xxxxxx CBoFilter1[
15:0]

Target Node Filter
Counts the number of times that a request from the
IPQ was retried filtered by the Target NodeID as
specified in the Cbox's Filter register.

Table 2-33. Unit Masks for RxR_IRQ_RETRY

Extension umask
[15:8] Filter Dep Description

Document Number: 332427-001, Revision 1.0 55

• Definition: Number of times a transaction flowing through the ISMQ had to retry. Transaction pass
through the ISMQ as responses for requests that already exist in the Cbo. Some examples include:
when data is returned or when snoop responses come back from the cores.

RxR_ISMQ_RETRY2
• Title: ISMQ Request Queue Rejects
• Category: INGRESS_RETRY Events
• Event Code: 0x2a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-35. Unit Masks for RxR_ISMQ_RETRY

Extension umask
[15:8] Filter Dep Description

ANY bxxxxxxx1 Any Reject
Counts the total number of times that a request from
the ISMQ retried because of a TOR reject. ISMQ
requests generally will not need to retry (or at least
ISMQ retries are less common than IRQ retries). ISMQ
requests will retry if they are not able to acquire a
needed Egress credit to get onto the ring, or for cache
evictions that need to acquire an RTID. Most ISMQ
requests already have an RTID, so eviction retries will
be less common here.

FULL bxxxxxx1x No Egress Credits
Counts the number of times that a request from the
ISMQ retried because of a TOR reject caused by a lack
of Egress credits. The egress is the buffer that queues
up for allocating onto the ring. If any of the Egress
queues that a given request needs to make use of are
full, the request will be retried.

RTID bxxxx1xxx No RTIDs
Counts the number of times that a request from the
ISMQ retried because of a TOR reject caused by no
RTIDs. M-state cache evictions are serviced through
the ISMQ, and must acquire an RTID in order to write
back to memory. If no RTIDs are available, they will
be retried.

QPI_CREDITS bxxx1xxxx No Intel QPI Credits

IIO_CREDITS bxx1xxxxx No IIO Credits
Number of times a request attempted to acquire the
NCS/NCB credit for sending messages on BL to the
IIO. There is a single credit in each CBo that is shared
between the NCS and NCB message classes for
sending transactions on the BL ring (such as read
data) to the IIO.

NID bx1xxxxxx CBoFilter1[
15:0]

Qualify one of the other subevents by a given RTID
destination NID. The NID is programmed in
Cn_MSR_PMON_BOX_FILTER1.nid.

WB_CREDITS b1xxxxxxx CBoFilter1[
15:0]

Qualify one of the other subevents by a given RTID
destination NID. The NID is programmed in
Cn_MSR_PMON_BOX_FILTER1.nid.

56 Document Number: 332427-001, Revision 1.0

RxR_OCCUPANCY
• Title: Ingress Occupancy
• Category: INGRESS Events
• Event Code: 0x11
• Max. Inc/Cyc:. 20, Register Restrictions: 0
• Definition: Counts number of entries in the specified Ingress queue in each cycle.
• NOTE: IRQ_REJECTED should not be Ored with the other umasks.

TOR_INSERTS
• Title: TOR Inserts
• Category: TOR Events
• Event Code: 0x35
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of entries successfulynserted into the TOR that match qualifica-

tions specified by the subevent. There are a number of subevent 'filters' but only a subset of the
subevent combinations are valid. Subevents that require an opcode or NID match require the
Cn_MSR_PMON_BOX_FILTER.{opc, nid} field to be set. If, for example, one wanted to count DRD
Local Misses, one should select "MISS_OPC_MATCH" and set Cn_MSR_PMON_BOX_FILTER.opc to
DRD (0x182).

Table 2-36. Unit Masks for RxR_ISMQ_RETRY2

Extension umask
[15:8] Filter Dep Description

AD_SBO bxxxxxxx1 No AD Sbo Credits
Counts the number of times that a request from the
ISMQ was retried because of it lacked credits to send
an AD packet to the Sbo.

BL_SBO bxxxxxx1x No BL Sbo Credits
Counts the number of times that a request from the
ISMQ was retried because of it lacked credits to send
an BL packet to the Sbo.

TARGET bx1xxxxxx CBoFilter1[
15:0]

Target Node Filter
Counts the number of times that a request from the
ISMQ was retried filtered by the Target NodeID as
specified in the Cbox's Filter register.

Table 2-37. Unit Masks for RxR_OCCUPANCY

Extension umask
[15:8] Description

IRQ b00000001 IRQ

IRQ_REJ b00000010 IRQ Rejected

IPQ b00000100 IPQ

PRQ_REJ b00100000 PRQ Rejects

Document Number: 332427-001, Revision 1.0 57

Table 2-38. Unit Masks for TOR_INSERTS

Extension umask
[15:8] Filter Dep Description

OPCODE b00000001 CBoFilter1[
28:20]

Opcode Match
Transactions inserted into the TOR that match an
opcode (matched by
Cn_MSR_PMON_BOX_FILTER.opc)

MISS_OPCODE b00000011 CBoFilter1[
28:20]

Miss Opcode Match
Miss transactions inserted into the TOR that match an
opcode.

EVICTION b00000100 Evictions
Eviction transactions inserted into the TOR. Evictions
can be quick, such as when the line is in the F, S, or E
states and no core valid bits are set. They can also be
longer if either CV bits are set (so the cores need to be
snooped) and/or if there is a HitM (in which case it is
necessary to write the request out to memory).

ALL b00001000 All
All transactions inserted into the TOR. This includes
requests that reside in the TOR for a short time, such
as LLC Hits that do not need to snoop cores or requests
that get rejected and have to be retried through one of
the ingress queues. The TOR is more commonly a
bottleneck in skews with smaller core counts, where
the ratio of RTIDs to TOR entries is larger. Note that
there are reserved TOR entries for various request
types, so it is possible that a given request type be
blocked with an occupancy that is less than 20. Also
note that generally requests will not be able to
arbitrate into the TOR pipeline if there are no available
TOR slots.

WB b00010000 Writebacks
Write transactions inserted into the TOR. This does
not include "RFO", but actual operations that contain
data being sent from the core.

LOCAL_OPCODE b00100001 CBoFilter1[
28:20]

Local Memory - Opcode Matched
All transactions, satisfied by an opcode, inserted into
the TOR that are satisfied by locally HOMed memory.

MISS_LOCAL_OPCODE b00100011 CBoFilter1[
28:20]

Misses to Local Memory - Opcode Matched
Miss transactions, satisfied by an opcode, inserted into
the TOR that are satisfied by locally HOMed memory.

LOCAL b00101000 Local Memory
All transactions inserted into the TOR that are satisfied
by locally HOMed memory.

MISS_LOCAL b00101010 Misses to Local Memory
Miss transactions inserted into the TOR that are
satisfied by locally HOMed memory.

NID_OPCODE b01000001 CBoFilter1[
28:20],
CBoFilter1[
15:0]

NID and Opcode Matched
Transactions inserted into the TOR that match a NID
and an opcode.

NID_MISS_OPCODE b01000011 CBoFilter1[
28:20],
CBoFilter1[
15:0]

NID and Opcode Matched Miss
Miss transactions inserted into the TOR that match a
NID and an opcode.

NID_EVICTION b01000100 CBoFilter1[
15:0]

NID Matched Evictions
NID matched eviction transactions inserted into the
TOR.

NID_ALL b01001000 CBoFilter1[
15:0]

NID Matched
All NID matched (matches an RTID destination)
transactions inserted into the TOR. The NID is
programmed in Cn_MSR_PMON_BOX_FILTER.nid. In
conjunction with STATE = I, it is possible to monitor
misses to specific NIDs in the system.

58 Document Number: 332427-001, Revision 1.0

TOR_OCCUPANCY
• Title: TOR Occupancy
• Category: TOR Events
• Event Code: 0x36
• Max. Inc/Cyc:. 20, Register Restrictions: 0
• Definition: For each cycle, this event accumulates the number of valid entries in the TOR that

match qualifications specified by the subevent. There are a number of subevent 'filters' but only a
subset of the subevent combinations are valid. Subevents that require an opcode or NID match
require the Cn_MSR_PMON_BOX_FILTER.{opc, nid} field to be set. If, for example, one wanted to
count DRD Local Misses, one should select "MISS_OPC_MATCH" and set
Cn_MSR_PMON_BOX_FILTER.opc to DRD (0x182)

NID_MISS_ALL b01001010 CBoFilter1[
15:0]

NID Matched Miss All
All NID matched miss requests that were inserted into
the TOR.

NID_WB b01010000 CBoFilter1[
15:0]

NID Matched Writebacks
NID matched write transactions inserted into the TOR.

REMOTE_OPCODE b10000001 CBoFilter1[
28:20]

Remote Memory - Opcode Matched
All transactions, satisfied by an opcode, inserted into
the TOR that are satisfied by remote caches or remote
memory.

MISS_REMOTE_OPCODE b10000011 CBoFilter1[
28:20]

Misses to Remote Memory - Opcode Matched
Miss transactions, satisfied by an opcode, inserted into
the TOR that are satisfied by remote caches or remote
memory.

REMOTE b10001000 Remote Memory
All transactions inserted into the TOR that are satisfied
by remote caches or remote memory.

MISS_REMOTE b10001010 Misses to Remote Memory
Miss transactions inserted into the TOR that are
satisfied by remote caches or remote memory.

Table 2-39. Unit Masks for TOR_OCCUPANCY

Extension umask
[15:8] Filter Dep Description

OPCODE b00000001 CBoFilter1[
28:20]

Opcode Match
TOR entries that match an opcode (matched by
Cn_MSR_PMON_BOX_FILTER.opc).

MISS_OPCODE b00000011 CBoFilter1[
28:20]

Miss Opcode Match
TOR entries for miss transactions that match an
opcode. This generally means that the request was
sent to memory or MMIO.

EVICTION b00000100 Evictions
Number of outstanding eviction transactions in the
TOR. Evictions can be quick, such as when the line is
in the F, S, or E states and no core valid bits are set.
They can also be longer if either CV bits are set (so the
cores need to be snooped) and/or if there is a HitM (in
which case it is necessary to write the request out to
memory).

Table 2-38. Unit Masks for TOR_INSERTS

Extension umask
[15:8] Filter Dep Description

Document Number: 332427-001, Revision 1.0 59

ALL b00001000 Any
All valid TOR entries. This includes requests that
reside in the TOR for a short time, such as LLC Hits
that do not need to snoop cores or requests that get
rejected and have to be retried through one of the
ingress queues. The TOR is more commonly a
bottleneck in skews with smaller core counts, where
the ratio of RTIDs to TOR entries is larger. Note that
there are reserved TOR entries for various request
types, so it is possible that a given request type be
blocked with an occupancy that is less than 20. Also
note that generally requests will not be able to
arbitrate into the TOR pipeline if there are no available
TOR slots.

MISS_ALL b00001010 Miss All
Number of outstanding miss requests in the TOR.
'Miss' means the allocation requires an RTID. This
generally means that the request was sent to memory
or MMIO.

WB b00010000 Writebacks
Write transactions in the TOR. This does not include
"RFO", but actual operations that contain data being
sent from the core.

LOCAL_OPCODE b00100001 CBoFilter1[
28:20]

Local Memory - Opcode Matched
Number of outstanding transactions, satisfied by an
opcode, in the TOR that are satisfied by locally HOMed
memory.

MISS_LOCAL_OPCODE b00100011 CBoFilter1[
28:20]

Misses to Local Memory - Opcode Matched
Number of outstanding Miss transactions, satisfied by
an opcode, in the TOR that are satisfied by locally
HOMed memory.

LOCAL b00101000

MISS_LOCAL b00101010

NID_OPCODE b01000001 CBoFilter1[
28:20],
CBoFilter1[
15:0]

NID and Opcode Matched
TOR entries that match a NID and an opcode.

NID_MISS_OPCODE b01000011 CBoFilter1[
28:20],
CBoFilter1[
15:0]

NID and Opcode Matched Miss
Number of outstanding Miss requests in the TOR that
match a NID and an opcode.

NID_EVICTION b01000100 CBoFilter1[
15:0]

NID Matched Evictions
Number of outstanding NID matched eviction
transactions in the TOR .

NID_ALL b01001000 CBoFilter1[
15:0]

NID Matched
Number of NID matched outstanding requests in the
TOR. The NID is programmed in
Cn_MSR_PMON_BOX_FILTER.nid.In conjunction with
STATE = I, it is possible to monitor misses to specific
NIDs in the system.

NID_MISS_ALL b01001010 CBoFilter1[
15:0]

NID Matched
Number of outstanding Miss requests in the TOR that
match a NID.

NID_WB b01010000 CBoFilter1[
15:0]

NID Matched Writebacks
NID matched write transactions int the TOR.

REMOTE_OPCODE b10000001 CBoFilter1[
28:20]

Remote Memory - Opcode Matched
Number of outstanding transactions, satisfied by an
opcode, in the TOR that are satisfied by remote
caches or remote memory.

Table 2-39. Unit Masks for TOR_OCCUPANCY

Extension umask
[15:8] Filter Dep Description

60 Document Number: 332427-001, Revision 1.0

TxR_ADS_USED
• Title:
• Category: EGRESS Events
• Event Code: 0x04
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

TxR_INSERTS
• Title: Egress Allocations
• Category: EGRESS Events
• Event Code: 0x02
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of allocations into the Cbo Egress. The Egress is used to queue up requests

destined for the ring.

MISS_REMOTE_OPCODE b10000011 CBoFilter1[
28:20]

Misses to Remote Memory - Opcode Matched
Number of outstanding Miss transactions, satisfied by
an opcode, in the TOR that are satisfied by remote
caches or remote memory.

REMOTE b10001000

MISS_REMOTE b10001010

Table 2-40. Unit Masks for TxR_ADS_USED

Extension umask
[15:8] Description

AD bxxxxxxx1 Onto AD Ring

AK bxxxxxx1x Onto AK Ring

BL bxxxxx1xx Onto BL Ring

Table 2-41. Unit Masks for TxR_INSERTS

Extension umask
[15:8] Description

AD_CACHE bxxxxxxx1 AD - Cachebo
Ring transactions from the Cachebo destined for the AD ring. Some
example include outbound requests, snoop requests, and snoop
responses.

AK_CACHE bxxxxxx1x AK - Cachebo
Ring transactions from the Cachebo destined for the AK ring. This is
commonly used for credit returns and GO responses.

BL_CACHE bxxxxx1xx BL - Cacheno
Ring transactions from the Cachebo destined for the BL ring. This is
commonly used to send data from the cache to various destinations.

IV_CACHE bxxxx1xxx IV - Cachebo
Ring transactions from the Cachebo destined for the IV ring. This is
commonly used for snoops to the cores.

AD_CORE bxxx1xxxx AD - Corebo
Ring transactions from the Corebo destined for the AD ring. This is
commonly used for outbound requests.

Table 2-39. Unit Masks for TOR_OCCUPANCY

Extension umask
[15:8] Filter Dep Description

Document Number: 332427-001, Revision 1.0 61

AK_CORE bxx1xxxxx AK - Corebo
Ring transactions from the Corebo destined for the AK ring. This is
commonly used for snoop responses coming from the core and
destined for a Cachebo.

BL_CORE bx1xxxxxx BL - Corebo
Ring transactions from the Corebo destined for the BL ring. This is
commonly used for transfering writeback data to the cache.

Table 2-41. Unit Masks for TxR_INSERTS

Extension umask
[15:8] Description

62 Document Number: 332427-001, Revision 1.0

2.4 Home Agent (HA) Performance Monitoring
Each HA is responsible for the protocol side of memory interactions, including coherent and non-
coherent home agent protocols (as defined in the Intel® QuickPath Interconnect Specification).
Additionally, the HA is responsible for ordering memory reads/writes, coming in from the modular
Ring, to a given address such that the IMC (memory controller).

In other words, it is the coherency agent responsible for guarding the memory controller. All requests
for memory attached to the coupled IMC must first be ordered through the HA. As such, it provides
several functions:

• Interface between Ring and IMC:
Regardless of the memory technology, the Home Agent receives memory read and write requests
from the modular ring. It checks the memory transaction type, detects and resolves the coherent
conflict, and finally schedules a corresponding transaction to the memory controller. It is also
responsible for returning the response and completion to the requester.

• Conflict Manager:
All requests must go through conflict management logic in order to ensure coherent consistency.
In other words, the view of data must be the same across all coherency agents regardless of who
is reading or modifying the data. On Intel® QPI, the home agent is responsible for tracking all
requests to a given address and ensuring that the results are consistent.

• Memory Access Ordering Control:
The Home Agent guarantees the ordering of RAW, WAW and WAR.

• Home Snoop Protocol Support (for parts with Directory Support):
The Home Agent supports Intel® QPI’s home snoop protocol by initiating snoops on behalf of
requests. Closely tied to the directory feature, the home agent has the ability to issue snoops to
the peer caching agents for requests based on the directory information.

• Directory Support:
In order to satisfy performance requirements for the 4 socket and scalable DP segments, the
Intel® Xeon® Processor D-1500 Product Family Home Agent implements a snoop directory which
tracks all cachelines residing behind this Home Agent. This directory is used to reduce the snoop
traffic when Intel® QPI bandwidth would otherwise be strained. The directory is not intended for
typical 2S topologies.

2.4.1 HA Performance Monitoring Overview
Each HA Box supports event monitoring through four 48-bit wide counters
(HAn_PCI_PMON_CTR{3:0}). Each of these counters can be programmed
(HAn_PCI_PMON_CTL{3:0}) to capture any HA event. The HA counters will increment by a maximum
of 128b per cycle.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

2.4.1.1 HA PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from an HA performance counter, the overflow bit is set at the box level
(HAn_PCI_PMON_BOX_STATUS.ov). If the counter is enabled to communicate the overflow
(HAn_PCI_PMON_CTL.ov_en is set to 1), an overflow message is sent to the UBox. When the UBox
receives the overflow signal, the U_MSR_PMON_GLOBAL_STATUS.ov_h bit corresponding to the HA
generating the overflow is set (see Table 2-3, “U_MSR_PMON_GLOBAL_STATUS Register – Field
Definitions”), a global freeze signal is sent and a PMI can be generated.

Document Number: 332427-001, Revision 1.0 63

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for the freeze must
be cleared by setting the corresponding bit in HAn_PCI_PMON_BOX_STATUS.ov and
U_MSR_PMON_GLOBAL_STATUs.ov_hn to 1 (which acts to clear the bits). Assuming all the counters
have been locally enabled (.en bit in control registers meant to monitor events) and the overflow bits
have been cleared, the HA is prepared for a new sample interval. Once the global controls have been
re-enabled (Section 2.1.4, “Enabling a New Sample Interval from Frozen Counters”), counting will
resume.

2.4.1.2 HA Box Level PMON State

The following registers represent the state governing all box-level PMUs in the HA Box.

In the case of the HA, the HAn_PCI_PMON_BOX_CTL register provides the ability to manually freeze
the counters in the box (.frz) and reset the generic state (.rst_ctrs and .rst_ctrl).

If an overflow is detected from one of the HA PMON registers, the corresponding bit in the
HAn_PCI_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write a
value of ‘1’ to them (which will clear the bits).

Table 2-42. HA Performance Monitoring Registers (PCICFG)

Register Name PCICFG
Address

Size
(bits) Description

PCICFG Base Address Dev:Func
DeviceID

HA0 PMON Registers D18:F1
0x6F30

HA1 PMON Registers D18:F5
0x6F38

Box-Level Control/Status

HAn_PCI_PMON_BOX_STATUS F8 32 HA n PMON Box-Wide Status

HAn_PCI_PMON_BOX_CTL F4 32 HA n PMON Box-Wide Control

Generic Counter Control

HAn_PCI_PMON_CTL3 E4 32 HA n PMON Control for Counter 3

HAn_PCI_PMON_CTL2 E0 32 HA n PMON Control for Counter 2

HAn_PCI_PMON_CTL1 DC 32 HA n PMON Control for Counter 1

HAn_PCI_PMON_CTL0 D8 32 HA n PMON Control for Counter 0

Generic Counters

HAn_PCI_PMON_CTR3 BC+B8 32x2 HA n PMON Counter 3

HAn_PCI_PMON_CTR2 B4+B0 32x2 HA n PMON Counter 2

HAn_PCI_PMON_CTR1 AC+A8 32x2 HA n PMON Counter 1

HAn_PCI_PMON_CTR0 A4+A0 32x2 HA n PMON Counter 0

Box-Level Filter

HAn_PCI_PMON_BOX_OPCODEMATCH 48 32 HA n PMON Opcode Match

HAn_PCI_PMON_BOX_ADDRMATCH1 44 32 HA n PMON Address Match 1

HAn_PCI_PMON_BOX_ADDRMATCH0 40 32 HA n PMON Address Match 0

64 Document Number: 332427-001, Revision 1.0

2.4.1.3 HA PMON state - Counter/Control Pairs

The following table defines the layout of the HA performance monitor control registers. The main task
of these configuration registers is to select the event to be monitored by their respective data counter
(.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g. .invert,
.edge_det, .thresh) as well as provide additional functionality for monitoring software (.rst,.ov_en).

Table 2-43. HAn_PCI_PMON_BOX_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:18 RV 0 Ignored

rsv 17:16 RV 0 Reserved; SW must write to 1 else behavior is undefined.

ig 15:9 RV 0 Ignored

frz 8 WO 0 Freeze.
If set to 1 the counters in this box will be frozen.

ig 7:2 RV 0 Ignored

rst_ctrs 1 WO 0 Reset Counters.
When set to 1, the Counter Registers will be reset to 0.

rst_ctrl 0 WO 0 Reset Control.
When set to 1, the Counter Control Registers will be reset to
0.

Table 2-44. HAn_PCI_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:5 RV 0 Ignored

rsv 4 RV 0 Reserved; SW must write to 0 else behavior is undefined.

ov 3:0 RW1C 0 If an overflow is detected from the corresponding
HAn_PCI_PMON_CTR register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

Table 2-45. HAn_PCI_PMON_CTL{3-0} Register – Field Definitions (Sheet 1 of 2)

Field Bits Attr
HW

Reset
Val

Description

thresh 31:24 RW-V 0 Threshold used in counter comparison.

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

Document Number: 332427-001, Revision 1.0 65

The HA performance monitor data registers are 48-bit wide. A counter overflow occurs when a carry
out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the UBox (refer to Section 2.1.1, “Counter Overflow”). During the interval of time
between overflow and global disable, the counter value will wrap and continue to collect events.

If accessible, software can continuously read the data registers without disabling event collection.

In addition to generic event counting, each HA provides a pair of Address Match registers and an
Opcode Match register that allow a user to filter incoming packet traffic according to the packet
Opcode, Message Class and Physical Address. The ADDR_OPC_MATCH.FILT event is provided to
capture the filter match as an event. The fields are laid out as follows:

rsv 21 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW-V 0 When this bit is asserted and the corresponding counter
overflows, its overflow bit is set in the local status register
(HA_PCI_PMON_BOX_STATUS.ov) and an overflow is sent on
the message channel to the UBox. When the overflow is
received by the UBox, the bit corresponding to this HA will be
set in U_MSR_PMON_GLOBAL_STATUS.ov_h{1,0}.

ig 19 RV 0 Ignored

edge_det 18 RW-V 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved. SW must write to 0 else behavior is undefined.

umask 15:8 RW-V 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW-V 0 Select event to be counted.

Table 2-46. HA_PCI_PMON_CTR{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 63:48 RV 0 Ignored

event_count 47:0 RW-V 0 48-bit performance event counter

Table 2-45. HAn_PCI_PMON_CTL{3-0} Register – Field Definitions (Sheet 2 of 2)

Field Bits Attr
HW

Reset
Val

Description

66 Document Number: 332427-001, Revision 1.0

Note: The address comparison always ignores the lower 12 bits of the physical address, even
if they system is interleaving between sockets at the cache-line level. Therefore, this
mask will always match to an OS virtual page, even if only a fraction of that page is
mapped to the Home Agent under investigation. The mask is not adjusted for large
pages, so matches will only be allowed within 4K granularity.

2.4.2 HA Performance Monitoring Events
The performance monitoring events within the HA include all events internal to the HA as well as
events which track ring related activity at the HA ring stops. Internal events include the ability to
track Directory Activity, Direct2Core Activity, IMC Read/Write Traffic, time spent dealing with Conflicts,
etc.

Other notable event types:

• IMC RPQ/WPQ Events
Determine cycles the HA is stuck without credits in to the iMCs read/write queues.

• Ring Stop Events
To track Egress and ring utilization (broken down by direction and ring type) statistics, as well as
ring credits between the HA and Intel® QPI.

• Local/Remote Filtering

Table 2-47. HA_PCI_PMON_BOX_OPCODEMATCH Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:6 RV 0 Ignored

opc 5:0 RWS 0 Match to this incoming (? which polarity?) opcode
[5:4] Message Class - Encoded version
00 - HOM0
01 - HOM1
10 - NDR
11 - SNP
[3:0] Intel QPI Opcode

Table 2-48. HA_PCI_PMON_BOX_ADDRMATCH1 Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:14 RV 0 Ignored

hi_addr 13:0 RWS 0 Match to this System Address - Most Significant 14b of cache
aligned address [45:32]

Table 2-49. HA_PCI_PMON_BOX_ADDRMATCH0 Register – Field Definitions

Field Bits
HW

Reset
Val

HW
Reset

Val
Description

lo_addr 31:6 RWS 0 Match to this System Address - Least Significant 26b of cache
aligned address [31:6]

ig 5:0 RV 0 Ignored

Document Number: 332427-001, Revision 1.0 67

It was not possible to filter many of the events in NHM based on whether they originated from a
local or remote caching agent. Many of the Intel® Xeon® Processor D-1500 Product Family
events will be extended to support this.

• Snoop Latency

2.4.2.1 On the Major HA Structures:

The 128-entry TF (Tracker File) holds all transactions that arrive in the HA from the time they arrive
until they are completed and leave the HA. Transactions could stay in this structure much longer than
they are needed. TF is the critical resource each transaction needs before being sent to the IMC
(memory controller)

TF average occupancy == (valid cnt * 128 / cycles)

TF average latency == (valid cnt * 128 / inserts)

Other Internal HA Queues of Interest:

TxR (aka EGR) - The HA has Egress (responses) queues for each ring (AD, AK, BL) as well as queues
to track credits the HA has to push traffic onto those rings.

2.4.3 HA Box Events Ordered By Code
The following table summarizes the directly measured HA Box events.

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

CLOCKTICKS 0x00 0-3 1 uclks

REQUESTS 0x01 0-3 1 Read and Write Requests

TRACKER_CYCLES_FULL 0x02 0-3 1 Tracker Cycles Full

TRACKER_CYCLES_NE 0x03 0-3 1 Tracker Cycles Not Empty

TRACKER_OCCUPANCY 0x04 0-3 128 Tracker Occupancy Accumultor

TRACKER_PENDING_OCCUPANCY 0x05 0-3 127 Data Pending Occupancy Accumultor

SNOOP_CYCLES_NE 0x08 0-3 1 Cycles with Snoops Outstanding

SNOOP_OCCUPANCY 0x09 0-3 127 Tracker Snoops Outstanding Accumulator

SNOOPS_RSP_AFTER_DATA 0x0a 0-3 127 Data beat the Snoop Responses

CONFLICT_CYCLES 0x0b 1 0 Conflict Checks

DIRECTORY_LOOKUP 0x0c 0-3 1 Directory Lookups

DIRECTORY_UPDATE 0x0d 0-3 1 Directory Updates

TxR_AK 0x0e 0-3 1 Outbound Ring Transactions on AK

TxR_BL 0x10 0-3 1 Outbound DRS Ring Transactions to Cache

DIRECT2CORE_COUNT 0x11 0-3 1 Direct2Core Messages Sent

DIRECT2CORE_CYCLES_DISABLED 0x12 0-3 1 Cycles when Direct2Core was Disabled

DIRECT2CORE_TXN_OVERRIDE 0x13 0-3 1 Number of Reads that had Direct2Core
Overridden

BYPASS_IMC 0x14 0-3 1 HA to iMC Bypass

RPQ_CYCLES_NO_REG_CREDITS 0x15 0-3 4 iMC RPQ Credits Empty - Regular

IMC_READS 0x17 0-3 4 HA to iMC Normal Priority Reads Issued

WPQ_CYCLES_NO_REG_CREDITS 0x18 0-3 4 HA iMC CHN0 WPQ Credits Empty - Regular

IMC_WRITES 0x1a 0-3 1 HA to iMC Full Line Writes Issued

68 Document Number: 332427-001, Revision 1.0

2.4.4 HA Box Common Metrics (Derived Events)
The following table summarizes metrics commonly calculated from HA Box events.

TAD_REQUESTS_G0 0x1b 0-3 2 HA Requests to a TAD Region - Group 0

TAD_REQUESTS_G1 0x1c 0-3 2 HA Requests to a TAD Region - Group 1

IMC_RETRY 0x1e 0-3 1 Retry Events

ADDR_OPC_MATCH 0x20 0-3 1 Intel QPI Address/Opcode Match

SNOOP_RESP 0x21 0-3 1 Snoop Responses Received

IGR_NO_CREDIT_CYCLES 0x22 0-3 1 Cycles without Intel QPI Ingress Credits

TxR_AD_CYCLES_FULL 0x2a 0-3 1 AD Egress Full

TxR_AK_CYCLES_FULL 0x32 0-3 1 AK Egress Full

TxR_BL_OCCUPANCY 0x34 0-3 20 BL Egress Occupancy

TxR_BL_CYCLES_FULL 0x36 0-3 1 BL Egress Full

RING_AD_USED 0x3e 0-3 1 HA AD Ring in Use

RING_AK_USED 0x3f 0-3 1 HA AK Ring in Use

RING_BL_USED 0x40 0-3 1 HA BL Ring in Use

DIRECTORY_LAT_OPT 0x41 0-3 1 Directory Lat Opt Return

BT_CYCLES_NE 0x42 0-3 1 BT Cycles Not Empty

BT_OCCUPANCY 0x43 0-3 512 BT Occupancy

OSB 0x53 0-3 1 OSB Snoop Broadcast

OSB_EDR 0x54 0-3 1 OSB Early Data Return

SNP_RESP_RECV_LOCAL 0x60 0-3 1 Snoop Responses Received Local

TxR_STARVED 0x6d 0-3 1 Injection Starvation

HITME_LOOKUP 0x70 0-3 1 Counts Number of times HitMe Cache is
accessed

HITME_HIT 0x71 0-3 1 Counts Number of Hits in HitMe Cache

HITME_HIT_PV_BITS_SET 0x72 0-3 1 Accumulates Number of PV bits set on HitMe
Cache Hits

Symbol Name:
 Definition Equation

HITME_INSERTS:

HITME_LOOKUP.ALLOCS - HITME_HITS.ALLOCS

HITME_INVAL:

HITME_HIT.INVALS

PCT_CYCLES_BL_FULL:
 Percentage of time the BL Egress Queue is
full

TxR_BL_CYCLES_FULL.ALL / SAMPLE_INTERVAL

PCT_CYCLES_D2C_DISABLED:
 Percentage of time that Direct2Core was
disabled.

DIRECT2CORE_CYCLES_DISABLED / SAMPLE_INTERVAL

PCT_RD_REQUESTS:
 Percentage of HA traffic that is from Read
Requests

REQUESTS.READS / (REQUESTS.READS + REQUESTS.WRITES)

PCT_WR_REQUESTS:
 Percentage of HA traffic that is from Write
Requests

REQUESTS.WRITES / (REQUESTS.READS +
REQUESTS.WRITES)

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

Document Number: 332427-001, Revision 1.0 69

2.4.5 HA Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the HA Box.

ADDR_OPC_MATCH
• Title: Intel QPI Address/Opcode Match
• Category: ADDR_OPCODE_MATCH Events
• Event Code: 0x20
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BT_CYCLES_NE
• Title: BT Cycles Not Empty
• Category: BT (Backup Tracker) Events
• Event Code: 0x42
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Cycles the Backup Tracker (BT) is not empty.
• NOTE: Will not count case HT is empty and a Bypass happens.

BT_OCCUPANCY
• Title: BT Occupancy
• Category: BT (Backup Tracker) Events
• Event Code: 0x43
• Max. Inc/Cyc:. 512, Register Restrictions: 0-3
• Definition: Accumulates the occupancy of the HA BT pool in every cycle. This can be used with the

"not empty" stat to calculate average queue occupancy or the "allocations" stat in order to calculate
average queue latency. HA BTs are allocated as soon as a request enters the HA and is released
after the snoop response and data return (or post in the case of a write) and the response is
returned on the ring.

Table 2-50. Unit Masks for ADDR_OPC_MATCH

Extension umask
[15:8] Filter Dep Description

ADDR bxxxxxxx1 HA_AddrMa
tch0[31:6],
HA_AddrMa
tch1[13:0]

Address

OPC bxxxxxx1x HA_Opcode
Match[5:0]

Opcode

FILT b00000011 HA_AddrMa
tch0[31:6],
HA_AddrMa
tch1[13:0],
HA_Opcode
Match[5:0]

Address & Opcode Match

AD bxxxxx1xx HA_Opcode
Match[5:0]

AD Opcodes

BL bxxxx1xxx HA_Opcode
Match[5:0]

BL Opcodes

AK bxxx1xxxx HA_Opcode
Match[5:0]

AK Opcodes

70 Document Number: 332427-001, Revision 1.0

BYPASS_IMC
• Title: HA to iMC Bypass
• Category: BYPASS Events
• Event Code: 0x14
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when the HA was able to bypass was attempted. This is a

latency optimization for situations when there is light loadings on the memory subsystem. This can
be filted by when the bypass was taken and when it was not.

• NOTE: Only read transactions use iMC bypass

CLOCKTICKS
• Title: uclks
• Category: UCLK Events
• Event Code: 0x00
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of uclks in the HA. This will be slightly different than the count in

the Ubox because of enable/freeze delays. The HA is on the other side of the die from the fixed
Ubox uclk counter, so the drift could be somewhat larger than in units that are closer like the Intel
QPI Agent.

CONFLICT_CYCLES
• Title: Conflict Checks
• Category: CONFLICTS Events
• Event Code: 0x0b
• Max. Inc/Cyc:. 0, Register Restrictions: 1
• Filter Dependency: N
• Definition:

DIRECT2CORE_COUNT
• Title: Direct2Core Messages Sent
• Category: DIRECT2CORE Events
• Event Code: 0x11
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of Direct2Core messages sent
• NOTE: Will not be implemented since OUTBOUND_TX_BL:0x1 will count DRS to CORE which is

effectively the same thing as D2C count

DIRECT2CORE_CYCLES_DISABLED
• Title: Cycles when Direct2Core was Disabled
• Category: DIRECT2CORE Events
• Event Code: 0x12
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3

Table 2-52. Unit Masks for BYPASS_IMC

Extension umask
[15:8] Description

TAKEN bxxxxxxx1 Taken
Filter for transactions that succeeded in taking the bypass.

NOT_TAKEN bxxxxxx1x Not Taken
Filter for transactions that could not take the bypass.

Document Number: 332427-001, Revision 1.0 71

• Definition: Number of cycles in which Direct2Core was disabled

DIRECT2CORE_TXN_OVERRIDE
• Title: Number of Reads that had Direct2Core Overridden
• Category: DIRECT2CORE Events
• Event Code: 0x13
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of Reads where Direct2Core overridden

DIRECTORY_LAT_OPT
• Title: Directory Lat Opt Return
• Category: DIRECTORY Events
• Event Code: 0x41
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Directory Latency Optimization Data Return Path Taken. When directory mode is

enabled and the directory retuned for a read is Dir=I, then data can be returned using a faster path
if certain conditions are met (credits, free pipeline, etc).

DIRECTORY_LOOKUP
• Title: Directory Lookups
• Category: DIRECTORY Events
• Event Code: 0x0c
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of transactions that looked up the directory. Can be filtered by

requests that had to snoop and those that did not have to.
• NOTE: Only valid for parts that implement the Directory

DIRECTORY_UPDATE
• Title: Directory Updates
• Category: DIRECTORY Events
• Event Code: 0x0d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of directory updates that were required. These result in writes to

the memory controller. This can be filtered by directory sets and directory clears.
• NOTE: Only valid for parts that implement the Directory

Table 2-54. Unit Masks for DIRECTORY_LOOKUP

Extension umask
[15:8] Description

SNP bxxxxxxx1 Snoop Needed
Filters for transactions that had to send one or more snoops because
the directory bit was set.

NO_SNP bxxxxxx1x Snoop Not Needed
Filters for transactions that did not have to send any snoops because
the directory bit was clear.

72 Document Number: 332427-001, Revision 1.0

HITME_HIT
• Title: Counts Number of Hits in HitMe Cache
• Category: HitME Events
• Event Code: 0x71
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

HITME_HIT_PV_BITS_SET
• Title: Accumulates Number of PV bits set on HitMe Cache Hits
• Category: HitME Events
• Event Code: 0x72
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-55. Unit Masks for DIRECTORY_UPDATE

Extension umask
[15:8] Description

SET bxxxxxxx1 Directory Set
Filter for directory sets. This occurs when a remote read transaction
requests memory, bringing it to a remote cache.

CLEAR bxxxxxx1x Directory Clear
Filter for directory clears. This occurs when snoops were sent and all
returned with RspI.

ANY bxxxxxx11 Any Directory Update

Table 2-56. Unit Masks for HITME_HIT

Extension umask
[15:8] Description

READ_OR_INVITOE bxxxxxxx1 op is RdCode, RdData, RdDataMigratory, RdInvOwn, RdCur or InvItoE

WBMTOI bxxxxxx1x op is WbMtoI

ACKCNFLTWBI bxxxxx1xx op is AckCnfltWbI

WBMTOE_OR_S bxxxx1xxx op is WbMtoE or WbMtoS

HOM b00001111 HOM Requests

RSPFWDI_REMOTE bxxx1xxxx op is RspIFwd or RspIFwdWb for a remote request

RSPFWDI_LOCAL bxx1xxxxx op is RspIFwd or RspIFwdWb for a local request

INVALS b00100110 Invalidations

RSPFWDS bx1xxxxxx op is RsSFwd or RspSFwdWb

EVICTS b01000010 Allocations

ALLOCS b01110000 Allocations

RSP b1xxxxxxx op is RspI, RspIWb, RspS, RspSWb, RspCnflt or RspCnfltWbI

ALL b11111111 All Requests

Table 2-57. Unit Masks for HITME_HIT_PV_BITS_SET

Extension umask
[15:8] Description

READ_OR_INVITOE bxxxxxxx1 op is RdCode, RdData, RdDataMigratory, RdInvOwn, RdCur or InvItoE

WBMTOI bxxxxxx1x op is WbMtoI

Document Number: 332427-001, Revision 1.0 73

HITME_LOOKUP
• Title: Counts Number of times HitMe Cache is accessed
• Category: HitME Events
• Event Code: 0x70
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

IGR_NO_CREDIT_CYCLES
• Title: Cycles without Intel QPI Ingress Credits
• Category: QPI_IGR_CREDITS Events
• Event Code: 0x22
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the HA does not have credits to send messages to

the Intel QPI Agent. This can be filtered by the different credit pools and the different links.

ACKCNFLTWBI bxxxxx1xx op is AckCnfltWbI

WBMTOE_OR_S bxxxx1xxx op is WbMtoE or WbMtoS

HOM b00001111 HOM Requests

RSPFWDI_REMOTE bxxx1xxxx op is RspIFwd or RspIFwdWb for a remote request

RSPFWDI_LOCAL bxx1xxxxx op is RspIFwd or RspIFwdWb for a local request

RSPFWDS bx1xxxxxx op is RsSFwd or RspSFwdWb

RSP b1xxxxxxx op is RspI, RspIWb, RspS, RspSWb, RspCnflt or RspCnfltWbI

ALL b11111111 All Requests

Table 2-58. Unit Masks for HITME_LOOKUP

Extension umask
[15:8] Description

READ_OR_INVITOE bxxxxxxx1 op is RdCode, RdData, RdDataMigratory, RdInvOwn, RdCur or InvItoE

WBMTOI bxxxxxx1x op is WbMtoI

ACKCNFLTWBI bxxxxx1xx op is AckCnfltWbI

WBMTOE_OR_S bxxxx1xxx op is WbMtoE or WbMtoS

HOM b00001111 HOM Requests

RSPFWDI_REMOTE bxxx1xxxx op is RspIFwd or RspIFwdWb for a remote request

RSPFWDI_LOCAL bxx1xxxxx op is RspIFwd or RspIFwdWb for a local request

INVALS b00100110 Invalidations

RSPFWDS bx1xxxxxx op is RsSFwd or RspSFwdWb

ALLOCS b01110000 Allocations

RSP b1xxxxxxx op is RspI, RspIWb, RspS, RspSWb, RspCnflt or RspCnfltWbI

ALL b11111111 All Requests

Table 2-57. Unit Masks for HITME_HIT_PV_BITS_SET

Extension umask
[15:8] Description

74 Document Number: 332427-001, Revision 1.0

IMC_READS
• Title: HA to iMC Normal Priority Reads Issued
• Category: IMC_READS Events
• Event Code: 0x17
• Max. Inc/Cyc:. 4, Register Restrictions: 0-3
• Definition: Count of the number of reads issued to any of the memory controller channels. This

can be filtered by the priority of the reads.
• NOTE: Does not count reads using the bypass path. That is counted separately in HA_IMC.BYPASS

IMC_RETRY
• Title: Retry Events
• Category: IMC_MISC Events
• Event Code: 0x1e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

IMC_WRITES
• Title: HA to iMC Full Line Writes Issued
• Category: IMC_WRITES Events
• Event Code: 0x1a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the total number of full line writes issued from the HA into the memory control-

ler. This counts for all four channels. It can be filtered by full/partial and ISOCH/non-ISOCH.

Table 2-59. Unit Masks for IGR_NO_CREDIT_CYCLES

Extension umask
[15:8] Description

AD_QPI0 bxxxxxxx1 AD to Intel QPI Link 0

AD_QPI1 bxxxxxx1x AD to Intel QPI Link 1

BL_QPI0 bxxxxx1xx BL to Intel QPI Link 0

BL_QPI1 bxxxx1xxx BL to Intel QPI Link 1

AD_QPI2 bxxx1xxxx BL to Intel QPI Link 0

BL_QPI2 bxx1xxxxx BL to Intel QPI Link 1

Table 2-60. Unit Masks for IMC_READS

Extension umask
[15:8] Description

NORMAL b00000001 Normal Priority

Table 2-61. Unit Masks for IMC_WRITES

Extension umask
[15:8] Description

FULL bxxxxxxx1 Full Line Non-ISOCH

PARTIAL bxxxxxx1x Partial Non-ISOCH

FULL_ISOCH bxxxxx1xx ISOCH Full Line

PARTIAL_ISOCH bxxxx1xxx ISOCH Partial

ALL b00001111 All Writes

Document Number: 332427-001, Revision 1.0 75

OSB
• Title: OSB Snoop Broadcast
• Category: OSB (Opportunistic Snoop Broadcast) Events
• Event Code: 0x53
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Count of OSB snoop broadcasts. Counts by 1 per request causing OSB snoops to be

broadcast. Does not count all the snoops generated by OSB.

OSB_EDR
• Title: OSB Early Data Return
• Category: OSB (Opportunistic Snoop Broadcast) Events
• Event Code: 0x54
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of transactions that broadcast snoop due to OSB, but found clean

data in memory and was able to do early data return

REQUESTS
• Title: Read and Write Requests
• Category: TRACKER Events
• Event Code: 0x01
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the total number of read requests made into the Home Agent. Reads include all

read opcodes (including RFO). Writes include all writes (streaming, evictions, HitM, etc).

Table 2-62. Unit Masks for OSB

Extension umask
[15:8] Description

READS_LOCAL bxxxxxx1x Local Reads

INVITOE_LOCAL bxxxxx1xx Local InvItoE

REMOTE bxxxx1xxx Remote

CANCELLED bxxx1xxxx Cancelled
OSB Snoop broadcast cancelled due to D2C or Other. OSB cancel is
counted when OSB local read is not allowed even when the
transaction in local InItoE. It also counts D2C OSB cancel, but also
includes the cases were D2C was not set in the first place for the
transaction coming from the ring.

READS_LOCAL_USEFUL bxx1xxxxx Reads Local - Useful

REMOTE_USEFUL bx1xxxxxx Remote - Useful

Table 2-63. Unit Masks for OSB_EDR

Extension umask
[15:8] Description

ALL bxxxxxxx1 All

READS_LOCAL_I bxxxxxx1x Reads to Local I

READS_REMOTE_I bxxxxx1xx Reads to Remote I

READS_LOCAL_S bxxxx1xxx Reads to Local S

READS_REMOTE_S bxxx1xxxx Reads to Remote S

76 Document Number: 332427-001, Revision 1.0

RING_AD_USED
• Title: HA AD Ring in Use
• Category: RING Events
• Event Code: 0x3e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the AD ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the CW direction and one
packet moving in the CCW direction.

Table 2-64. Unit Masks for REQUESTS

Extension umask
[15:8] Description

READS_LOCAL bxxxxxxx1 Local Reads
This filter includes only read requests coming from the local socket.
This is a good proxy for LLC Read Misses (including RFOs) from the
local socket.

READS_REMOTE bxxxxxx1x Remote Reads
This filter includes only read requests coming from the remote
socket. This is a good proxy for LLC Read Misses (including RFOs)
from the remote socket.

READS b00000011 Reads
Incoming ead requests. This is a good proxy for LLC Read Misses
(including RFOs).

WRITES_LOCAL bxxxxx1xx Local Writes
This filter includes only writes coming from the local socket.

WRITES_REMOTE bxxxx1xxx Remote Writes
This filter includes only writes coming from remote sockets.

WRITES b00001100 Writes
Incoming write requests.

INVITOE_LOCAL bxxx1xxxx Local InvItoEs
This filter includes only InvItoEs coming from the local socket.

INVITOE_REMOTE bxx1xxxxx Remote InvItoEs
This filter includes only InvItoEs coming from remote sockets.

Table 2-65. Unit Masks for RING_AD_USED

Extension umask
[15:8] Description

CW_EVEN bxxxxxxx1 Clockwise and Even
Filters for the Clockwise and Even ring polarity.

CW_ODD bxxxxxx1x Clockwise and Odd
Filters for the Clockwise and Odd ring polarity.

CW b00000011 Clockwise

CCW_EVEN bxxxxx1xx Counterclockwise and Even
Filters for the Counterclockwise and Even ring polarity.

CCW_ODD bxxxx1xxx Counterclockwise and Odd
Filters for the Counterclockwise and Odd ring polarity.

CCW b00001100 Counterclockwise

Document Number: 332427-001, Revision 1.0 77

RING_AK_USED
• Title: HA AK Ring in Use
• Category: RING Events
• Event Code: 0x3f
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the AK ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the CW direction and one
packet moving in the CCW direction.

RING_BL_USED
• Title: HA BL Ring in Use
• Category: RING Events
• Event Code: 0x40
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the BL ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the CW direction and one
packet moving in the CCW direction.

Table 2-66. Unit Masks for RING_AK_USED

Extension umask
[15:8] Description

CW_EVEN bxxxxxxx1 Clockwise and Even
Filters for the Clockwise and Even ring polarity.

CW_ODD bxxxxxx1x Clockwise and Odd
Filters for the Clockwise and Odd ring polarity.

CW b00000011 Clockwise

CCW_EVEN bxxxxx1xx Counterclockwise and Even
Filters for the Counterclockwise and Even ring polarity.

CCW_ODD bxxxx1xxx Counterclockwise and Odd
Filters for the Counterclockwise and Odd ring polarity.

CCW b00001100 Counterclockwise

Table 2-67. Unit Masks for RING_BL_USED

Extension umask
[15:8] Description

CW_EVEN bxxxxxxx1 Clockwise and Even
Filters for the Clockwise and Even ring polarity.

CW_ODD bxxxxxx1x Clockwise and Odd
Filters for the Clockwise and Odd ring polarity.

CW b00000011 Clockwise

CCW_EVEN bxxxxx1xx Counterclockwise and Even
Filters for the Counterclockwise and Even ring polarity.

CCW_ODD bxxxx1xxx Counterclockwise and Odd
Filters for the Counterclockwise and Odd ring polarity.

CCW b00001100 Counterclockwise

78 Document Number: 332427-001, Revision 1.0

RPQ_CYCLES_NO_REG_CREDITS
• Title: iMC RPQ Credits Empty - Regular
• Category: RPQ_CREDITS Events
• Event Code: 0x15
• Max. Inc/Cyc:. 4, Register Restrictions: 0-3
• Definition: Counts the number of cycles when there are no "regular" credits available for posting

reads from the HA into the iMC. In order to send reads into the memory controller, the HA must
first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular
credits/buffers that are used by general reads, and "special" requests such as ISOCH reads. This
count only tracks the regular credits Common high banwidth workloads should be able to make use
of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular
and special buffers at the same time. One can filter based on the memory controller channel. One
or more channels can be tracked at a given time.

SNOOPS_RSP_AFTER_DATA
• Title: Data beat the Snoop Responses
• Category: SNOOPS Events
• Event Code: 0x0a
• Max. Inc/Cyc:. 127, Register Restrictions: 0-3
• Definition: Counts the number of reads when the snoop was on the critical path to the data return.

SNOOP_CYCLES_NE
• Title: Cycles with Snoops Outstanding
• Category: SNOOPS Events
• Event Code: 0x08
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts cycles when one or more snoops are outstanding.

Table 2-68. Unit Masks for RPQ_CYCLES_NO_REG_CREDITS

Extension umask
[15:8] Description

CHN0 b00000001 Channel 0
Filter for memory controller channel 0 only.

CHN1 b00000010 Channel 1
Filter for memory controller channel 1 only.

CHN2 b00000100 Channel 2
Filter for memory controller channel 2 only.

CHN3 b00001000 Channel 3
Filter for memory controller channel 3 only.

Table 2-69. Unit Masks for SNOOPS_RSP_AFTER_DATA

Extension umask
[15:8] Description

LOCAL b00000001 Local Requests
This filter includes only requests coming from the local socket.

REMOTE b00000010 Remote Requests
This filter includes only requests coming from remote sockets.

Document Number: 332427-001, Revision 1.0 79

SNOOP_OCCUPANCY
• Title: Tracker Snoops Outstanding Accumulator
• Category: SNOOPS Events
• Event Code: 0x09
• Max. Inc/Cyc:. 127, Register Restrictions: 0-3
• Definition: Accumulates the occupancy of either the local HA tracker pool that have snoops pend-

ing in every cycle. This can be used in conjection with the "not empty" stat to calculate average
queue occupancy or the "allocations" stat in order to calculate average queue latency. HA trackers
are allocated as soon as a request enters the HA if an HT (HomeTracker) entry is available and this
occupancy is decremented when all the snoop responses have returned.

SNOOP_RESP
• Title: Snoop Responses Received
• Category: SNP_RESP Events
• Event Code: 0x21
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the total number of RspI snoop responses received. Whenever a snoops are

issued, one or more snoop responses will be returned depending on the topology of the system. In
systems larger than 2s, when multiple snoops are returned this will count all the snoops that are
received. For example, if 3 snoops were issued and returned RspI, RspS, and RspSFwd; then each
of these sub-events would increment by 1.

Table 2-70. Unit Masks for SNOOP_CYCLES_NE

Extension umask
[15:8] Description

LOCAL bxxxxxxx1 Local Requests
This filter includes only requests coming from the local socket.

REMOTE bxxxxxx1x Remote Requests
This filter includes only requests coming from remote sockets.

ALL b00000011 All Requests
Tracked for snoops from both local and remote sockets.

Table 2-71. Unit Masks for SNOOP_OCCUPANCY

Extension umask
[15:8] Description

LOCAL b00000001 Local Requests
This filter includes only requests coming from the local socket.

REMOTE b00000010 Remote Requests
This filter includes only requests coming from remote sockets.

Table 2-72. Unit Masks for SNOOP_RESP

Extension umask
[15:8] Description

RSPI bxxxxxxx1 RspI
Filters for snoops responses of RspI. RspI is returned when the
remote cache does not have the data, or when the remote cache
silently evicts data (such as when an RFO hits non-modified data).

RSPS bxxxxxx1x RspS
Filters for snoop responses of RspS. RspS is returned when a remote
cache has data but is not forwarding it. It is a way to let the
requesting socket know that it cannot allocate the data in E state. No
data is sent with S RspS.

80 Document Number: 332427-001, Revision 1.0

SNP_RESP_RECV_LOCAL
• Title: Snoop Responses Received Local
• Category: SNP_RESP Events
• Event Code: 0x60
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of snoop responses received for a Local request

RSPIFWD bxxxxx1xx RspIFwd
Filters for snoop responses of RspIFwd. This is returned when a
remote caching agent forwards data and the requesting agent is able
to acquire the data in E or M states. This is commonly returned with
RFO transactions. It can be either a HitM or a HitFE.

RSPSFWD bxxxx1xxx RspSFwd
Filters for a snoop response of RspSFwd. This is returned when a
remote caching agent forwards data but holds on to its currentl copy.
This is common for data and code reads that hit in a remote socket in
E or F state.

RSP_WB bxxx1xxxx Rsp*WB
Filters for a snoop response of RspIWB or RspSWB. This is returned
when a non-RFO request hits in M state. Data and Code Reads can
return either RspIWB or RspSWB depending on how the system has
been configured. InvItoE transactions will also return RspIWB
because they must acquire ownership.

RSP_FWD_WB bxx1xxxxx Rsp*Fwd*WB
Filters for a snoop response of Rsp*Fwd*WB. This snoop response is
only used in 4s systems. It is used when a snoop HITM's in a remote
caching agent and it directly forwards data to a requestor, and
simultaneously returns data to the home to be written back to
memory.

RSPCNFLCT bx1xxxxxx RSPCNFLCT*
Filters for snoops responses of RspConflict. This is returned when a
snoop finds an existing outstanding transaction in a remote caching
agent when it CAMs that caching agent. This triggers conflict
resolution hardware. This covers both RspCnflct and RspCnflctWbI.

Table 2-73. Unit Masks for SNP_RESP_RECV_LOCAL (Sheet 1 of 2)

Extension umask
[15:8] Description

RSPI bxxxxxxx1 RspI
Filters for snoops responses of RspI. RspI is returned when the
remote cache does not have the data, or when the remote cache
silently evicts data (such as when an RFO hits non-modified data).

RSPS bxxxxxx1x RspS
Filters for snoop responses of RspS. RspS is returned when a remote
cache has data but is not forwarding it. It is a way to let the
requesting socket know that it cannot allocate the data in E state. No
data is sent with S RspS.

RSPIFWD bxxxxx1xx RspIFwd
Filters for snoop responses of RspIFwd. This is returned when a
remote caching agent forwards data and the requesting agent is able
to acquire the data in E or M states. This is commonly returned with
RFO transactions. It can be either a HitM or a HitFE.

RSPSFWD bxxxx1xxx RspSFwd
Filters for a snoop response of RspSFwd. This is returned when a
remote caching agent forwards data but holds on to its currentl copy.
This is common for data and code reads that hit in a remote socket in
E or F state.

Table 2-72. Unit Masks for SNOOP_RESP

Extension umask
[15:8] Description

Document Number: 332427-001, Revision 1.0 81

TAD_REQUESTS_G0
• Title: HA Requests to a TAD Region - Group 0
• Category: TAD Events
• Event Code: 0x1b
• Max. Inc/Cyc:. 2, Register Restrictions: 0-3
• Definition: Counts the number of HA requests to a given TAD region. There are up to 11 TAD (tar-

get address decode) regions in each home agent. All requests destined for the memory controller
must first be decoded to determine which TAD region they are in. This event is filtered based on the
TAD region ID, and covers regions 0 to 7. This event is useful for understanding how applications
are using the memory that is spread across the different memory regions.

RSPxWB bxxx1xxxx Rsp*WB
Filters for a snoop response of RspIWB or RspSWB. This is returned
when a non-RFO request hits in M state. Data and Code Reads can
return either RspIWB or RspSWB depending on how the system has
been configured. InvItoE transactions will also return RspIWB
because they must acquire ownership.

RSPxFWDxWB bxx1xxxxx Rsp*FWD*WB
Filters for a snoop response of Rsp*Fwd*WB. This snoop response is
only used in 4s systems. It is used when a snoop HITM's in a remote
caching agent and it directly forwards data to a requestor, and
simultaneously returns data to the home to be written back to
memory.

RSPCNFLCT bx1xxxxxx RspCnflct
Filters for snoops responses of RspConflict. This is returned when a
snoop finds an existing outstanding transaction in a remote caching
agent when it CAMs that caching agent. This triggers conflict
resolution hardware. This covers both RspCnflct and RspCnflctWbI.

OTHER b1xxxxxxx Other
Filters for all other snoop responses.

Table 2-74. Unit Masks for TAD_REQUESTS_G0

Extension umask
[15:8] Description

REGION0 b00000001 TAD Region 0
Filters request made to TAD Region 0

REGION1 b00000010 TAD Region 1
Filters request made to TAD Region 1

REGION2 b00000100 TAD Region 2
Filters request made to TAD Region 2

REGION3 b00001000 TAD Region 3
Filters request made to TAD Region 3

REGION4 b00010000 TAD Region 4
Filters request made to TAD Region 4

REGION5 b00100000 TAD Region 5
Filters request made to TAD Region 5

REGION6 b01000000 TAD Region 6
Filters request made to TAD Region 6

REGION7 b10000000 TAD Region 7
Filters request made to TAD Region 7

Table 2-73. Unit Masks for SNP_RESP_RECV_LOCAL (Sheet 2 of 2)

Extension umask
[15:8] Description

82 Document Number: 332427-001, Revision 1.0

TAD_REQUESTS_G1
• Title: HA Requests to a TAD Region - Group 1
• Category: TAD Events
• Event Code: 0x1c
• Max. Inc/Cyc:. 2, Register Restrictions: 0-3
• Definition: Counts the number of HA requests to a given TAD region. There are up to 11 TAD (tar-

get address decode) regions in each home agent. All requests destined for the memory controller
must first be decoded to determine which TAD region they are in. This event is filtered based on the
TAD region ID, and covers regions 8 to 10. This event is useful for understanding how applications
are using the memory that is spread across the different memory regions.

TRACKER_CYCLES_FULL
• Title: Tracker Cycles Full
• Category: TRACKER Events
• Event Code: 0x02
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the local HA tracker pool is completely used. This

can be used with edge detect to identify the number of situations when the pool became fully uti-
lized. This should not be confused with RTID credit usage -- which must be tracked inside each cbo
individually -- but represents the actual tracker buffer structure. In other words, the system could
be starved for RTIDs but not fill up the HA trackers. HA trackers are allocated as soon as a request
enters the HA and is released after the snoop response and data return (or post in the case of a
write) and the response is returned on the ring.

TRACKER_CYCLES_NE
• Title: Tracker Cycles Not Empty
• Category: TRACKER Events
• Event Code: 0x03
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the local HA tracker pool is not empty. This can be

used with edge detect to identify the number of situations when the pool became empty. This

Table 2-75. Unit Masks for TAD_REQUESTS_G1

Extension umask
[15:8] Description

REGION8 b00000001 TAD Region 8
Filters request made to TAD Region 8

REGION9 b00000010 TAD Region 9
Filters request made to TAD Region 9

REGION10 b00000100 TAD Region 10
Filters request made to TAD Region 10

REGION11 b00001000 TAD Region 11
Filters request made to TAD Region 11

Table 2-76. Unit Masks for TRACKER_CYCLES_FULL

Extension umask
[15:8] Description

GP bxxxxxxx1 Cycles GP Completely Used
Counts the number of cycles when the general purpose (GP) HA
tracker pool (HT) is completely used. It will not return valid count
when BT is disabled.

ALL bxxxxxx1x Cycles Completely Used
Counts the number of cycles when the HA tracker pool (HT) is
completely used including reserved HT entries. It will not return valid
count when BT is disabled.

Document Number: 332427-001, Revision 1.0 83

should not be confused with RTID credit usage -- which must be tracked inside each cbo individually
-- but represents the actual tracker buffer structure. In other words, this buffer could be com-
pletely empty, but there may still be credits in use by the CBos. This stat can be used in conjunc-
tion with the occupancy accumulation stat in order to calculate average queue occpancy. HA
trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available
and is released after the snoop response and data return (or post in the case of a write) and the
response is returned on the ring.

TRACKER_OCCUPANCY
• Title: Tracker Occupancy Accumultor
• Category: TRACKER Events
• Event Code: 0x04
• Max. Inc/Cyc:. 128, Register Restrictions: 0-3
• Definition: Accumulates the occupancy of the local HA tracker pool in every cycle. This can be

used in conjection with the "not empty" stat to calculate average queue occupancy or the "alloca-
tions" stat in order to calculate average queue latency. HA trackers are allocated as soon as a
request enters the HA if a HT (Home Tracker) entry is available and is released after the snoop
response and data return (or post in the case of a write) and the response is returned on the ring.

TRACKER_PENDING_OCCUPANCY
• Title: Data Pending Occupancy Accumultor
• Category: TRACKER Events
• Event Code: 0x05
• Max. Inc/Cyc:. 127, Register Restrictions: 0-3
• Definition: Accumulates the number of transactions that have data from the memory controller

until they get scheduled to the Egress. This can be used to calculate the queuing latency for two
things. (1) If the system is waiting for snoops, this will increase. (2) If the system can't schedule
to the Egress because of either (a) Egress Credits or (b) Intel QPI BL IGR credits for remote
requests.

Table 2-77. Unit Masks for TRACKER_CYCLES_NE

Extension umask
[15:8] Description

LOCAL bxxxxxxx1 Local Requests
This filter includes only requests coming from the local socket.

REMOTE bxxxxxx1x Remote Requests
This filter includes only requests coming from remote sockets.

ALL b00000011 All Requests
Requests coming from both local and remote sockets.

Table 2-78. Unit Masks for TRACKER_OCCUPANCY

Extension umask
[15:8] Description

READS_LOCAL bxxxxx1xx Local Read Requests

READS_REMOTE bxxxx1xxx Remote Read Requests

WRITES_LOCAL bxxx1xxxx Local Write Requests

WRITES_REMOTE bxx1xxxxx Remote Write Requests

INVITOE_LOCAL bx1xxxxxx Local InvItoE Requests

INVITOE_REMOTE b1xxxxxxx Remote InvItoE Requests

84 Document Number: 332427-001, Revision 1.0

TxR_AD_CYCLES_FULL
• Title: AD Egress Full
• Category: EGRESS Events
• Event Code: 0x2a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: AD Egress Full

TxR_AK
• Title: Outbound Ring Transactions on AK
• Category: OUTBOUND_TX Events
• Event Code: 0x0e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

TxR_AK_CYCLES_FULL
• Title: AK Egress Full
• Category: EGRESS Events
• Event Code: 0x32
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: AK Egress Full

Table 2-79. Unit Masks for TRACKER_PENDING_OCCUPANCY

Extension umask
[15:8] Description

LOCAL b00000001 Local Requests
This filter includes only requests coming from the local socket.

REMOTE b00000010 Remote Requests
This filter includes only requests coming from remote sockets.

Table 2-80. Unit Masks for TxR_AD_CYCLES_FULL

Extension umask
[15:8] Description

SCHED0 bxxxxxxx1 Scheduler 0
Filter for cycles full from scheduler bank 0

SCHED1 bxxxxxx1x Scheduler 1
Filter for cycles full from scheduler bank 1

ALL bxxxxxx11 All
Cycles full from both schedulers

Table 2-82. Unit Masks for TxR_AK_CYCLES_FULL

Extension umask
[15:8] Description

SCHED0 bxxxxxxx1 Scheduler 0
Filter for cycles full from scheduler bank 0

SCHED1 bxxxxxx1x Scheduler 1
Filter for cycles full from scheduler bank 1

ALL bxxxxxx11 All
Cycles full from both schedulers

Document Number: 332427-001, Revision 1.0 85

TxR_BL
• Title: Outbound DRS Ring Transactions to Cache
• Category: OUTBOUND_TX Events
• Event Code: 0x10
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of DRS messages sent out on the BL ring. This can be filtered by

the destination.

TxR_BL_CYCLES_FULL
• Title: BL Egress Full
• Category: EGRESS Events
• Event Code: 0x36
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: BL Egress Full

TxR_BL_OCCUPANCY
• Title: BL Egress Occupancy
• Category: BL_EGRESS Events
• Event Code: 0x34
• Max. Inc/Cyc:. 20, Register Restrictions: 0-3
• Definition: BL Egress Occupancy

TxR_STARVED
• Title: Injection Starvation
• Category: EGRESS Events
• Event Code: 0x6d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts injection starvation. This starvation is triggered when the Egress cannot send a

transaction onto the ring for a long period of time.

Table 2-83. Unit Masks for TxR_BL

Extension umask
[15:8] Description

DRS_CACHE bxxxxxxx1 Data to Cache
Filter for data being sent to the cache.

DRS_CORE bxxxxxx1x Data to Core
Filter for data being sent directly to the requesting core.

DRS_QPI bxxxxx1xx Data to Intel QPI
Filter for data being sent to a remote socket over Intel QPI.

Table 2-84. Unit Masks for TxR_BL_CYCLES_FULL

Extension umask
[15:8] Description

SCHED0 bxxxxxxx1 Scheduler 0
Filter for cycles full from scheduler bank 0

SCHED1 bxxxxxx1x Scheduler 1
Filter for cycles full from scheduler bank 1

ALL bxxxxxx11 All
Cycles full from both schedulers

86 Document Number: 332427-001, Revision 1.0

WPQ_CYCLES_NO_REG_CREDITS
• Title: HA iMC CHN0 WPQ Credits Empty - Regular
• Category: WPQ_CREDITS Events
• Event Code: 0x18
• Max. Inc/Cyc:. 4, Register Restrictions: 0-3
• Definition: Counts the number of cycles when there are no "regular" credits available for posting

writes from the HA into the iMC. In order to send writes into the memory controller, the HA must
first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular
credits/buffers that are used by general writes, and "special" requests such as ISOCH writes. This
count only tracks the regular credits Common high banwidth workloads should be able to make use
of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular
and special buffers at the same time. One can filter based on the memory controller channel. One
or more channels can be tracked at a given time.

Table 2-86. Unit Masks for TxR_STARVED

Extension umask
[15:8] Description

AK bxxxxxxx1 For AK Ring

BL bxxxxxx1x For BL Ring

Table 2-87. Unit Masks for WPQ_CYCLES_NO_REG_CREDITS

Extension umask
[15:8] Description

CHN0 b00000001 Channel 0
Filter for memory controller channel 0 only.

CHN1 b00000010 Channel 1
Filter for memory controller channel 1 only.

CHN2 b00000100 Channel 2
Filter for memory controller channel 2 only.

CHN3 b00001000 Channel 3
Filter for memory controller channel 3 only.

Document Number: 332427-001, Revision 1.0 87

2.5 Memory Controller (IMC) Performance Monitoring
The Intel® Xeon® Processor D-1500 Product Family integrated Memory Controller provides the
interface to DRAM and communicates to the rest of the Uncore through the Home Agent (i.e. the IMC
does not connect to the Ring).

In conjunction with the HA, the memory controller also provides a variety of RAS features.

2.5.1 Functional Overview
The memory controller is the interface between the home Home Agent (HA) and DRAM, translating
read and write commands into specific memory commands and schedules them with respect to
memory timing. The other main function of the memory controller is advanced ECC support.

Because of the data path affinity to the HA data path, the HA is paired with the memory controller.

The Intel® Xeon® Processor D-1500 Product Family supports up to 2 channels of DDR accessed
through a single iMC. The number of DIMMs per channel depends on the speed it is running and the
processor type.

A selection of IMC functionality that performance monitoring provides some insight into:

• Supports up to 16 ranks per channel with 8 independent banks per rank.

• ECC support (correct any error within a x4 device)

• Open or closed page policy

• ISOCH

• Demand and Patrol Scrubbing support

• Support for LR-DIMMs (load reduced) for a buffered memory solution demanding higher capacity
memory subsytems.

2.5.2 IMC Performance Monitoring Overview
The IMC supports event monitoring through four 48-bit wide counters
(MC_CHy_PCI_PMON_CTR{3:0}) and one fixed counter (MC_CHy_PCI_PMON_FIXED_CTR) for each
DRAM channel (of which there are 2 in Intel® Xeon® Processor D-1500 Product Family) the MC is
attached to. Each of these counters can be programmed (MC_CHy_PCI_PMON_CTL{3:0}) to capture
any MC event. The MC counters will increment by a maximum of 8b per cycle.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

2.5.2.1 IMC PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from an MC performance counter, the overflow bit is set at the box level
(MC_CHy_PCI_PMON_BOX_STATUS.ov). If the counter is enabled to communicate the overflow
(MC_CHy_PCI_PMON_CTL.ov_en is set to 1), an overflow message is sent to the UBox. When the
UBox receives the overflow signal, the U_MSR_PMON_GLOBAL_STATUS.ov_m bit corresponding to
the MC generating the overflow is set (see Table 2-3, “U_MSR_PMON_GLOBAL_STATUS Register –
Field Definitions”), a global freeze signal is sent and a PMI can be generated.

88 Document Number: 332427-001, Revision 1.0

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for the freeze must
be cleared by setting the corresponding bit in MC_CHy_PCI_PMON_BOX_STATUS.ov and
U_MSR_PMON_GLOBAL_STATUS.ov_mn to 1 (which acts to clear the bits). Assuming all the counters
have been locally enabled (.en bit in control registers meant to monitor events) and the overflow bits
have been cleared, the MC is prepared for a new sample interval. Once the global controls have been
re-enabled (Section 2.1.4, “Enabling a New Sample Interval from Frozen Counters”), counting will
resume.

2.5.3 IMC Performance Monitors

Table 2-88. IMC Performance Monitoring Registers (PCICFG) (Sheet 1 of 2)

Register Name PCICFG
Address

Size
(bits) Description

PCICFG Base Address Dev:Func
DeviceID

MC0 Channel 0 PMON Registers D20:F0
0x6FB4

MC0 Channel 1 PMON Registers D20:F1
0x6FB5

MC0 Channel 2 PMON Registers D21:F0
0x6FB0

MC0 Channel 3 PMON Registers D21:F1
0x6FB1

MC1 Channel 0 PMON Registers D23:F0
0x6FD4

MC1 Channel 1 PMON Registers D23:F1
0x6FD5

MC1 Channel 2 PMON Registers D24:F0
0x6FD0

MC1 Channel 3 PMON Registers D24:F1
0x6FD1

Box-Level Control/Status

MC_CHy_PCI_PMON_BOX_STATUS F8 32 MC Channel y PMON Box-Wide Status

MC_CHy_PCI_PMON_BOX_CTL F4 32 MC Channel y PMON Box-Wide Control

Generic Counter Control

MC_CHy_PCI_PMON_FIXED_CTL F0 32 MC Channel y PMON Control for Fixed
Counter

MC_CHy_PCI_PMON_CTL3 E4 32 MC Channel y PMON Control for Counter
3

MC_CHy_PCI_PMON_CTL2 E0 32 MC Channel y PMON Control for Counter
2

MC_CHy_PCI_PMON_CTL1 DC 32 MC Channel y PMON Control for Counter
1

MC_CHy_PCI_PMON_CTL0 D8 32 MC Channel y PMON Control for Counter
0

Generic Counters

MC_CHy_PCI_PMON_FIXED_CTR D4+D0 32x2 MC Channel y PMON Fixed Counter

Document Number: 332427-001, Revision 1.0 89

2.5.3.1 MC Box Level PMON State

The following registers represent the state governing all box-level PMUs in the MC Boxes.

In the case of the MC, the MC_CHy_PCI_PMON_BOX_CTL register provides the ability to manually
freeze the counters in the box (.frz) and reset the generic state (.rst_ctrs and .rst_ctrl).

If an overflow is detected from one of the MC Box PMON registers, the corresponding bit in the
MC_CHy_PCI_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write
a value of ‘1’ to them (which will clear the bits).

MC_CHy_PCI_PMON_CTR3 BC+B8 32x2 MC Channel y PMON Counter 3

MC_CHy_PCI_PMON_CTR2 B4+B0 32x2 MC Channel y PMON Counter 2

MC_CHy_PCI_PMON_CTR1 AC+A8 32x2 MC Channel y PMON Counter 1

MC_CHy_PCI_PMON_CTR0 A4+A0 32x2 MC Channel y PMON Counter 0

Table 2-89. MC_CHy_PCI_PMON_BOX_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:18 RV 0 Ignored

rsv 17:16 RV 0 Reserved; SW must write to 1 else behavior is undefined.

ig 15:9 RV 0 Ignored

frz 8 WO 0 Freeze.
If set to 1 the counters in this box will be frozen.

ig 7:2 RV 0 Ignored

rst_ctrs 1 WO 0 Reset Counters.
When set to 1, the Counter Registers will be reset to 0.

rst_ctrl 0 WO 0 Reset Control.
When set to 1, the Counter Control Registers will be reset to
0.

Table 2-90. MC_CHy_PCI_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:6 RV 0 Ignored

rsv 5 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov 4:0 RW1C 0 If an overflow is detected from the corresponding
MC_CHy_PCI_PMON_CTR register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

Bit 4 -overflow for *_PMON_CTR4
Bit 1 -overflow for *_PMON_CTR1
Bit 0 -overflow for the fixed counter

Table 2-88. IMC Performance Monitoring Registers (PCICFG) (Sheet 2 of 2)

Register Name PCICFG
Address

Size
(bits) Description

90 Document Number: 332427-001, Revision 1.0

2.5.3.2 MC PMON state - Counter/Control Pairs

The following table defines the layout of the MC performance monitor control registers. The main task
of these configuration registers is to select the event to be monitored by their respective data counter
(.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g. .invert,
.edge_det, .thresh) as well as provide additional functionality for monitoring software (.rst,.ov_en).

All MC performance monitor data registers are 48-bit wide. A counter overflow occurs when a carry
out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the UBox (refer to Section 2.1.1, “Counter Overflow”). During the interval of time
between overflow and global disable, the counter value will wrap and continue to collect events.

If accessible, software can continuously read the data registers without disabling event collection.

Table 2-91. MC_CHy_PCI_PMON_CTL{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

thresh 31:24 RW-V 0 Threshold used in counter comparison.

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

rsv 21 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW-V 0 When this bit is asserted and the corresponding counter
overflows, its overflow bit is set in the local status register
(MC_CHy_PCI_PMON_BOX_STATUS.ov) and an overflow is
sent on the message channel to the UBox. When the overflow
is received by the UBox, the bit corresponding to this MC will
be set in U_MSR_PMON_GLOBAL_STATUS.ov_m{1,0}.

ig 19 RV 0 Ignored

edge_det 18 RW-V 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved. SW must write to 0 else behavior is undefined.

umask 15:8 RW-V 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW-V 0 Select event to be counted.

Document Number: 332427-001, Revision 1.0 91

This is a counter that always tracks the number of DRAM clocks (dclks - half of DDR speed) in the
IMC. The dclk never changes frequency (on a given system), and therefore is a good measure of wall
clock (unlike the Uncore clock which can change frequency based on system load). This clock is
generally a bit slower than the uclk (~800MHz to ~1.066GHz) and therefore has less fidelity.

2.5.4 IMC Performance Monitoring Events
A sampling of events available for monitoring in the IMC:

• Translated commands: Various Read and Write CAS commands

• Memory commands: CAS, Precharge, Refresh, Preemptions, etc,

• Page hits and page misses.

• Page Closing Events

• Control of power consumption: Thermal Throttling by Rank, Time spent in CKE ON mode, etc.

and many more.

Internal IMC Queues:

RPQ - Read Pending Queue. NOTE: HA also tracks some information related to the IMC’s RPQ.

WPQ - Write Pending Queue. NOTE: HA also tracks some information related to the IMC’s WPQ.

Table 2-92. MC_CHy_PCI_PMON_FIXED_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:24 RV 0 Ignored

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

rsv 21 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW-V 0 When this bit is asserted and the corresponding counter
overflows, a PMI exception is sent to the UBox.

rst 19 WO 0 When set to 1, the corresponding counter will be cleared to 0.

ig 18:0 RV 0 Ignored

Table 2-93. MC_CHy_PCI_PMON_CTR{FIXED,3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 63:48 RV 0 Ignored

event_count 47:0 RW-V 0 48-bit performance event counter

92 Document Number: 332427-001, Revision 1.0

2.5.5 iMC Box Events Ordered By Code
The following table summarizes the directly measured iMC Box events.

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

DCLOCKTICKS 0x00 0-3 1 DRAM Clockticks

ACT_COUNT 0x01 0-3 1 DRAM Activate Count

PRE_COUNT 0x02 0-3 1 DRAM Precharge commands.

CAS_COUNT 0x04 0-3 1 DRAM RD_CAS and WR_CAS Commands.

DRAM_REFRESH 0x05 0-3 1 Number of DRAM Refreshes Issued

DRAM_PRE_ALL 0x06 0-3 1 DRAM Precharge All Commands

MAJOR_MODES 0x07 0-3 1 Cycles in a Major Mode

PREEMPTION 0x08 0-3 1 Read Preemption Count

ECC_CORRECTABLE_ERRORS 0x09 0-3 1 ECC Correctable Errors

RPQ_INSERTS 0x10 0-3 1 Read Pending Queue Allocations

RPQ_CYCLES_NE 0x11 0-3 1 Read Pending Queue Not Empty

WPQ_CYCLES_NE 0x21 0-3 1 Write Pending Queue Not Empty

WPQ_CYCLES_FULL 0x22 0-3 1 Write Pending Queue Full Cycles

WPQ_READ_HIT 0x23 0-3 1 Write Pending Queue CAM Match

WPQ_WRITE_HIT 0x24 0-3 1 Write Pending Queue CAM Match

POWER_THROTTLE_CYCLES 0x41 0-3 1 Throttle Cycles for Rank 0

POWER_PCU_THROTTLING 0x42 0-3 1

POWER_SELF_REFRESH 0x43 0-3 0 Clock-Enabled Self-Refresh

POWER_CKE_CYCLES 0x83 0-3 16 CKE_ON_CYCLES by Rank

POWER_CHANNEL_DLLOFF 0x84 0-3 1 Channel DLLOFF Cycles

POWER_CHANNEL_PPD 0x85 0-3 4 Channel PPD Cycles

POWER_CRITICAL_THROTTLE_CYCL
ES

0x86 0-3 1 Critical Throttle Cycles

VMSE_WR_PUSH 0x90 0-3 1 VMSE WR PUSH issued

VMSE_MXB_WR_OCCUPANCY 0x91 0-3 32 VMSE MXB write buffer occupancy

RD_CAS_PRIO 0xa0 0-3 1

BYP_CMDS 0xa1 0-3 1

RD_CAS_RANK0 0xb0 0-3 1 RD_CAS Access to Rank 0

RD_CAS_RANK1 0xb1 0-3 1 RD_CAS Access to Rank 1

RD_CAS_RANK2 0xb2 0-3 1 RD_CAS Access to Rank 2

RD_CAS_RANK4 0xb4 0-3 1 RD_CAS Access to Rank 4

RD_CAS_RANK5 0xb5 0-3 1 RD_CAS Access to Rank 5

RD_CAS_RANK6 0xb6 0-3 1 RD_CAS Access to Rank 6

RD_CAS_RANK7 0xb7 0-3 1 RD_CAS Access to Rank 7

WR_CAS_RANK0 0xb8 0-3 1 WR_CAS Access to Rank 0

WR_CAS_RANK1 0xb9 0-3 1 WR_CAS Access to Rank 1

WR_CAS_RANK2 0xba 0-3 1 WR_CAS Access to Rank 2

WR_CAS_RANK3 0xbb 0-3 1 WR_CAS Access to Rank 3

WR_CAS_RANK4 0xbc 0-3 1 WR_CAS Access to Rank 4

Document Number: 332427-001, Revision 1.0 93

2.5.6 iMC Box Common Metrics (Derived Events)
The following table summarizes metrics commonly calculated from iMC Box events.

WR_CAS_RANK5 0xbd 0-3 1 WR_CAS Access to Rank 5

WR_CAS_RANK6 0xbe 0-3 1 WR_CAS Access to Rank 6

WR_CAS_RANK7 0xbf 0-3 1 WR_CAS Access to Rank 7

WMM_TO_RMM 0xc0 0-3 1 Transition from WMM to RMM because of low
threshold

WRONG_MM 0xc1 0-3 1 Not getting the requested Major Mode

Symbol Name:
 Definition Equation

MEM_BW_READS:
 Memory bandwidth consumed by reads.
Expressed in bytes.

(CAS_COUNT.RD * 64)

MEM_BW_TOTAL:
 Total memory bandwidth. Expressed in
bytes.

MEM_BW_READS + MEM_BW_WRITES

MEM_BW_WRITES:
 Memory bandwidth consumed by writes
Expressed in bytes.

(CAS_COUNT.WR * 64)

PCT_CYCLES_CRITICAL_THROTTLE:
 The percentage of cycles all DRAM ranks in
critical thermal throttling

POWER_CRITICAL_THROTTLE_CYCLES /
MC_Chy_PCI_PMON_CTR_FIXED

PCT_CYCLES_DLLOFF:
 The percentage of cycles all DRAM ranks in
CKE slow (DLOFF) mode

POWER_CHANNEL_DLLOFF / MC_Chy_PCI_PMON_CTR_FIXED

PCT_CYCLES_DRAM_RANKx_IN_CKE:
 The percentage of cycles DRAM rank (x)
spent in CKE ON mode.

POWER_CKE_CYCLES.RANKx / MC_Chy_PCI_PMON_CTR_FIXED

PCT_CYCLES_DRAM_RANKx_IN_THR:
 The percentage of cycles DRAM rank (x)
spent in thermal throttling.

POWER_THROTTLE_CYCLES.RANKx /
MC_Chy_PCI_PMON_CTR_FIXED

PCT_CYCLES_PPD:
 The percentage of cycles all DRAM ranks in
PPD mode

POWER_CHANNEL_PPD / MC_Chy_PCI_PMON_CTR_FIXED

PCT_CYCLES_SELF_REFRESH:
 The percentage of cycles Memory is in self
refresh power mode

POWER_SELF_REFRESH / MC_Chy_PCI_PMON_CTR_FIXED

PCT_RD_REQUESTS:
 Percentage of read requests from total
requests.

RPQ_INSERTS / (RPQ_INSERTS + WPQ_INSERTS)

PCT_REQUESTS_PAGE_EMPTY:
 Percentage of memory requests that
resulted in Page Empty

(ACT_COUNT - PRE_COUNT.PAGE_MISS)/ (CAS_COUNT.RD +
CAS_COUNT.WR)

PCT_REQUESTS_PAGE_HIT:
 Percentage of memory requests that
resulted in Page Hits

1 - (PCT_REQUESTS_PAGE_EMPTY +
PCT_REQUESTS_PAGE_MISS)

PCT_REQUESTS_PAGE_MISS:
 Percentage of memory requests that
resulted in Page Misses

PRE_COUNT.PAGE_MISS / (CAS_COUNT.RD + CAS_COUNT.WR)

PCT_WR_REQUESTS:
 Percentage of write requests from total
requests.

WPQ_INSERTS / (RPQ_INSERTS + WPQ_INSERTS)

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

94 Document Number: 332427-001, Revision 1.0

2.5.7 iMC Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the iMC Box.

ACT_COUNT
• Title: DRAM Activate Count
• Category: ACT Events
• Event Code: 0x01
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of DRAM Activate commands sent on this channel. Activate com-

mands are issued to open up a page on the DRAM devices so that it can be read or written to with a
CAS. One can calculate the number of Page Misses by subtracting the number of Page Miss pre-
charges from the number of Activates.

BYP_CMDS
• Title:
• Category: BYPASS Command Events
• Event Code: 0xa1
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

CAS_COUNT
• Title: DRAM RD_CAS and WR_CAS Commands.
• Category: PRE Events
• Event Code: 0x04
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: DRAM RD_CAS and WR_CAS Commands

Table 2-94. Unit Masks for ACT_COUNT

Extension umask
[15:8] Description

RD bxxxxxxx1 Activate due to Read

WR bxxxxxx1x Activate due to Write

BYP bxxxx1xxx Activate due to Write

Table 2-95. Unit Masks for BYP_CMDS

Extension umask
[15:8] Description

ACT bxxxxxxx1 ACT command issued by 2 cycle bypass

CAS bxxxxxx1x CAS command issued by 2 cycle bypass

PRE bxxxxx1xx PRE command issued by 2 cycle bypass

Document Number: 332427-001, Revision 1.0 95

DCLOCKTICKS
• Title: DRAM Clockticks
• Category: DCLK Events
• Event Code: 0x00
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

DRAM_PRE_ALL
• Title: DRAM Precharge All Commands
• Category: DRAM_PRE_ALL Events
• Event Code: 0x06
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times that the precharge all command was sent.

DRAM_REFRESH
• Title: Number of DRAM Refreshes Issued
• Category: DRAM_REFRESH Events
• Event Code: 0x05
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of refreshes issued.

Table 2-96. Unit Masks for CAS_COUNT

Extension umask
[15:8] Description

RD_REG bxxxxxxx1 All DRAM RD_CAS (w/ and w/out auto-pre)
Counts the total number or DRAM Read CAS commands issued on
this channel. This includes both regular RD CAS commands as well
as those with implicit Precharge. AutoPre is only used in systems
that are using closed page policy. We do not filter based on major
mode, as RD_CAS is not issued during WMM (with the exception of
underfills).

RD_UNDERFILL bxxxxxx1x Underfill Read Issued
Counts the number of underfill reads that are issued by the memory
controller. This will generally be about the same as the number of
partial writes, but may be slightly less because of partials hitting in
the WPQ. While it is possible for underfills to be issed in both WMM
and RMM, this event counts both.

RD b00000011 All DRAM Reads (RD_CAS + Underfills)
Counts the total number of DRAM Read CAS commands issued on
this channel (including underfills).

WR_WMM bxxxxx1xx DRAM WR_CAS (w/ and w/out auto-pre) in Write Major Mode
Counts the total number or DRAM Write CAS commands issued on
this channel while in Write-Major-Mode.

WR_RMM bxxxx1xxx DRAM WR_CAS (w/ and w/out auto-pre) in Read Major Mode
Counts the total number of Opportunistic" DRAM Write CAS
commands issued on this channel while in Read-Major-Mode.

WR b00001100 All DRAM WR_CAS (both Modes)
Counts the total number of DRAM Write CAS commands issued on
this channel.

ALL b00001111 All DRAM WR_CAS (w/ and w/out auto-pre)
Counts the total number of DRAM CAS commands issued on this
channel.

RD_WMM bxxx1xxxx Read CAS issued in WMM

RD_RMM bxx1xxxxx Read CAS issued in RMM

96 Document Number: 332427-001, Revision 1.0

ECC_CORRECTABLE_ERRORS
• Title: ECC Correctable Errors
• Category: ECC Events
• Event Code: 0x09
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of ECC errors detected and corrected by the iMC on this channel.

This counter is only useful with ECC DRAM devices. This count will increment one time for each cor-
rection regardless of the number of bits corrected. The iMC can correct up to 4 bit errors in inde-
pendent channel mode.

MAJOR_MODES
• Title: Cycles in a Major Mode
• Category: MAJOR_MODES Events
• Event Code: 0x07
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the total number of cycles spent in a major mode (selected by a filter) on the

given channel. Major modea are channel-wide, and not a per-rank (or dimm or bank) mode.

POWER_CHANNEL_DLLOFF
• Title: Channel DLLOFF Cycles
• Category: POWER Events
• Event Code: 0x84
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles when all the ranks in the channel are in CKE Slow (DLLOFF) mode.
• NOTE: IBT = Input Buffer Termination = Off

Table 2-97. Unit Masks for DRAM_REFRESH

Extension umask
[15:8] Description

PANIC bxxxxxx1x

HIGH bxxxxx1xx

Table 2-98. Unit Masks for MAJOR_MODES

Extension umask
[15:8] Description

READ bxxxxxxx1 Read Major Mode
Read Major Mode is the default mode for the iMC, as reads are
generally more critical to forward progress than writes.

WRITE bxxxxxx1x Write Major Mode
This mode is triggered when the WPQ hits high occupancy and causes
writes to be higher priority than reads. This can cause blips in the
available read bandwidth in the system and temporarily increase read
latencies in order to achieve better bus utilizations and higher
bandwidth.

PARTIAL bxxxxx1xx Partial Major Mode
This major mode is used to drain starved underfill reads. Regular
reads and writes are blocked and only underfill reads will be
processed.

ISOCH bxxxx1xxx Isoch Major Mode
We group these two modes together so that we can use four counters
to track each of the major modes at one time. These major modes
are used whenever there is an ISOCH txn in the memory controller.
In these mode, only ISOCH transactions are processed.

Document Number: 332427-001, Revision 1.0 97

POWER_CHANNEL_PPD
• Title: Channel PPD Cycles
• Category: POWER Events
• Event Code: 0x85
• Max. Inc/Cyc:. 4, Register Restrictions: 0-3
• Definition: Number of cycles when all the ranks in the channel are in PPD mode. If IBT=off is

enabled, then this can be used to count those cycles. If it is not enabled, then this can count the
number of cycles when that could have been taken advantage of.

• NOTE: IBT = Input Buffer Termination = On. ALL Ranks must be populated in order to measure

POWER_CKE_CYCLES
• Title: CKE_ON_CYCLES by Rank
• Category: POWER Events
• Event Code: 0x83
• Max. Inc/Cyc:. 16, Register Restrictions: 0-3
• Definition: Number of cycles spent in CKE ON mode. The filter allows you to select a rank to mon-

itor. If multiple ranks are in CKE ON mode at one time, the counter will ONLY increment by one
rather than doing accumulation. Multiple counters will need to be used to track multiple ranks
simultaneously. There is no distinction between the different CKE modes (APD, PPDS, PPDF). This
can be determined based on the system programming. These events should commonly be used
with Invert to get the number of cycles in power saving mode. Edge Detect is also useful here.
Make sure that you do NOT use Invert with Edge Detect (this just confuses the system and is not
necessary).

POWER_CRITICAL_THROTTLE_CYCLES
• Title: Critical Throttle Cycles
• Category: POWER Events
• Event Code: 0x86
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the iMC is in critical thermal throttling. When this

happens, all traffic is blocked. This should be rare unless something bad is going on in the platform.
There is no filtering by rank for this event.

POWER_PCU_THROTTLING
• Title:
• Category: POWER Events
• Event Code: 0x42
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-99. Unit Masks for POWER_CKE_CYCLES

Extension umask
[15:8] Description

RANK0 b00000001 DIMM ID

RANK1 b00000010 DIMM ID

RANK2 b00000100 DIMM ID

RANK3 b00001000 DIMM ID

RANK4 b00010000 DIMM ID

RANK5 b00100000 DIMM ID

RANK6 b01000000 DIMM ID

RANK7 b10000000 DIMM ID

98 Document Number: 332427-001, Revision 1.0

POWER_SELF_REFRESH
• Title: Clock-Enabled Self-Refresh
• Category: POWER Events
• Event Code: 0x43
• Max. Inc/Cyc:. 0, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the iMC is in self-refresh and the iMC still has a

clock. This happens in some package C-states. For example, the PCU may ask the iMC to enter
self-refresh even though some of the cores are still processing.

POWER_THROTTLE_CYCLES
• Title: Throttle Cycles for Rank 0
• Category: POWER Events
• Event Code: 0x41
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles while the iMC is being throttled by either thermal con-

straints or by the PCU throttling. It is not possible to distinguish between the two. This can be fil-
tered by rank. If multiple ranks are selected and are being throttled at the same time, the counter
will only increment by 1.

PREEMPTION
• Title: Read Preemption Count
• Category: PREEMPTION Events
• Event Code: 0x08
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times a read in the iMC preempts another read or write. Gener-

ally reads to an open page are issued ahead of requests to closed pages. This improves the page
hit rate of the system. However, high priority requests can cause pages of active requests to be
closed in order to get them out. This will reduce the latency of the high-priority request at the
expense of lower bandwidth and increased overall average latency.

Table 2-100. Unit Masks for POWER_THROTTLE_CYCLES

Extension umask
[15:8] Description

RANK0 bxxxxxxx1 DIMM ID
Thermal throttling is performed per DIMM. We support 3 DIMMs per
channel. This ID allows us to filter by ID.

RANK1 bxxxxxx1x DIMM ID

RANK2 bxxxxx1xx DIMM ID

RANK3 bxxxx1xxx DIMM ID

RANK4 bxxx1xxxx DIMM ID

RANK5 bxx1xxxxx DIMM ID

RANK6 bx1xxxxxx DIMM ID

RANK7 b1xxxxxxx DIMM ID

Table 2-101. Unit Masks for PREEMPTION

Extension umask
[15:8] Description

RD_PREEMPT_RD bxxxxxxx1 Read over Read Preemption
Filter for when a read preempts another read.

RD_PREEMPT_WR bxxxxxx1x Read over Write Preemption
Filter for when a read preempts a write.

Document Number: 332427-001, Revision 1.0 99

PRE_COUNT
• Title: DRAM Precharge commands.
• Category: PRE Events
• Event Code: 0x02
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of DRAM Precharge commands sent on this channel.

RD_CAS_PRIO
• Title:
• Category: CAS Events
• Event Code: 0xa0
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

RD_CAS_RANK0
• Title: RD_CAS Access to Rank 0
• Category: CAS Events
• Event Code: 0xb0
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-102. Unit Masks for PRE_COUNT

Extension umask
[15:8] Description

PAGE_MISS bxxxxxxx1 Precharges due to page miss
Counts the number of DRAM Precharge commands sent on this
channel as a result of page misses. This does not include explicit
precharge commands sent with CAS commands in Auto-Precharge
mode. This does not include PRE commands sent as a result of the
page close counter expiration.

PAGE_CLOSE bxxxxxx1x Precharge due to timer expiration
Counts the number of DRAM Precharge commands sent on this
channel as a result of the page close counter expiring. This does not
include implicit precharge commands sent in auto-precharge mode.

RD bxxxxx1xx Precharge due to read

WR bxxxx1xxx Precharge due to write

BYP bxxx1xxxx Precharge due to bypass

Table 2-103. Unit Masks for RD_CAS_PRIO

Extension umask
[15:8] Description

LOW bxxxxxxx1 Read CAS issued with LOW priority

MED bxxxxxx1x Read CAS issued with MEDIUM priority

HIGH bxxxxx1xx Read CAS issued with HIGH priority

PANIC bxxxx1xxx Read CAS issued with PANIC NON ISOCH priority (starved)

100 Document Number: 332427-001, Revision 1.0

RD_CAS_RANK1
• Title: RD_CAS Access to Rank 1
• Category: CAS Events
• Event Code: 0xb1
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-104. Unit Masks for RD_CAS_RANK0

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-105. Unit Masks for RD_CAS_RANK1

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

Document Number: 332427-001, Revision 1.0 101

RD_CAS_RANK2
• Title: RD_CAS Access to Rank 2
• Category: CAS Events
• Event Code: 0xb2
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

RD_CAS_RANK4
• Title: RD_CAS Access to Rank 4
• Category: CAS Events
• Event Code: 0xb4
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-106. Unit Masks for RD_CAS_RANK2

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

Table 2-107. Unit Masks for RD_CAS_RANK4 (Sheet 1 of 2)

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

Table 2-105. Unit Masks for RD_CAS_RANK1

Extension umask
[15:8] Description

102 Document Number: 332427-001, Revision 1.0

RD_CAS_RANK5
• Title: RD_CAS Access to Rank 5
• Category: CAS Events
• Event Code: 0xb5
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-108. Unit Masks for RD_CAS_RANK5 (Sheet 1 of 2)

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

Table 2-107. Unit Masks for RD_CAS_RANK4 (Sheet 2 of 2)

Extension umask
[15:8] Description

Document Number: 332427-001, Revision 1.0 103

RD_CAS_RANK6
• Title: RD_CAS Access to Rank 6
• Category: CAS Events
• Event Code: 0xb6
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

RD_CAS_RANK7
• Title: RD_CAS Access to Rank 7
• Category: CAS Events
• Event Code: 0xb7
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-109. Unit Masks for RD_CAS_RANK6

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-108. Unit Masks for RD_CAS_RANK5 (Sheet 2 of 2)

Extension umask
[15:8] Description

104 Document Number: 332427-001, Revision 1.0

RPQ_CYCLES_NE
• Title: Read Pending Queue Not Empty
• Category: RPQ Events
• Event Code: 0x11
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the Read Pending Queue is not empty. This can then

be used to calculate the average occupancy (in conjunction with the Read Pending Queue Occu-
pancy count). The RPQ is used to schedule reads out to the memory controller and to track the
requests. Requests allocate into the RPQ soon after they enter the memory controller, and need
credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after
the CAS command has been issued to memory. This filter is to be used in conjunction with the
occupancy filter so that one can correctly track the average occupancies for schedulable entries and
scheduled requests.

RPQ_INSERTS
• Title: Read Pending Queue Allocations
• Category: RPQ Events
• Event Code: 0x10
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of allocations into the Read Pending Queue. This queue is used to

schedule reads out to the memory controller and to track the requests. Requests allocate into the
RPQ soon after they enter the memory controller, and need credits for an entry in this buffer before
being sent from the HA to the iMC. They deallocate after the CAS command has been issued to
memory. This includes both ISOCH and non-ISOCH requests.

Table 2-110. Unit Masks for RD_CAS_RANK7

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Document Number: 332427-001, Revision 1.0 105

VMSE_MXB_WR_OCCUPANCY
• Title: VMSE MXB write buffer occupancy
• Category: VMSE Events
• Event Code: 0x91
• Max. Inc/Cyc:. 32, Register Restrictions: 0-3
• Definition:

VMSE_WR_PUSH
• Title: VMSE WR PUSH issued
• Category: VMSE Events
• Event Code: 0x90
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

WMM_TO_RMM
• Title: Transition from WMM to RMM because of low threshold
• Category: MAJOR_MODES Events
• Event Code: 0xc0
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

WPQ_CYCLES_FULL
• Title: Write Pending Queue Full Cycles
• Category: WPQ Events
• Event Code: 0x22
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the Write Pending Queue is full. When the WPQ is

full, the HA will not be able to issue any additional read requests into the iMC. This count should be
similar count in the HA which tracks the number of cycles that the HA has no WPQ credits, just
somewhat smaller to account for the credit return overhead.

WPQ_CYCLES_NE
• Title: Write Pending Queue Not Empty
• Category: WPQ Events
• Event Code: 0x21
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3

Table 2-111. Unit Masks for VMSE_WR_PUSH

Extension umask
[15:8] Description

WMM bxxxxxxx1 VMSE write PUSH issued in WMM

RMM bxxxxxx1x VMSE write PUSH issued in RMM

Table 2-112. Unit Masks for WMM_TO_RMM

Extension umask
[15:8] Description

LOW_THRESH bxxxxxxx1 Transition from WMM to RMM because of starve counter

STARVE bxxxxxx1x

VMSE_RETRY bxxxxx1xx

106 Document Number: 332427-001, Revision 1.0

• Definition: Counts the number of cycles that the Write Pending Queue is not empty. This can then
be used to calculate the average queue occupancy (in conjunction with the WPQ Occupancy Accu-
mulation count). The WPQ is used to schedule write out to the memory controller and to track the
writes. Requests allocate into the WPQ soon after they enter the memory controller, and need cred-
its for an entry in this buffer before being sent from the HA to the iMC. They deallocate after being
issued to DRAM. Write requests themselves are able to complete (from the perspective of the rest
of the system) as soon they have "posted" to the iMC. This is not to be confused with actually per-
forming the write to DRAM. Therefore, the average latency for this queue is actually not useful for
deconstruction intermediate write latencies.

WPQ_READ_HIT
• Title: Write Pending Queue CAM Match
• Category: WPQ Events
• Event Code: 0x23
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times a request hits in the WPQ (write-pending queue). The iMC

allows writes and reads to pass up other writes to different addresses. Before a read or a write is
issued, it will first CAM the WPQ to see if there is a write pending to that address. When reads hit,
they are able to directly pull their data from the WPQ instead of going to memory. Writes that hit
will overwrite the existing data. Partial writes that hit will not need to do underfill reads and will
simply update their relevant sections.

WPQ_WRITE_HIT
• Title: Write Pending Queue CAM Match
• Category: WPQ Events
• Event Code: 0x24
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times a request hits in the WPQ (write-pending queue). The iMC

allows writes and reads to pass up other writes to different addresses. Before a read or a write is
issued, it will first CAM the WPQ to see if there is a write pending to that address. When reads hit,
they are able to directly pull their data from the WPQ instead of going to memory. Writes that hit
will overwrite the existing data. Partial writes that hit will not need to do underfill reads and will
simply update their relevant sections.

WRONG_MM
• Title: Not getting the requested Major Mode
• Category: MAJOR_MODES Events
• Event Code: 0xc1
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

WR_CAS_RANK0
• Title: WR_CAS Access to Rank 0
• Category: CAS Events
• Event Code: 0xb8
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

Table 2-113. Unit Masks for WR_CAS_RANK0 (Sheet 1 of 2)

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

Document Number: 332427-001, Revision 1.0 107

WR_CAS_RANK1
• Title: WR_CAS Access to Rank 1
• Category: CAS Events
• Event Code: 0xb9
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-114. Unit Masks for WR_CAS_RANK1 (Sheet 1 of 2)

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

Table 2-113. Unit Masks for WR_CAS_RANK0 (Sheet 2 of 2)

Extension umask
[15:8] Description

108 Document Number: 332427-001, Revision 1.0

WR_CAS_RANK2
• Title: WR_CAS Access to Rank 2
• Category: CAS Events
• Event Code: 0xba
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

WR_CAS_RANK3
• Title: WR_CAS Access to Rank 3
• Category: CAS Events
• Event Code: 0xbb
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

WR_CAS_RANK4
• Title: WR_CAS Access to Rank 4
• Category: CAS Events
• Event Code: 0xbc
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-117. Unit Masks for WR_CAS_RANK4 (Sheet 1 of 2)

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

Table 2-114. Unit Masks for WR_CAS_RANK1 (Sheet 2 of 2)

Extension umask
[15:8] Description

Document Number: 332427-001, Revision 1.0 109

WR_CAS_RANK5
• Title: WR_CAS Access to Rank 5
• Category: CAS Events
• Event Code: 0xbd
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-118. Unit Masks for WR_CAS_RANK5 (Sheet 1 of 2)

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

Table 2-117. Unit Masks for WR_CAS_RANK4 (Sheet 2 of 2)

Extension umask
[15:8] Description

110 Document Number: 332427-001, Revision 1.0

WR_CAS_RANK6
• Title: WR_CAS Access to Rank 6
• Category: CAS Events
• Event Code: 0xbe
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

WR_CAS_RANK7
• Title: WR_CAS Access to Rank 7
• Category: CAS Events
• Event Code: 0xbf
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-119. Unit Masks for WR_CAS_RANK6

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

Table 2-118. Unit Masks for WR_CAS_RANK5 (Sheet 2 of 2)

Extension umask
[15:8] Description

Document Number: 332427-001, Revision 1.0 111

Table 2-120. Unit Masks for WR_CAS_RANK7

Extension umask
[15:8] Description

BANK0 b00000000 Bank 0

BANK1 b00000001 Bank 1

BANK2 b00000010 Bank 2

BANK3 b00000011 Bank 3

BANK4 b00000100 Bank 4

BANK5 b00000101 Bank 5

BANK6 b00000110 Bank 6

BANK7 b00000111 Bank 7

BANK8 b00001000 Bank 8

BANK9 b00001001 Bank 9

BANK10 b00001010 Bank 10

BANK11 b00001011 Bank 11

BANK12 b00001100 Bank 12

BANK13 b00001101 Bank 13

BANK14 b00001110 Bank 14

BANK15 b00001111 Bank 15

ALLBANKS b00010000 All Banks

BANKG0 b00010001 Bank Group 0 (Banks 0-3)

BANKG1 b00010010 Bank Group 1 (Banks 4-7)

BANKG2 b00010011 Bank Group 2 (Banks 8-11)

BANKG3 b00010100 Bank Group 3 (Banks 12-15)

112 Document Number: 332427-001, Revision 1.0

2.6 IRP Performance Monitoring
IRP is responsible for maintaining coherency for IIO traffic that needs to be coherent (e.g. cross-
socket P2P)

2.6.1 IRP Performance Monitoring Overview
The IRP Box supports event monitoring through two sets of two 48b wide counters
(IRP{0,1}_PCI_PMON_CTR/CTL{1:0}). Each of these four counters can be programmed to count any
IRP event. The IRP counters can increment by a maximum of 7b per cycle.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

2.6.1.1 IRP PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from an IRP performance counter, the overflow bit is set at the box level
(IRP_PCI_PMON_BOX_STATUS.ov). If the counter is enabled to communicate the overflow
(IRP_PCI_PMON_CTL.ov_en is set to 1), an overflow message is sent to the UBox. When the UBox
receives the overflow signal, the U_MSR_PMON_GLOBAL_STATUS.ov_i bit is set (see Table 2-3,
“U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions”), a global freeze signal is sent and a
PMI can be generated.

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for the freeze must
be cleared by setting the corresponding bit in IRP_PCI_PMON_BOX_STATUS.ov and
U_MSR_PMON_GLOBAL_STATUS.ov_i to 1 (which acts to clear the bits). Assuming all the counters
have been locally enabled (.en bit in control registers meant to monitor events) and the overflow bits
have been cleared, the IRP is prepared for a new sample interval. Once the global controls have been
re-enabled (Section 2.1.4, “Enabling a New Sample Interval from Frozen Counters”), counting will
resume.

2.6.2 IRP Performance Monitors

Table 2-121.IRP Performance Monitoring Registers (PCICFG) (Sheet 1 of 2)

Register Name PCICFG
Address

Size
(bits) Description

PCICFG Base Address Dev:Func
DeviceID

IRP PMON Registers D5:F6
0x6F39

Box-Level Control/Status

IRP_PCI_PMON_BOX_STATUS F8 32 IRP PMON Box-Wide Status

IRP_PCI_PMON_BOX_CTL F4 32 IRP PMON Box-Wide Control

Generic Counter Control

IRP1_PCI_PMON_CTL1 E4 32 IRP 1 PMON Control for Counter 1

IRP1_PCI_PMON_CTL0 E0 32 IRP 1 PMON Control for Counter 0

IRP0_PCI_PMON_CTL1 DC 32 IRP 0 PMON Control for Counter 1

Document Number: 332427-001, Revision 1.0 113

2.6.2.1 IRP Box Level PMON State

The following registers represent the state governing all box-level PMUs in the IRP Box.

In the case of the IRP, the IRP_PCI_PMON_BOX_CTL register provides the ability to manually freeze
the counters in the box (.frz) and reset the generic state (.rst_ctrs and .rst_ctrl).

If an overflow is detected from one of the IRP PMON registers, the corresponding bit in the
IRP_PCI_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write a
value of ‘1’ to them (which will clear the bits).

2.6.2.2 IRP PMON state - Counter/Control Pairs

The following table defines the layout of the IRP performance monitor control registers. The main task
of these configuration registers is to select the event to be monitored by their respective data counter
(.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g. .invert,
.edge_det, .thresh) as well as provide additional functionality for monitoring software (.rst,.ov_en).

IRP0_PCI_PMON_CTL0 D8 32 IRP 0 PMON Control for Counter 0

Generic Counters

IRP1_PCI_PMON_CTR1 C0 64 IRP 1 PMON Counter 1

IRP1_PCI_PMON_CTR0 B8 64 IRP 1 PMON Counter 0

IRP0_PCI_PMON_CTR1 B0 64 IRP 0 PMON Counter 1

IRP0_PCI_PMON_CTR0 A0 64 IRP 0 PMON Counter 0

Table 2-122.IRP_PCI_PMON_BOX_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:18 RV 0 Ignored

rsv 17:16 RV 0 Reserved; SW must write to 1 else behavior is undefined.

rsv 15:9 RV 0 Ignored

frz 8 WO 0 Freeze.
If set to 1 the counters in this box will be frozen.

ig 7:2 RV 0 Ignored

rst_ctrs 1 WO 0 Reset Counters.
When set to 1, the Counter Registers will be reset to 0.

rst_ctrl 0 WO 0 Reset Control.
When set to 1, the Counter Control Registers will be reset to
0.

Table 2-123.IRP_PCI_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:4 RV 0 Ignored

ov 3:0 RW1C 0 If an overflow is detected from the corresponding
IRP_PCI_PMON_CTR register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

Table 2-121.IRP Performance Monitoring Registers (PCICFG) (Sheet 2 of 2)

Register Name PCICFG
Address

Size
(bits) Description

114 Document Number: 332427-001, Revision 1.0

The IRP performance monitor data registers are 48-bit wide. A counter overflow occurs when a carry
out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the UBox (Section 2.1.1.1, “Freezing on Counter Overflow”). During the interval of time
between overflow and global disable, the counter value will wrap and continue to collect events.

If accessible, software can continuously read the data registers without disabling event collection.

Table 2-124.IRP_PCI_PMON_CTL{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

thresh 31:24 RW-V 0 Threshold used in counter comparison.

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

rsv 21:20 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW-V 0 When this bit is asserted and the corresponding counter
overflows, its overflow bit is set in the local status register
(IRP_PCI_PMON_BOX_STATUS.ov) and an overflow is sent on
the message channel to the UBox. When the overflow is
received by the UBox, the bit corresponding to this IRP will be
set in U_MSR_PMON_GLOBAL_STATUS.ov_i

ig 19 RV 0 Ignored

edge_det 18 RW-V 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved. SW must write to 0 else behavior is undefined.

umask 15:8 RW-V 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW-V 0 Select event to be counted.

Table 2-125.IRP{0,1}_PCI_PMON_CTR{1-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 63:48 RV 0 Ignored

event_count 47:0 RW-V 0 44-bit performance event counter

Document Number: 332427-001, Revision 1.0 115

2.6.3 IRP Performance Monitoring Events
IRP provides events to track information related to all the traffic passing through it’s boundaries.

• Write Cache Occupancy

• Ingress/Egress Traffic - by Ring Type

• Stalls awaiting Credits

116 Document Number: 332427-001, Revision 1.0

2.6.4 IRP Box Events Ordered By Code
The following table summarizes the directly measured IRP Box events.

2.6.5 IRP Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the IRP Box.

CACHE_TOTAL_OCCUPANCY
• Title: Total Write Cache Occupancy
• Category: WRITE_CACHE Events
• Event Code: 0x12
• Max. Inc/Cyc:. 128, Register Restrictions: 0-1
• Definition: Accumulates the number of reads and writes that are outstanding in the uncore in each

cycle. This is effectively the sum of the READ_OCCUPANCY and WRITE_OCCUPANCY events.

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

CLOCKTICKS 0x00 0-1 1 Clocks in the IRP

RxR_BL_DRS_INSERTS 0x01 0-1 1 BL Ingress Occupancy - DRS

RxR_BL_NCB_INSERTS 0x02 0-1 1 BL Ingress Occupancy - NCB

RxR_BL_NCS_INSERTS 0x03 0-1 1 BL Ingress Occupancy - NCS

RxR_BL_DRS_CYCLES_FULL 0x04 0-1 1

RxR_BL_NCB_CYCLES_FULL 0x05 0-1 1

RxR_BL_NCS_CYCLES_FULL 0x06 0-1 1

RxR_BL_DRS_OCCUPANCY 0x07 0-1 24

RxR_BL_NCB_OCCUPANCY 0x08 0-1 24

RxR_BL_NCS_OCCUPANCY 0x09 0-1 24

RxR_AK_INSERTS 0x0a 0-1 1 AK Ingress Occupancy

TxR_REQUEST_OCCUPANCY 0x0d 0-1 1 Outbound Request Queue Occupancy

TxR_DATA_INSERTS_NCB 0x0e 0-1 1 Outbound Read Requests

TxR_DATA_INSERTS_NCS 0x0f 0-1 1 Outbound Read Requests

CACHE_TOTAL_OCCUPANCY 0x12 0-1 128 Total Write Cache Occupancy

COHERENT_OPS 0x13 0-1 1 Coherent Ops

MISC0 0x14 0-1 1 Misc Events - Set 0

MISC1 0x15 0-1 1 Misc Events - Set 1

TRANSACTIONS 0x16 0-1 1 Inbound Transaction Count

SNOOP_RESP 0x17 0-1 1 Snoop Responses

TxR_AD_STALL_CREDIT_CYCLES 0x18 0-1 1 No AD Egress Credit Stalls

TxR_BL_STALL_CREDIT_CYCLES 0x19 0-1 1 No BL Egress Credit Stalls

Document Number: 332427-001, Revision 1.0 117

CLOCKTICKS
• Title: Clocks in the IRP
• Category: IO_CLKS Events
• Event Code: 0x00
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Number of clocks in the IRP.

COHERENT_OPS
• Title: Coherent Ops
• Category: Coherency Events
• Event Code: 0x13
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of coherency related operations servied by the IRP

MISC0
• Title: Misc Events - Set 0
• Category: MISC Events
• Event Code: 0x14
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition:

Table 2-126. Unit Masks for CACHE_TOTAL_OCCUPANCY

Extension umask
[15:8] Description

ANY b00000001 Any Source
Tracks all requests from any source port.

SOURCE b00000010 Select Source
Tracks only those requests that come from the port specified in the
IRP_PmonFilter.OrderingQ register. This register allows one to select
one specific queue. It is not possible to monitor multiple queues at a
time.

Table 2-127. Unit Masks for COHERENT_OPS

Extension umask
[15:8] Description

PCIRDCUR bxxxxxxx1 PCIRdCur

CRD bxxxxxx1x CRd

DRD bxxxxx1xx DRd

RFO bxxxx1xxx RFO

PCITOM bxxx1xxxx PCIItoM

PCIDCAHINT bxx1xxxxx PCIDCAHin5t

WBMTOI bx1xxxxxx WbMtoI

CLFLUSH b1xxxxxxx CLFlush

118 Document Number: 332427-001, Revision 1.0

MISC1
• Title: Misc Events - Set 1
• Category: MISC Events
• Event Code: 0x15
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition:

RxR_AK_INSERTS
• Title: AK Ingress Occupancy
• Category: AK_INGRESS Events
• Event Code: 0x0a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of allocations into the AK Ingress. This queue is where the IRP

receives responses from R2PCIe (the ring).

Table 2-128. Unit Masks for MISC0

Extension umask
[15:8] Description

FAST_REQ b000000x1 Fastpath Requests

FAST_REJ b0000001x Fastpath Rejects

2ND_RD_INSERT bx00xx100 Cache Inserts of Read Transactions as Secondary

2ND_WR_INSERT bx00x1x00 Cache Inserts of Write Transactions as Secondary

2ND_ATOMIC_INSERT bx001xx00 Cache Inserts of Atomic Transactions as Secondary

FAST_XFER bxx100000 Fastpath Transfers From Primary to Secondary

PF_ACK_HINT bx1x00000 Prefetch Ack Hints From Primary to Secondary

PF_TIMEOUT b1xx00000 Prefetch TimeOut
Indicates the fetch for a previous prefetch wasn't accepted by the
prefetch. This happens in the case of a prefetch TimeOut

Table 2-129. Unit Masks for MISC1

Extension umask
[15:8] Description

SLOW_I b000xxxx1 Slow Transfer of I Line
Snoop took cacheline ownership before write from data was
committed.

SLOW_S b000xxx1x Slow Transfer of S Line
Secondary received a transfer that did not have sufficient MESI state

SLOW_E b000xx1xx Slow Transfer of E Line
Secondary received a transfer that did have sufficient MESI state

SLOW_M b000x1xxx Slow Transfer of M Line
Snoop took cacheline ownership before write from data was
committed.

LOST_FWD b0001xxxx

SEC_RCVD_INVLD bxx1x0000 Received Invalid
Secondary received a transfer that did not have sufficient MESI state

SEC_RCVD_VLD bx1xx0000 Received Valid
Secondary received a transfer that did have sufficient MESI state

DATA_THROTTLE b1xxx0000 Data Throttled
IRP throttled switch data

Document Number: 332427-001, Revision 1.0 119

RxR_BL_DRS_CYCLES_FULL
• Title:
• Category: BL_INGRESS_DRS Events
• Event Code: 0x04
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of cycles when the BL Ingress is full. This queue is where the IRP

receives data from R2PCIe (the ring). It is used for data returns from read requests as well as out-
bound MMIO writes.

RxR_BL_DRS_INSERTS
• Title: BL Ingress Occupancy - DRS
• Category: BL_INGRESS_DRS Events
• Event Code: 0x01
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of allocations into the BL Ingress. This queue is where the IRP

receives data from R2PCIe (the ring). It is used for data returns from read requests as well as out-
bound MMIO writes.

RxR_BL_DRS_OCCUPANCY
• Title:
• Category: BL_INGRESS_DRS Events
• Event Code: 0x07
• Max. Inc/Cyc:. 24, Register Restrictions: 0-1
• Definition: Accumulates the occupancy of the BL Ingress in each cycles. This queue is where the

IRP receives data from R2PCIe (the ring). It is used for data returns from read requests as well as
outbound MMIO writes.

RxR_BL_NCB_CYCLES_FULL
• Title:
• Category: BL_INGRESS_NCB Events
• Event Code: 0x05
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of cycles when the BL Ingress is full. This queue is where the IRP

receives data from R2PCIe (the ring). It is used for data returns from read request as well as out-
bound MMIO writes.

RxR_BL_NCB_INSERTS
• Title: BL Ingress Occupancy - NCB
• Category: BL_INGRESS_NCB Events
• Event Code: 0x02
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of allocations into the BL Ingress. This queue is where the IRP

receives data from R2PCIe (the ring). It is used for data returns from read request as well as out-
bound MMIO writes.

RxR_BL_NCB_OCCUPANCY
• Title:
• Category: BL_INGRESS_NCB Events
• Event Code: 0x08
• Max. Inc/Cyc:. 24, Register Restrictions: 0-1

120 Document Number: 332427-001, Revision 1.0

• Definition: Accumulates the occupancy of the BL Ingress in each cycles. This queue is where the
IRP receives data from R2PCIe (the ring). It is used for data returns from read request as well as
outbound MMIO writes.

RxR_BL_NCS_CYCLES_FULL
• Title:
• Category: BL_INGRESS_NCS Events
• Event Code: 0x06
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of cycles when the BL Ingress is full. This queue is where the IRP

receives data from R2PCIe (the ring). It is used for data returns from read request as well as out-
bound MMIO writes.

RxR_BL_NCS_INSERTS
• Title: BL Ingress Occupancy - NCS
• Category: BL_INGRESS_NCS Events
• Event Code: 0x03
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of allocations into the BL Ingress. This queue is where the IRP

receives data from R2PCIe (the ring). It is used for data returns from read request as well as out-
bound MMIO writes.

RxR_BL_NCS_OCCUPANCY
• Title:
• Category: BL_INGRESS_NCS Events
• Event Code: 0x09
• Max. Inc/Cyc:. 24, Register Restrictions: 0-1
• Definition: Accumulates the occupancy of the BL Ingress in each cycles. This queue is where the

IRP receives data from R2PCIe (the ring). It is used for data returns from read request as well as
outbound MMIO writes.

SNOOP_RESP
• Title: Snoop Responses
• Category: TRANSACTIONS Events
• Event Code: 0x17
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition:
• NOTE: The first 4 subevent bits are the Responses to the Code/Data/Invalid Snoops represented

by the last 3 subevent bits. At least 1 of the bottom 4 bits must be combined with 1 of the top 3
bits to obtain counts. Unsure which combinations are possible.

Table 2-130. Unit Masks for SNOOP_RESP

Extension umask
[15:8] Description

MISS bxxxxxxx1 Miss

HIT_I bxxxxxx1x Hit I

HIT_ES bxxxxx1xx Hit E or S

HIT_M bxxxx1xxx Hit M

SNPCODE bxxx1xxxx SnpCode

SNPDATA bxx1xxxxx SnpData

SNPINV bx1xxxxxx SnpInv

Document Number: 332427-001, Revision 1.0 121

TRANSACTIONS
• Title: Inbound Transaction Count
• Category: TRANSACTIONS Events
• Event Code: 0x16
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of "Inbound" transactions from the IRP to the Uncore. This can be

filtered based on request type in addition to the source queue. Note the special filtering equation.
We do OR-reduction on the request type. If the SOURCE bit is set, then we also do AND qualifica-
tion based on the source portID.

• NOTE: Bit 7 is a filter that can be applied to the other subevents. Meaningless by itself.

TxR_AD_STALL_CREDIT_CYCLES
• Title: No AD Egress Credit Stalls
• Category: STALL_CYCLES Events
• Event Code: 0x18
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number times when it is not possible to issue a request to the R2PCIe

because there are no AD Egress Credits available.

TxR_BL_STALL_CREDIT_CYCLES
• Title: No BL Egress Credit Stalls
• Category: STALL_CYCLES Events
• Event Code: 0x19
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number times when it is not possible to issue data to the R2PCIe because

there are no BL Egress Credits available.

Table 2-131. Unit Masks for TRANSACTIONS

Extension umask
[15:8] Filter Dep Description

READS bxxxxxxx1 Reads
Tracks only read requests (not including read
prefetches).

WRITES bxxxxxx1x Writes
Tracks only write requests. Each write request should
have a prefetch, so there is no need to explicitly track
these requests. For writes that are tickled and have to
retry, the counter will be incremented for each retry.

RD_PREF bxxxxx1xx Read Prefetches
Tracks the number of read prefetches.

WR_PREF bxxxx1xxx Write Prefetches
Tracks the number of write prefetches.

ATOMIC bxxx1xxxx Atomic
Tracks the number of atomic transactions

OTHER bxx1xxxxx Other
Tracks the number of 'other' kinds of transactions.

ORDERINGQ bx1xxxxxx IRPFilter[4:
0]

Select Source
Tracks only those requests that come from the port
specified in the IRP_PmonFilter.OrderingQ register.
This register allows one to select one specific queue. It
is not possible to monitor multiple queues at a time. If
this bit is not set, then requests from all sources will be
counted.

122 Document Number: 332427-001, Revision 1.0

TxR_DATA_INSERTS_NCB
• Title: Outbound Read Requests
• Category: OUTBOUND_REQUESTS Events
• Event Code: 0x0e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of requests issued to the switch (towards the devices).

TxR_DATA_INSERTS_NCS
• Title: Outbound Read Requests
• Category: OUTBOUND_REQUESTS Events
• Event Code: 0x0f
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of requests issued to the switch (towards the devices).

TxR_REQUEST_OCCUPANCY
• Title: Outbound Request Queue Occupancy
• Category: OUTBOUND_REQUESTS Events
• Event Code: 0x0d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Accumultes the number of outstanding outbound requests from the IRP to the switch

(towards the devices). This can be used in conjunction with the allocations event in order to calcu-
late average latency of outbound requests.

Document Number: 332427-001, Revision 1.0 123

2.7 Power Control (PCU) Performance Monitoring
The PCU is the primary Power Controller for the Intel® Xeon® Processor D-1500 Product Family

The uncore implements a power control unit acting as a core/uncore power and thermal manager. It
runs its firmware on an internal micro-controller and coordinates the socket’s power states.

The PCU algorithmically governs the P-state of the processor, C-state of the core and the package C-
state of the socket. It also enables the core to go to a higher performance state (“turbo mode”) when
the proper set of conditions are met. Conversely, the PCU will throttle the processor to a lower
performance state when a thermal violation occurs.

Through specific events, the OS and the PCU will either promote or demote the C-State of each core
by altering the voltage and frequency. The system power state (S-state) of all the sockets in the
system is managed by the server legacy bridge in coordination with all socket PCUs.

The PCU communicates to all the other units through multiple PMLink interfaces on-die and Message
Channel to access their registers. The OS and BIOS communicates to the PCU thru standardized MSR
registers and ACPI.

The PCU also acts as the interface to external management controllers via PECI and voltage
regulators (NPTM). The DMI2 interface is the communication path from the southbridge for system
power management.

Note: Many power saving features are tracked as events in their respective units. For
example, Intel® QPI Link Power saving states and Memory CKE statistics are captured
in the Intel® QPI Perfmon and IMC Perfmon respectively.

2.7.1 PCU Performance Monitoring Overview
The uncore PCU supports event monitoring through four 48-bit wide counters
(PCU_MSR_PMON_CTR{3:0}). Each of these counters can be programmed
(PCU_MSR_PMON_CTL{3:0}) to monitor any PCU event. The PCU counters can increment by a
maximum of 5b per cycle.

Two extra 64-bit counters are also provided by the Intel® Xeon® Processor D-1500 Product
FamilyPCU to track C-State Residence. Although documented in this manual for reference, these
counters exist outside of the PMON infrastructure.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

2.7.1.1 PCU PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from an PCU performance counter, the overflow bit is set at the box level
(PCU_MSR_PMON_BOX_STATUS.ov). If the counter is enabled to communicate the overflow
(PCU_MSR_PMON_CTL.ov_en is set to 1), an overflow message is sent to the UBox. When the UBox
receives the overflow signal, the U_MSR_PMON_GLOBAL_STATUS.ov_p bit is set (see Table 2-3,
“U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions”), a global freeze signal is sent and a
PMI can be generated.

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for the freeze must
be cleared by setting the corresponding bit in PCU_MSR_PMON_BOX_STATUS.ov and
U_MSR_PMON_GLOBAL_STATUS.ov_p to 1 (which acts to clear the bits). Assuming all the counters
have been locally enabled (.en bit in control registers meant to monitor events) and the overflow bits

124 Document Number: 332427-001, Revision 1.0

have been cleared, the PCU is prepared for a new sample interval. Once the global controls have been
re-enabled (Section 2.1.4, “Enabling a New Sample Interval from Frozen Counters”), counting will
resume.

2.7.2 PCU Performance Monitors

2.7.2.1 PCU Box Level PMON State

The following registers represent the state governing all box-level PMUs in the PCU.

In the case of the PCU, the PCU_MSR_PMON_BOX_CTL register provides the ability to manually freeze
the counters in the box (.frz) and reset the generic state (.rst_ctrs and .rst_ctrl).

The PCU provides two extra MSRs that provide additional static performance information to software
but exist outside of the PMON infrastructure (e.g. they can’t be frozen or reset). They are included for
the convenience of software developers need to efficiently access this data.

If an overflow is detected from one of the PCU PMON registers, the corresponding bit in the
PCU_MSR_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write a
value of ‘1’ to them (which will clear the bits).

Table 2-132.PCU Performance Monitoring Registers (MSR)

MSR Name MSR
Address

Size
(bits) Description

Generic Counters

PCU_MSR_PMON_CTR3 0x071A 64 PCU PMON Counter 3

PCU_MSR_PMON_CTR2 0x0719 64 PCU PMON Counter 2

PCU_MSR_PMON_CTR1 0x0718 64 PCU PMON Counter 1

PCU_MSR_PMON_CTR0 0x0717 64 PCU PMON Counter 0

Box-Level Filter

PCU_MSR_PMON_BOX_FILTER 0x0715 32 PCU PMON Filter

Generic Counter Control

PCU_MSR_PMON_CTL3 0x0714 32 PCU PMON Control for Counter 3

PCU_MSR_PMON_CTL2 0x0713 32 PCU PMON Control for Counter 2

PCU_MSR_PMON_CTL1 0x0712 32 PCU PMON Control for Counter 1

PCU_MSR_PMON_CTL0 0x0711 32 PCU PMON Control for Counter 0

Box-Level Control/Status

PCU_MSR_PMON_BOX_STATUS 0x0716 32 PCU PMON Box-Wide Status

PCU_MSR_PMON_BOX_CTL 0x0710 32 PCU PMON Box-Wide Control

Fixed (Non-PMON) Counters

PCU_MSR_CORE_C6_CTR 0x03FD 64 Fixed C-State Residency Counter

PCU_MSR_CORE_C3_CTR 0x03FC 64 Fixed C-State Residency Counter

Document Number: 332427-001, Revision 1.0 125

2.7.2.2 PCU PMON state - Counter/Control Pairs

The following table defines the layout of the PCU performance monitor control registers. The main
task of these configuration registers is to select the event to be monitored by their respective data
counter (.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g.
.invert, .edge_det, .thresh) as well as provide additional functionality for monitoring software
(.rst,.ov_en).

Due to the fact that much of the PCU’s functionality is provided by an embedded microcontroller,
many of the available events are generated by the microcontroller and handed off to the hardware for
capture by the PMON registers. Among the events generated by the microcontroller are occupancy
events allowing a user to measure the number of cores in a given C-state per-cycle. Given this
unique situation, extra control bits are provided to filter the output of the these special occupancy
events.

- .occ_invert - Changes the .thresh test condition to ‘<‘ for the occupancy events (when .ev_sel[7] is
set to 1)

- .occ_edge_det - Rather than accumulating the raw count each cycle (for events that can increment
by 1 per cycle), the register can capture transitions from no event to an event incoming for the PCU’s
occupancy events (when .ev_sel[7] is set to 1).

Table 2-133.PCU_MSR_PMON_BOX_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:18 RV 0 Reserved

rsv 17:16 RV 0 Reserved; SW must write to 1 else behavior is undefined.

rsv 15:9 RV 0 Reserved

frz 8 WO 0 Freeze.
If set to 1 the counters in this box will be frozen.

rsv 7:2 RV 0 Reserved

rst_ctrs 1 WO 0 Reset Counters.
When set to 1, the Counter Registers will be reset to 0.

rst_ctrl 0 WO 0 Reset Control.
When set to 1, the Counter Control Registers will be reset to
0.

Table 2-134.PCU_MSR_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 31:4 RV 0 Reserved

ov 3:0 RW1C 0 If an overflow is detected from the corresponding
PCU_MSR_PMON_CTR register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

126 Document Number: 332427-001, Revision 1.0

Table 2-135.PCU_MSR_PMON_CTL{3-0} Register – Field Definitions (Sheet 1 of 2)

Field Bits Attr
HW

Reset
Val

Description

occ_edge_det 31 RW-V 0 Enables edge detect for occupancy events (.ev_sel[7] is 1)

When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

occ_invert 30 RW-V 0 Invert comparison against Threshold for the PCU Occupancy
events (.ev_sel[7] is 1)

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

rsv 29 RV 0 Reserved. SW must write to 0 else behavior is undefined.

thresh 28:24 RW-V 0 Threshold used in counter comparison.

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

ev_sel_ext 21 RW-V 0 Extentsion bit to the Event Select field.

ov_en 20 RW-V 0 When this bit is asserted and the corresponding counter
overflows, its overflow bit is set in the local status register
(PCU_PMON_BOX_STATUS.ov) and an overflow is sent on the
message channel to the UBox. When the overflow is received
by the UBox, the bit corresponding to this PCU will be set in
U_MSR_PMON_GLOBAL_STATUS.ov_p.

rsv 19 RV 0 Reserved

edge_det 18 RW-V 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved

Document Number: 332427-001, Revision 1.0 127

The PCU performance monitor data registers are 48-bit wide. A counter overflow occurs when a carry
out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the UBox (refer to Section 2.1.1, “Counter Overflow”). During the interval of time
between overflow and global disable, the counter value will wrap and continue to collect events.

If accessible, software can continuously read the data registers without disabling event collection.

Context sensitive filtering is provided for through the PCU_MSR_PMON_BOX_FILTER register.

• For frequency/voltage band filters, the multiplier is at 100MHz granularity. So, a value of 32
(0x20) would represent a frequency of 3.2GHz.

• Support for limited Frequency/Voltage Band histogramming. Each of the four bands provided for
in the filter may be simultaneous tracked by the corresponding event. Since use of the register as
a filter is heavily overloaded, simultaneous application of this filter to additional events in the
same run is severely limited

The PCU includes two extra MSRs that track the number of cycles a core (any core) is in either the C3
or C6 state. As mentioned before, these counters are not part of the PMON infrastructure so they
can’t be frozen or reset with the otherwise controlled by the PCU PMON control registers.

occ_sel 15:14 RW-V 0 Select which of three occupancy counters to use.

01 - Cores in C0
10 - Cores in C3
11 - Cores in C6

rsv 13:8 RV 0 Reserved

ev_sel 7:0 RW-V 0 Select event to be counted.

NOTE: Bit 7 denotes whether the event requires the use of an
occupancy subcounter.

Table 2-136.PCU_MSR_PMON_CTR{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 63:48 RV 0 Reserved

event_count 47:0 RW-V 0 48-bit performance event counter

Table 2-137.PCU_MSR_PMON_BOX_FILTER Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

rsv 63:48 RV 0 Reserved

filt31_24 31:24 RW-V 0 Band 3 - For Voltage/Frequency Band Event

filt23_16 23:16 RW-V 0 Band 2 - For Voltage/Frequency Band Event

filt15_8 15:8 RW-V 0 Band 1 - For Voltage/Frequency Band Event

filt7_0 7:0 RW-V 0 Band 0 - For Voltage/Frequency Band Event

Table 2-135.PCU_MSR_PMON_CTL{3-0} Register – Field Definitions (Sheet 2 of 2)

Field Bits Attr
HW

Reset
Val

Description

128 Document Number: 332427-001, Revision 1.0

Note: To be clear, these counters track the number of cycles some core is in C3/6 state. It
does not track the total number of cores in the C3/6 state in any cycle. For that, a user
should refer to the regular PCU event list.

2.7.3 PCU Performance Monitoring Events
The PCU provides the ability to capture information covering a wide range of the PCU’s functionality
including:

• Number of cores in a given C-state per-cycle

• Core State Transitions - there are a larger number of events provided to track when cores
transition C-state, when the enter/exit specific C-states, when they receive a C-state demotion,
etc.

• Package State Transitions

• Frequency/Voltage Banding - ability to measure the number of cycles the uncore was operating
within a frequency or voltage ‘band’ that can be specified in a separate filter register.

Note: Given the nature of many of the PCU events, a great deal of additional information can
be measured by setting the .edge_det bit. By doing so, an event such as “Cycles
Changing Frequency” becomes “Number of Frequency Transitions.

On Occupancy Events:

Because it is not possible to "sync" the PCU occupancy counters by employing tricks such as bus lock
before the events start incrementing, the PCU has provided fixed occupancy counters to track the
major queues.

1. Cores in C0 (4 bits)

2. Cores in C3 (4 bits)

3. Cores in C6 (4 bits)

The PCU perfmon implementation/programming is more complicated than many of the other units. As
such, it is best to describe how to use them with a couple examples.

• Case 1: Cycles there was a Voltage Transition (Simple Event)

• Case 2: Cores in C0 (Occupancy Accumulation)

• Case 3: Cycles w/ more than 4 cores in C0 (Occupancy Thresholding)

• Case 4: Transitions into more than 4 cores in C0 (Thresholding + Edge Detect)

Table 2-138.PCU_MSR_CORE_C6_CTR Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

event_count 63:0 RW-V 0 64-bit performance event counter

Table 2-139.PCU_MSR_CORE_C3_CTR Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

event_count 63:0 RW-V 0 64-bit performance event counter

Document Number: 332427-001, Revision 1.0 129

• Case 5: Cycles a) w/ > 4 Cores in C0 and b) there was a Voltage Transition

• Case 6: Cycles a) w/ <4 Cores in C0 and b) Freq < 2.0GHz

2.7.4 PCU Box Events Ordered By Code
The following table summarizes the directly measured PCU Box events.

Table 2-140.PCU Configuration Examples

Case

Config 1 2 3 4 5 6

Counter Control 0

.ev_sel 0x80 0x80 0x80 0x80 0x80

.occ_sel 0x1 0x1 0x1 0x1 0x1

.thresh 0x0 0x5 0x5 0x5 0x4

.invert 0 0 0 0 1

.occ_invert 0 0 0 0 1

.occ_edge_det 0 0 1 0 0

Counter Control 1

.ev_sel 0x03 0x03 0x0B

Filter 0x00 0x00 0x00 0x00 0x00 0x14

Symbol Name Event
Code Ctrs

Extra
Select

Bit

Max
Inc/C

yc
Description

CLOCKTICKS 0x00 0-3 0 1 pclk Cycles

FREQ_MAX_LIMIT_THERMAL_CYCLE
S

0x04 0-3 0 1 Thermal Strongest Upper Limit
Cycles

FREQ_MAX_POWER_CYCLES 0x05 0-3 0 1 Power Strongest Upper Limit Cycles

FREQ_MAX_OS_CYCLES 0x06 0-3 0 1 OS Strongest Upper Limit Cycles

PROCHOT_INTERNAL_CYCLES 0x09 0-3 0 1 Internal Prochot

PROCHOT_EXTERNAL_CYCLES 0x0a 0-3 0 1 External Prochot

FREQ_BAND0_CYCLES 0x0b 0-3 0 1 Frequency Residency

FREQ_BAND1_CYCLES 0x0c 0-3 0 1 Frequency Residency

FREQ_BAND2_CYCLES 0x0d 0-3 0 1 Frequency Residency

FREQ_BAND3_CYCLES 0x0e 0-3 0 1 Frequency Residency

MEMORY_PHASE_SHEDDING_CYCLE
S

0x2f 0-3 0 1 Memory Phase Shedding Cycles

DEMOTIONS_CORE0 0x30 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE1 0x31 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE2 0x32 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE3 0x33 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE4 0x34 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE5 0x35 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE6 0x36 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE7 0x37 0-3 0 1 Core C State Demotions

130 Document Number: 332427-001, Revision 1.0

DEMOTIONS_CORE8 0x38 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE9 0x39 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE10 0x3a 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE11 0x3b 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE12 0x3c 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE13 0x3d 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE14 0x3e 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE15 0x3f 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE16 0x40 0-3 0 1 Core C State Demotions

DEMOTIONS_CORE17 0x41 0-3 0 1 Core C State Demotions

VR_HOT_CYCLES 0x42 0-3 0 1 VR Hot

CORE0_TRANSITION_CYCLES 0x60 0-3 0 1 Core C State Transition Cycles

CORE1_TRANSITION_CYCLES 0x61 0-3 0 1 Core C State Transition Cycles

CORE2_TRANSITION_CYCLES 0x62 0-3 0 1 Core C State Transition Cycles

CORE3_TRANSITION_CYCLES 0x63 0-3 0 1 Core C State Transition Cycles

CORE4_TRANSITION_CYCLES 0x64 0-3 0 1 Core C State Transition Cycles

CORE5_TRANSITION_CYCLES 0x65 0-3 0 1 Core C State Transition Cycles

CORE6_TRANSITION_CYCLES 0x66 0-3 0 1 Core C State Transition Cycles

CORE7_TRANSITION_CYCLES 0x67 0-3 0 1 Core C State Transition Cycles

CORE8_TRANSITION_CYCLES 0x68 0-3 0 1 Core C State Transition Cycles

CORE9_TRANSITION_CYCLES 0x69 0-3 0 1 Core C State Transition Cycles

CORE10_TRANSITION_CYCLES 0x6a 0-3 0 1 Core C State Transition Cycles

CORE11_TRANSITION_CYCLES 0x6b 0-3 0 1 Core C State Transition Cycles

CORE12_TRANSITION_CYCLES 0x6c 0-3 0 1 Core C State Transition Cycles

CORE13_TRANSITION_CYCLES 0x6d 0-3 0 1 Core C State Transition Cycles

CORE14_TRANSITION_CYCLES 0x6e 0-3 0 1 Core C State Transition Cycles

CORE15_TRANSITION_CYCLES 0x6f 0-3 0 1 Core C State Transition Cycles

CORE16_TRANSITION_CYCLES 0x70 0-3 0 1 Core C State Transition Cycles

CORE17_TRANSITION_CYCLES 0x71 0-3 0 1 Core C State Transition Cycles

TOTAL_TRANSITION_CYCLES 0x72 0-3 0 1 Total Core C State Transition Cycles

FREQ_MIN_IO_P_CYCLES 0x73 0-3 0 1 IO P Limit Strongest Lower Limit
Cycles

FREQ_TRANS_CYCLES 0x74 0-3 0 1 Cycles spent changing Frequency

FIVR_PS_PS0_CYCLES 0x75 0-3 0 1 Phase Shed 0 Cycles

FIVR_PS_PS1_CYCLES 0x76 0-3 0 1 Phase Shed 1 Cycles

FIVR_PS_PS2_CYCLES 0x77 0-3 0 1 Phase Shed 2 Cycles

FIVR_PS_PS3_CYCLES 0x78 0-3 0 1 Phase Shed 3 Cycles

UFS_TRANSITIONS_NO_CHANGE 0x79 0-3 0 1

UFS_TRANSITIONS_UP_RING 0x7a 0-3 0 1

UFS_TRANSITIONS_UP_STALL 0x7b 0-3 0 1

UFS_TRANSITIONS_DOWN 0x7c 0-3 0 1

UFS_TRANSITIONS_IO_P_LIMIT 0x7d 0-3 0 1

Symbol Name Event
Code Ctrs

Extra
Select

Bit

Max
Inc/C

yc
Description

Document Number: 332427-001, Revision 1.0 131

2.7.5 PCU Box Common Metrics (Derived Events)
The following table summarizes metrics commonly calculated from PCU Box events.

2.7.6 PCU Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the PCU Box.

CLOCKTICKS
• Title: pclk Cycles
• Category: PCLK Events
• Event Code: 0x00
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: The PCU runs off a fixed 800 MHz clock. This event counts the number of pclk cycles

measured while the counter was enabled. The pclk, like the Memory Controller's dclk, counts at a
constant rate making it a good measure of actual wall time.

CORE0_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x60
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.
• NOTE: This only tracks the hardware portion in the RCFSM (CFCFSM). This portion is just doing

the core C state transition. It does not include any necessary frequency/voltage transitions.

CORE10_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x6a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3

UFS_BANDWIDTH_MAX_RANGE 0x7e 0-3 0 1

POWER_STATE_OCCUPANCY 0x80 0-3 0 8 Number of cores in C-State

Symbol Name:
 Definition Equation

PCT_CYC_FREQ_CURRENT_LTD:
 Percentage of Cycles the Max Frequency is
limited by current

FREQ_MAX_CURRENT_CYCLES / CLOCKTICKS

PCT_CYC_FREQ_OS_LTD:
 Percentage of Cycles the Max Frequency is
limited by the OS

FREQ_MAX_OS_CYCLES / CLOCKTICKS

PCT_CYC_FREQ_POWER_LTD:
 Percentage of Cycles the Max Frequency is
limited by power

FREQ_MAX_POWER_CYCLES / CLOCKTICKS

PCT_CYC_FREQ_THERMAL_LTD:
 Percentage of Cycles the Max Frequency is
limited by thermal issues

FREQ_MAX_CURRENT_CYCLES / CLOCKTICKS

Symbol Name Event
Code Ctrs

Extra
Select

Bit

Max
Inc/C

yc
Description

132 Document Number: 332427-001, Revision 1.0

• Definition: Number of cycles spent performing core C state transitions. There is one event per
core.

CORE11_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x6b
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE12_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x6c
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE13_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x6d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE14_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x6e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE15_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x6f
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE16_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x70
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

Document Number: 332427-001, Revision 1.0 133

CORE17_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x71
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE1_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x61
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE2_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x62
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE3_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x63
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE4_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x64
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE5_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x65
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

134 Document Number: 332427-001, Revision 1.0

CORE6_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x66
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE7_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x67
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

CORE8_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x68
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.
• NOTE: This only tracks the hardware portion in the RCFSM (CFCFSM). This portion is just doing

the core C state transition. It does not include any necessary frequency/voltage transitions.

CORE9_TRANSITION_CYCLES
• Title: Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x69
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions. There is one event per

core.

DEMOTIONS_CORE0
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x30
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE1
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x31
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

Document Number: 332427-001, Revision 1.0 135

DEMOTIONS_CORE10
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x3a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE11
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x3b
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE12
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x3c
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE13
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x3d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE14
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x3e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE15
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x3f
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE16
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x40
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

136 Document Number: 332427-001, Revision 1.0

DEMOTIONS_CORE17
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x41
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE2
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x32
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE3
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x33
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE4
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x34
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE5
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x35
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE6
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x36
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE7
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x37
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

Document Number: 332427-001, Revision 1.0 137

DEMOTIONS_CORE8
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x38
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

DEMOTIONS_CORE9
• Title: Core C State Demotions
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x39
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a configurable cores had a C-state demotion

FIVR_PS_PS0_CYCLES
• Title: Phase Shed 0 Cycles
• Category: FIVR Events
• Event Code: 0x75
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Cycles spent in phase-shedding power state 0

FIVR_PS_PS1_CYCLES
• Title: Phase Shed 1 Cycles
• Category: FIVR Events
• Event Code: 0x76
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Cycles spent in phase-shedding power state 1

FIVR_PS_PS2_CYCLES
• Title: Phase Shed 2 Cycles
• Category: FIVR Events
• Event Code: 0x77
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Cycles spent in phase-shedding power state 2

FIVR_PS_PS3_CYCLES
• Title: Phase Shed 3 Cycles
• Category: FIVR Events
• Event Code: 0x78
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Cycles spent in phase-shedding power state 3

FREQ_BAND0_CYCLES
• Title: Frequency Residency
• Category: FREQ_RESIDENCY Events
• Event Code: 0x0b
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Filter Dependency: PCUFilter[7:0]

138 Document Number: 332427-001, Revision 1.0

• Definition: Counts the number of cycles that the uncore was running at a frequency greater than
or equal to the frequency that is configured in the filter. One can use all four counters with this
event, so it is possible to track up to 4 configurable bands. One can use edge detect in conjunction
with this event to track the number of times that we transitioned into a frequency greater than or
equal to the configurable frequency. One can also use inversion to track cycles when we were less
than the configured frequency.

• NOTE: The PMON control registers in the PCU only update on a frequency transition. Changing
the measuring threshold during a sample interval may introduce errors in the counts. This is espe-
cially true when running at a constant frequency for an extended period of time. There is a corner
case here: we set this code on the GV transition. So, if we never GV we will never call this code.
This event does not include transition times. It is handled on fast path.

FREQ_BAND1_CYCLES
• Title: Frequency Residency
• Category: FREQ_RESIDENCY Events
• Event Code: 0x0c
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Filter Dependency: PCUFilter[15:8]
• Definition: Counts the number of cycles that the uncore was running at a frequency greater than

or equal to the frequency that is configured in the filter. One can use all four counters with this
event, so it is possible to track up to 4 configurable bands. One can use edge detect in conjunction
with this event to track the number of times that we transitioned into a frequency greater than or
equal to the configurable frequency. One can also use inversion to track cycles when we were less
than the configured frequency.

• NOTE: The PMON control registers in the PCU only update on a frequency transition. Changing
the measuring threshold during a sample interval may introduce errors in the counts. This is espe-
cially true when running at a constant frequency for an extended period of time. There is a corner
case here: we set this code on the GV transition. So, if we never GV we will never call this code.
This event does not include transition times. It is handled on fast path.

FREQ_BAND2_CYCLES
• Title: Frequency Residency
• Category: FREQ_RESIDENCY Events
• Event Code: 0x0d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Filter Dependency: PCUFilter[23:16]
• Definition: Counts the number of cycles that the uncore was running at a frequency greater than

or equal to the frequency that is configured in the filter. One can use all four counters with this
event, so it is possible to track up to 4 configurable bands. One can use edge detect in conjunction
with this event to track the number of times that we transitioned into a frequency greater than or
equal to the configurable frequency. One can also use inversion to track cycles when we were less
than the configured frequency.

• NOTE: The PMON control registers in the PCU only update on a frequency transition. Changing
the measuring threshold during a sample interval may introduce errors in the counts. This is espe-
cially true when running at a constant frequency for an extended period of time. There is a corner
case here: we set this code on the GV transition. So, if we never GV we will never call this code.
This event does not include transition times. It is handled on fast path.

FREQ_BAND3_CYCLES
• Title: Frequency Residency
• Category: FREQ_RESIDENCY Events
• Event Code: 0x0e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Filter Dependency: PCUFilter[31:24]
• Definition: Counts the number of cycles that the uncore was running at a frequency greater than

or equal to the frequency that is configured in the filter. One can use all four counters with this
event, so it is possible to track up to 4 configurable bands. One can use edge detect in conjunction

Document Number: 332427-001, Revision 1.0 139

with this event to track the number of times that we transitioned into a frequency greater than or
equal to the configurable frequency. One can also use inversion to track cycles when we were less
than the configured frequency.

• NOTE: The PMON control registers in the PCU only update on a frequency transition. Changing
the measuring threshold during a sample interval may introduce errors in the counts. This is espe-
cially true when running at a constant frequency for an extended period of time. There is a corner
case here: we set this code on the GV transition. So, if we never GV we will never call this code.
This event does not include transition times. It is handled on fast path.

FREQ_MAX_LIMIT_THERMAL_CYCLES
• Title: Thermal Strongest Upper Limit Cycles
• Category: FREQ_MAX_LIMIT Events
• Event Code: 0x04
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when thermal conditions are the upper limit on frequency.

This is related to the THERMAL_THROTTLE CYCLES_ABOVE_TEMP event, which always counts cycles
when we are above the thermal temperature. This event (STRONGEST_UPPER_LIMIT) is sampled
at the output of the algorithm that determines the actual frequency, while THERMAL_THROTTLE
looks at the input.

FREQ_MAX_OS_CYCLES
• Title: OS Strongest Upper Limit Cycles
• Category: FREQ_MAX_LIMIT Events
• Event Code: 0x06
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the OS is the upper limit on frequency.
• NOTE: Essentially, this event says the OS is getting the frequency it requested.

FREQ_MAX_POWER_CYCLES
• Title: Power Strongest Upper Limit Cycles
• Category: FREQ_MAX_LIMIT Events
• Event Code: 0x05
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when power is the upper limit on frequency.

FREQ_MIN_IO_P_CYCLES
• Title: IO P Limit Strongest Lower Limit Cycles
• Category: FREQ_MIN_LIMIT Events
• Event Code: 0x73
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when IO P Limit is preventing us from dropping the fre-

quency lower. This algorithm monitors the needs to the IO subsystem on both local and remote
sockets and will maintain a frequency high enough to maintain good IO BW. This is necessary for
when all the IA cores on a socket are idle but a user still would like to maintain high IO Bandwidth.

FREQ_TRANS_CYCLES
• Title: Cycles spent changing Frequency
• Category: FREQ_TRANS Events
• Event Code: 0x74
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles when the system is changing frequency. This can not be

filtered by thread ID. One can also use it with the occupancy counter that monitors number of
threads in C0 to estimate the performance impact that frequency transitions had on the system.

140 Document Number: 332427-001, Revision 1.0

MEMORY_PHASE_SHEDDING_CYCLES
• Title: Memory Phase Shedding Cycles
• Category: MEMORY_PHASE_SHEDDING Events
• Event Code: 0x2f
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the PCU has triggered memory phase shedding. This

is a mode that can be run in the iMC physicals that saves power at the expense of additional
latency.

• NOTE: Package C1

POWER_STATE_OCCUPANCY
• Title: Number of cores in C-State
• Category: POWER_STATE_OCC Events
• Event Code: 0x80
• Max. Inc/Cyc:. 8, Register Restrictions: 0-3
• Definition: This is an occupancy event that tracks the number of cores that are in the chosen C-

State. It can be used by itself to get the average number of cores in that C-state with threshholding
to generate histograms, or with other PCU events and occupancy triggering to capture other details.

PROCHOT_EXTERNAL_CYCLES
• Title: External Prochot
• Category: PROCHOT Events
• Event Code: 0x0a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that we are in external PROCHOT mode. This mode is

triggered when a sensor off the die determines that something off-die (like DRAM) is too hot and
must throttle to avoid damaging the chip.

PROCHOT_INTERNAL_CYCLES
• Title: Internal Prochot
• Category: PROCHOT Events
• Event Code: 0x09
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that we are in Internal PROCHOT mode. This mode is trig-

gered when a sensor on the die determines that we are too hot and must throttle to avoid damaging
the chip.

TOTAL_TRANSITION_CYCLES
• Title: Total Core C State Transition Cycles
• Category: CORE_C_STATE_TRANSITION Events
• Event Code: 0x72
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Number of cycles spent performing core C state transitions across all cores.

Table 2-141. Unit Masks for POWER_STATE_OCCUPANCY

Extension umask
[15:8] Description

CORES_C0 b01000000 C0 and C1

CORES_C3 b10000000 C3

CORES_C6 b11000000 C6 and C7

Document Number: 332427-001, Revision 1.0 141

UFS_BANDWIDTH_MAX_RANGE
• Title:
• Category: UFS Events
• Event Code: 0x7e
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

UFS_TRANSITIONS_DOWN
• Title:
• Category: UFS Events
• Event Code: 0x7c
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Ring GV down (due to low ring traffic)

UFS_TRANSITIONS_IO_P_LIMIT
• Title:
• Category: UFS Events
• Event Code: 0x7d
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

UFS_TRANSITIONS_NO_CHANGE
• Title:
• Category: UFS Events
• Event Code: 0x79
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Ring GV with same final and initial frequency

UFS_TRANSITIONS_UP_RING
• Title:
• Category: UFS Events
• Event Code: 0x7a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Ring GV up due to high ring traffic

UFS_TRANSITIONS_UP_STALL
• Title:
• Category: UFS Events
• Event Code: 0x7b
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Ring GV up due to high core stalls

VR_HOT_CYCLES
• Title: VR Hot
• Category: VR_HOT Events
• Event Code: 0x42
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition:

142 Document Number: 332427-001, Revision 1.0

2.8 R2PCIe Performance Monitoring
R2PCIe represents the interface between the Ring and IIO traffic to/from PCIe.

2.8.1 R2PCIe Performance Monitoring Overview
The R2PCIe Box supports event monitoring through four 48b wide counters
(R2_PCI_PMON_CTR/CTL{3:0}). Each of these four counters can be programmed to count almost
any R2PCIe event (see NOTE for exceptions). the R2PCIe counters can increment by a maximum of
5b per cycle.

For information on how to setup a monitoring session, refer to Section 2.1, “Uncore Per-Socket
Performance Monitoring Control”.

Note: Only counter 0 can be used for tracking occupancy events. Only counters 2&3 can be
used for ring utilization events.

2.8.1.1 R2PCIe PMON Registers - On Overflow and the Consequences
(PMI/Freeze)

If an overflow is detected from a R2PCIe performance counter, the overflow bit is set at the box level
(R2_PCI_PMON_CTL.ov). If the counter is enabled to communicate the overflow
(R2_PCI_PMON_CTL.ov_en is set to 1), an overflow message is sent to the UBox. When the UBox
receives the overflow signal, the U_MSR_PMON_GLOBAL_STATUS.ov_rp bit is set (see Table 2-3,
“U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions”), a global freeze signal is sent and a
PMI can be generated.

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for the freeze must
be cleared by setting the corresponding bit in R2_PCI_PMON_BOX_STATUS.ov and
U_MSR_PMON_GLOBAL_STATUS.ov_rp to 1 (which acts to clear the bits). Assuming all the counters
have been locally enabled (.en bit in control registers meant to monitor events) and the overflow bits
have been cleared, the R2PCIe is prepared for a new sample interval. Once the global controls have
been re-enabled (Section 2.1.4, “Enabling a New Sample Interval from Frozen Counters”), counting
will resume.

2.8.2 R2PCIe Performance Monitors

Table 2-142.R2PCIe Performance Monitoring Registers (PCICFG) (Sheet 1 of 2)

Register Name PCICFG
Address

Size
(bits) Description

PCICFG Base Address Dev:Func
DeviceID

R2PCIe PMON Registers D16:F1
0x6F34

Box-Level Control/Status

R2_PCI_PMON_BOX_STATUS F8 32 R2PCIe PMON Box-Wide Status

R2_PCI_PMON_BOX_CTL F4 32 R2PCIe PMON Box-Wide Control

Generic Counter Control

R2_PCI_PMON_CTL3 E4 32 R2PCIe PMON Control for Counter 3

Document Number: 332427-001, Revision 1.0 143

2.8.2.1 R2PCIe Box Level PMON State

The following registers represent the state governing all box-level PMUs in the R2PCIe Box.

In the case of the R2PCIe, the R2_PCI_PMON_BOX_CTL register provides the ability to manually
freeze the counters in the box (.frz) and reset the generic state (.rst_ctrs and .rst_ctrl).

If an overflow is detected from one of the R2PCIe PMON registers, the corresponding bit in the
R2_PCI_PMON_BOX_STATUS.ov field will be set. To reset these overflow bits, a user must write a
value of ‘1’ to them (which will clear the bits).

R2_PCI_PMON_CTL2 E0 32 R2PCIe PMON Control for Counter 2

R2_PCI_PMON_CTL1 DC 32 R2PCIe PMON Control for Counter 1

R2_PCI_PMON_CTL0 D8 32 R2PCIe PMON Control for Counter 0

Generic Counters

R2_PCI_PMON_CTR3 BC+B8 32x2 R2PCIe PMON Counter 3

R2_PCI_PMON_CTR2 B4+B0 32x2 R2PCIe PMON Counter 2

R2_PCI_PMON_CTR1 AC+A8 32x2 R2PCIe PMON Counter 1

R2_PCI_PMON_CTR0 A4+A0 32x2 R2PCIe PMON Counter 0

Table 2-143.R2_PCI_PMON_BOX_CTL Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:9 RV 0 Reserved

frz 8 WO 0 Freeze.
If set to 1 the counters in this box will be frozen.

ig 7:2 RV 0 Reserved

rst_ctrs 1 WO 0 Reset Counters.
When set to 1, the Counter Registers will be reset to 0.

rst_ctrl 0 WO 0 Reset Control.
When set to 1, the Counter Control Registers will be reset to
0.

Table 2-144.R2_PCI_PMON_BOX_STATUS Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 31:4 RV 0 Reserved

ov 3:0 RW1C 0 If an overflow is detected from the corresponding
R2_PCI_PMON_CTR register, it’s overflow bit will be set.
NOTE: Write of ‘1’ will clear the bit.

Table 2-142.R2PCIe Performance Monitoring Registers (PCICFG) (Sheet 2 of 2)

Register Name PCICFG
Address

Size
(bits) Description

144 Document Number: 332427-001, Revision 1.0

2.8.2.2 R2PCIe PMON state - Counter/Control Pairs

The following table defines the layout of the R2PCIe performance monitor control registers. The main
task of these configuration registers is to select the event to be monitored by their respective data
counter (.ev_sel, .umask). Additional control bits are provided to shape the incoming events (e.g.
.invert, .edge_det, .thresh) as well as provide additional functionality for monitoring software
(.rst,.ov_en).

Note: Due to a issue found with the Intel® Xeon® Processor D-1500 Product Family
hardware, it will be necessary to write each control register twice in a row in order for
the Event Select field to take hold. It is recommended that SW perform the first write
with the enable bit set to 0 followed by a write of the same control register value but
with the enable bit set to 1.

The R2PCIe performance monitor data registers are 48-bit wide. A counter overflow occurs when a
carry out from bit 47 is detected. Software can force all uncore counting to freeze after N events by
preloading a monitor with a count value of 248 - N and setting the control register to send an overflow
message to the UBox (Section 2.1.1.1, “Freezing on Counter Overflow”). During the interval of time
between overflow and global disable, the counter value will wrap and continue to collect events.

Table 2-145.R2_PCI_PMON_CTL{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

thresh 31:24 RW-V 0 Threshold used in counter comparison.

invert 23 RW-V 0 Invert comparison against Threshold.

0 - comparison will be ‘is event increment >= threshold?’.
1 - comparison is inverted - ‘is event increment < threshold?’

NOTE: .invert is in series following .thresh, Due to this, the
.thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.
Also, if .edge_det is set to 1, the counter will increment when
a 1 to 0 transition (i.e. falling edge) is detected.

en 22 RW-V 0 Local Counter Enable.

ig 21 RV 0 Reserved. SW must write to 0 else behavior is undefined.

ov_en 20 RW-V 0 When this bit is asserted and the corresponding counter
overflows, its overflow bit is set in the local status register
(R2_PCI_PMON_BOX_STATUS.ov) and an overflow is sent on
the message channel to the UBox. When the overflow is
received by the UBox, the bit corresponding to this R2 will be
set in U_MSR_PMON_GLOBAL_STATUS.ov_rp

ig 19 RV 0 Reserved

edge_det 18 RW-V 0 When set to 1, rather than measuring the event in each cycle
it is active, the corresponding counter will increment when a 0
to 1 transition (i.e. rising edge) is detected.
When 0, the counter will increment in each cycle that the
event is asserted.

NOTE: .edge_det is in series following .thresh, Due to this,
the .thresh field must be set to a non-0 value. For events that
increment by no more than 1 per cycle, set .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be cleared to 0.

rsv 16 RV 0 Reserved. SW must write to 0 else behavior is undefined.

umask 15:8 RW-V 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW-V 0 Select event to be counted.

Document Number: 332427-001, Revision 1.0 145

If accessible, software can continuously read the data registers without disabling event collection.

2.8.3 R2PCIe Performance Monitoring Events
R2PCIe provides events to track information related to all the traffic passing through it’s boundaries.

• IIO credit tracking - credits rejected, acquired and used all broken down by message Class.

• Ring Stop Events
To track Ingress/Egress Traffic and Ring Utilization (broken down by direction and ring type)
statistics.

2.8.4 R2PCIe Box Events Ordered By Code
The following table summarizes the directly measured R2PCIe Box events.

2.8.5 R2PCIe Box Common Metrics (Derived Events)
The following table summarizes metrics commonly calculated from R2PCIe Box events.

Table 2-146.R2_PCI_PMON_CTR{3-0} Register – Field Definitions

Field Bits Attr
HW

Reset
Val

Description

ig 63:48 RV 0 Ignored

event_count 47:0 RW-V 0 48-bit performance event counter

Symbol Name Event
Code Ctrs

Max
Inc/C

yc
Description

CLOCKTICKS 0x01 0-3 1 Number of uclks in domain

RING_AD_USED 0x07 0-3 1 R2 AD Ring in Use

RING_AK_USED 0x08 0-3 1 R2 AK Ring in Use

RING_BL_USED 0x09 0-3 1 R2 BL Ring in Use

RING_IV_USED 0x0a 0-3 1 R2 IV Ring in Use

RxR_CYCLES_NE 0x10 0-1 1 Ingress Cycles Not Empty

RxR_INSERTS 0x11 0-1 1 Ingress Allocations

RING_AK_BOUNCES 0x12 0-3 1 AK Ingress Bounced

RxR_OCCUPANCY 0x13 0 24 Ingress Occupancy Accumulator

TxR_CYCLES_NE 0x23 0 1 Egress Cycles Not Empty

TxR_CYCLES_FULL 0x25 0 1 Egress Cycles Full

TxR_NACK_CW 0x26 0-1 1 Egress CCW NACK

IIO_CREDIT 0x2d 0-1 4

Symbol Name:
 Definition Equation

CYC_USED_DN:
 Cycles Used in the Down direction, Even
polarity

RING_BL_USED.CCW / SAMPLE_INTERVAL

CYC_USED_UP:
 Cycles Used in the Up direction, Even
polarity

RING_BL_USED.CW / SAMPLE_INTERVAL

146 Document Number: 332427-001, Revision 1.0

2.8.6 R2PCIe Box Performance Monitor Event List
The section enumerates Intel® Xeon® Processor D-1500 Product Family performance monitoring
events for the R2PCIe Box.

CLOCKTICKS
• Title: Number of uclks in domain
• Category: UCLK Events
• Event Code: 0x01
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of uclks in the R2PCIe uclk domain. This could be slightly different

than the count in the Ubox because of enable/freeze delays. However, because the R2PCIe is close
to the Ubox, they generally should not diverge by more than a handful of cycles.

IIO_CREDIT
• Title:
• Category: IIO Credit Events
• Event Code: 0x2d
• Max. Inc/Cyc:. 4, Register Restrictions: 0-1
• Definition:

RING_AD_USED
• Title: R2 AD Ring in Use
• Category: RING Events
• Event Code: 0x07
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the AD ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the CW direction and one
packet moving in the CCW direction.

RING_THRU_DN_BYTES:
 Ring throughput in the Down direction,
Even polarity in Bytes

RING_BL_USED.CCW* 32

RING_THRU_UP_BYTES:
 Ring throughput in the Up direction, Even
polarity in Bytes

RING_BL_USED.CW * 32

Table 2-147. Unit Masks for IIO_CREDIT

Extension umask
[15:8] Description

PRQ_QPI0 bxxxxxxx1

PRQ_QPI1 bxxxxxx1x

ISOCH_QPI0 bxxxxx1xx

ISOCH_QPI1 bxxxx1xxx

Symbol Name:
 Definition Equation

Document Number: 332427-001, Revision 1.0 147

RING_AK_BOUNCES
• Title: AK Ingress Bounced
• Category: RING Events
• Event Code: 0x12
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of times when a request destined for the AK ingress bounced.

RING_AK_USED
• Title: R2 AK Ring in Use
• Category: RING Events
• Event Code: 0x08
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the AK ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the CW direction and one
packet moving in the CCW direction.

Table 2-148. Unit Masks for RING_AD_USED

Extension umask
[15:8] Description

CW_EVEN bxxxxxxx1 Clockwise and Even
Filters for the Clockwise and Even ring polarity.

CW_ODD bxxxxxx1x Clockwise and Odd
Filters for the Clockwise and Odd ring polarity.

CW b00000011 Clockwise

CCW_EVEN bxxxxx1xx Counterclockwise and Even
Filters for the Counterclockwise and Even ring polarity.

CCW_ODD bxxxx1xxx Counterclockwise and Odd
Filters for the Counterclockwise and Odd ring polarity.

CCW b00001100 Counterclockwise

Table 2-149. Unit Masks for RING_AK_BOUNCES

Extension umask
[15:8] Description

UP bxxxxxxx1 Up

DN bxxxxxx1x Dn

Table 2-150. Unit Masks for RING_AK_USED

Extension umask
[15:8] Description

CW_EVEN bxxxxxxx1 Clockwise and Even
Filters for the Clockwise and Even ring polarity.

CW_ODD bxxxxxx1x Clockwise and Odd
Filters for the Clockwise and Odd ring polarity.

CW b00000011 Clockwise

CCW_EVEN bxxxxx1xx Counterclockwise and Even
Filters for the Counterclockwise and Even ring polarity.

148 Document Number: 332427-001, Revision 1.0

RING_BL_USED
• Title: R2 BL Ring in Use
• Category: RING Events
• Event Code: 0x09
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the BL ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sunk, but does not include when
packets are being sent from the ring stop.

• NOTE: In any cycle, a ring stop can see up to one packet moving in the CW direction and one
packet moving in the CCW direction.

RING_IV_USED
• Title: R2 IV Ring in Use
• Category: RING Events
• Event Code: 0x0a
• Max. Inc/Cyc:. 1, Register Restrictions: 0-3
• Definition: Counts the number of cycles that the IV ring is being used at this ring stop. This

includes when packets are passing by and when packets are being sent, but does not include when
packets are being sunk into the ring stop.

• NOTE: IV messages are split into two parts. In any cycle, a ring stop can see up to one (half-
)packet moving in the CW direction and one (half-)packet moving in the CCW direction.

CCW_ODD bxxxx1xxx Counterclockwise and Odd
Filters for the Counterclockwise and Odd ring polarity.

CCW b00001100 Counterclockwise

Table 2-151. Unit Masks for RING_BL_USED

Extension umask
[15:8] Description

CW_EVEN bxxxxxxx1 Clockwise and Even
Filters for the Clockwise and Even ring polarity.

CW_ODD bxxxxxx1x Clockwise and Odd
Filters for the Clockwise and Odd ring polarity.

CW b00000011 Clockwise

CCW_EVEN bxxxxx1xx Counterclockwise and Even
Filters for the Counterclockwise and Even ring polarity.

CCW_ODD bxxxx1xxx Counterclockwise and Odd
Filters for the Counterclockwise and Odd ring polarity.

CCW b00001100 Counterclockwise

Table 2-152. Unit Masks for RING_IV_USED

Extension umask
[15:8] Description

CW b00000011 Clockwise

CCW b00001100 Counterclockwise

ANY b00001111 Any

Table 2-150. Unit Masks for RING_AK_USED

Extension umask
[15:8] Description

Document Number: 332427-001, Revision 1.0 149

RxR_CYCLES_NE
• Title: Ingress Cycles Not Empty
• Category: INGRESS Events
• Event Code: 0x10
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of cycles when the R2PCIe Ingress is not empty. This tracks one of

the three rings that are used by the R2PCIe agent. This can be used in conjunction with the R2PCIe
Ingress Occupancy Accumulator event in order to calculate average queue occupancy. Multiple
ingress buffers can be tracked at a given time using multiple counters.

RxR_INSERTS
• Title: Ingress Allocations
• Category: INGRESS Events
• Event Code: 0x11
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition: Counts the number of allocations into the R2PCIe Ingress. This tracks one of the three

rings that are used by the R2PCIe agent. This can be used in conjunction with the R2PCIe Ingress
Occupancy Accumulator event in order to calculate average queue latency. Multiple ingress buffers
can be tracked at a given time using multiple counters.

RxR_OCCUPANCY
• Title: Ingress Occupancy Accumulator
• Category: INGRESS Events
• Event Code: 0x13
• Max. Inc/Cyc:. 24, Register Restrictions: 0
• Definition: Accumulates the occupancy of a given R2PCIe Ingress queue in each cycles. This

tracks one of the three ring Ingress buffers. This can be used with the R2PCIe Ingress Not Empty
event to calculate average occupancy or the R2PCIe Ingress Allocations event in order to calculate
average queuing latency.

Table 2-153. Unit Masks for RxR_CYCLES_NE

Extension umask
[15:8] Description

NCB bxxx1xxxx NCB
NCB Ingress Queue

NCS bxx1xxxxx NCS
NCS Ingress Queue

Table 2-154. Unit Masks for RxR_INSERTS

Extension umask
[15:8] Description

NCB bxxx1xxxx NCB
NCB Ingress Queue

NCS bxx1xxxxx NCS
NCS Ingress Queue

Table 2-155. Unit Masks for RxR_OCCUPANCY

Extension umask
[15:8] Description

DRS b00001000 DRS
DRS Ingress Queue

150 Document Number: 332427-001, Revision 1.0

TxR_CYCLES_FULL
• Title: Egress Cycles Full
• Category: EGRESS Events
• Event Code: 0x25
• Max. Inc/Cyc:. 1, Register Restrictions: 0
• Definition: Counts the number of cycles when the R2PCIe Egress buffer is full.

TxR_CYCLES_NE
• Title: Egress Cycles Not Empty
• Category: EGRESS Events
• Event Code: 0x23
• Max. Inc/Cyc:. 1, Register Restrictions: 0
• Definition: Counts the number of cycles when the R2PCIe Egress is not empty. This tracks one of

the three rings that are used by the R2PCIe agent. This can be used in conjunction with the R2PCIe
Egress Occupancy Accumulator event in order to calculate average queue occupancy. Only a single
Egress queue can be tracked at any given time. It is not possible to filter based on direction or
polarity.

TxR_NACK_CW
• Title: Egress CCW NACK
• Category: EGRESS Events
• Event Code: 0x26
• Max. Inc/Cyc:. 1, Register Restrictions: 0-1
• Definition:

Table 2-156. Unit Masks for TxR_CYCLES_FULL

Extension umask
[15:8] Description

AD bxxxxxxx1 AD
AD Egress Queue

AK bxxxxxx1x AK
AK Egress Queue

BL bxxxxx1xx BL
BL Egress Queue

Table 2-157. Unit Masks for TxR_CYCLES_NE

Extension umask
[15:8] Description

AD bxxxxxxx1 AD
AD Egress Queue

AK bxxxxxx1x AK
AK Egress Queue

BL bxxxxx1xx BL
BL Egress Queue

Document Number: 332427-001, Revision 1.0 151

§

Table 2-158. Unit Masks for TxR_NACK_CW

Extension umask
[15:8] Description

DN_AD bxxxxxxx1 AD CCW
AD CounterClockwise Egress Queue

DN_BL bxxxxxx1x BL CCW
BL CounterClockwise Egress Queue

DN_AK bxxxxx1xx AK CCW
AK CounterClockwise Egress Queue

UP_AD bxxxx1xxx AK CCW
BL CounterClockwise Egress Queue

UP_BL bxxx1xxxx BL CCW
AD CounterClockwise Egress Queue

UP_AK bxx1xxxxx BL CW
AD Clockwise Egress Queue

152 Document Number: 332427-001, Revision 1.0

	Intel® Xeon® Processor D-1500 Product Family Uncore Performance Monitoring Reference Manual
	1 Introduction
	1.1 Introduction
	1.2 Uncore PMON Overview
	1.3 Section References
	1.4 Uncore PMON - Typical Counter Control Logic
	1.5 Uncore PMON - Typical Counter Logic
	1.6 Uncore PMU Summary Tables
	1.6.1 On Finding the Package’s Bus number for Uncore PMON registers in PCICfg Space

	1.7 On Parsing and Using Derived Events
	1.7.1 On Common Terms found in Derived Events

	2 Intel® Xeon® Processor D- 1500 Product Family Uncore Performance Monitoring
	2.1 Uncore Per-Socket Performance Monitoring Control
	2.1.1 Counter Overflow
	2.1.2 Setting up a Monitoring Session
	2.1.3 Reading the Sample Interval
	2.1.4 Enabling a New Sample Interval from Frozen Counters
	2.1.5 Global Performance Monitors

	2.2 UBox Performance Monitoring
	2.2.1 UBox Performance Monitoring Overview
	2.2.2 UBox Performance Monitors
	2.2.3 UBox Performance Monitoring Events
	2.2.4 UBOX Box Events Ordered By Code
	2.2.5 UBOX Box Performance Monitor Event List

	2.3 Caching Agent (Cbo) Performance Monitoring
	2.3.1 CBo Performance Monitoring Overview
	2.3.2 CBo Performance Monitors
	2.3.3 CBo Performance Monitoring Events
	2.3.4 CBO Box Events Ordered By Code
	2.3.5 CBO Box Common Metrics (Derived Events)
	2.3.6 CBO Box Performance Monitor Event List

	2.4 Home Agent (HA) Performance Monitoring
	2.4.1 HA Performance Monitoring Overview
	2.4.2 HA Performance Monitoring Events
	2.4.3 HA Box Events Ordered By Code
	2.4.4 HA Box Common Metrics (Derived Events)
	2.4.5 HA Box Performance Monitor Event List

	2.5 Memory Controller (IMC) Performance Monitoring
	2.5.1 Functional Overview
	2.5.2 IMC Performance Monitoring Overview
	2.5.3 IMC Performance Monitors
	2.5.4 IMC Performance Monitoring Events
	2.5.5 iMC Box Events Ordered By Code
	2.5.6 iMC Box Common Metrics (Derived Events)
	2.5.7 iMC Box Performance Monitor Event List

	2.6 IRP Performance Monitoring
	2.6.1 IRP Performance Monitoring Overview
	2.6.2 IRP Performance Monitors
	2.6.3 IRP Performance Monitoring Events
	2.6.4 IRP Box Events Ordered By Code
	2.6.5 IRP Box Performance Monitor Event List

	2.7 Power Control (PCU) Performance Monitoring
	2.7.1 PCU Performance Monitoring Overview
	2.7.2 PCU Performance Monitors
	2.7.3 PCU Performance Monitoring Events
	2.7.4 PCU Box Events Ordered By Code
	2.7.5 PCU Box Common Metrics (Derived Events)
	2.7.6 PCU Box Performance Monitor Event List

	2.8 R2PCIe Performance Monitoring
	2.8.1 R2PCIe Performance Monitoring Overview
	2.8.2 R2PCIe Performance Monitors
	2.8.3 R2PCIe Performance Monitoring Events
	2.8.4 R2PCIe Box Events Ordered By Code
	2.8.5 R2PCIe Box Common Metrics (Derived Events)
	2.8.6 R2PCIe Box Performance Monitor Event List

