World Record Benchmark Performance

Bring your business’s best ideas to life by transforming big data and real-time analytics into new business opportunities while ensuring the reliability and uptime of the most business-critical services with the Intel® Xeon® processor E7-8800/4800 v4 product families.

Turn Real-Time Analytics into Real Business Advantage

Leadership Performance

Accelerate performance across the data center to deliver real insights with real value in real time for the largest workloads running on fast, high-performing infrastructure. Faster transaction speeds and accelerated operations mean real-time responsiveness, quick results, and increased productivity. Offering up to 24 cores and 48 threads per processor, a 33 percent increase compared to the prior generation, and up to 60MB last level cache along with core improvements deliver:

  • Up to double the queries-per-hour answered enabling smarter decisions for businesses analyzing their sales and customer data.1 Ad-hoc cost per query has dropped from $21 to just $0.38 in just the past six-years—a 98% cost reduction, while queries-per-hour capability has increased by 19x.2
  • Up to 1.3x average performance across key industry-standard workloads.3
  • Up to 35% more virtual machines (VMs) and infrastructure applications throughput supported with same service-level agreement level to help IT grow line-of-business (LOB) heterogeneous needs.4
  • Use 1/3rd the servers for equivalent performance to lower operational expenses by replacing 4–5 year old installed platforms5, savings include lower network and server maintenance costs by up to 92%, lower utilities costs by up to 73%, and lower annual software licensing fees by up to 67%.

Platform Performance Highlights

Over 40 new world record performance benchmark results with the best Intel® Xeon® processor E7-8800/4800 v4 product families-based platforms (as of 30 March 2017).

Partner Platform Segment - Benchmark Importance
 

Cisco* UCS C460 M4

General Computing:
SPECint*_base2006

4-socket world record

Cisco UCS B260 M4

Technical Computing: 
SPECompG*_2012

2-socket world record

Cisco UCS C460 M4

Big Data Analytics:
TPC Benchmark* H @ 10000GB non-cluster

4-socket world record

Partner Platform Segment - Benchmark

Importance

Dell PowerEdge* R930 Business Processing:
SAP Sales and Distribution 2-tier*
4-socket world record Linux*
Dell PowerEdge R930 Big Data Analytics:
SAP BW-AML* @ 2 billion (2B) initial
records – Adv. Query Nav Steps/Hour
World record (Adv. Query Nav Steps/Hour) @ 2B
Dell PowerEdge R930 Big Data Analytics:
SAP BW-AML* @ 4 billion (4B) initial
records – Adv Query Nav Steps/Hour
and Total Runtime Delta Load/Trans.
Test
World record (Adv Query Nav Steps/Hour
and Total Runtime Delta Load/Trans. Test) @ 4B

Partner Platform Segment - Benchmark Importance
Fujitsu PRIMEQUEST* 2800E3 General Computing:
SPECint*_rate_base2006
2-socket world record
8-socket world record
Fujitsu PRIMEQUEST 2800E3 Technical Computing:
SPECfp*_rate_base2006
8-socket world record
Fujitsu PRIMERGY* RX4770 M3 Technical Computing:
SPECfp*_base2006
4-socket world record tie
Fujitsu PRIMEQUEST 2800E3 Infrastructure/Virtualization:
VMware* VMmark* V2.5.2 Performance 
Overall world record
Fujitsu PRIMERGY* RX4770 M3 Infrastructure/Virtualization:
VMware* VMmark* V2.5.2 Performance (matched pair)
4-socket world record
Fujitsu PRIMERGY RX4770 M3 Infrastructure/Virtualization:
VMware* VMmark* V2.5.2 Performance with Server Power
4-socket world record

Partner Platform Segment - Benchmark Importance
HPE ProLiant* DL580 Gen9 Technical Computing:
SPECfp*_base2006
4-socket world record tie
HPE ProLiant DL580 Gen9 Actian Vector 5.0 Big Data Analytics:
TPC Benchmark* H @ 3000GB non-cluster
4-socket world record
HPE Integrity* Superdome X Business Processing:
SAP* Sales and Distribution 2-tier
16-socket world record
HPE Integrity Superdome X Server-side Java*:
SPECjbb*2015 MultiJVM Max-jOPS
overall world record
16-socket world record
HPE CS500 (DL580 GEN9) Big Data Analytics:
SAP BW-AML* @ 2 billion (2B) initial
records – Normalized Mean Runtime Single
Query Test, Total Runtime Delta Load/Trans. Test
World records (Normalized
Mean Runtime Single Query Test,
Total Runtime Delta Load/Trans. Test)
@ 2B
HPE Integrity Superdome X
HPE Integrity Superdome X
HPE Synergy* 680 Gen 9
Server-side Java*:
SPECjbb*2015 MultiJVM Critical-jOPS
Overall world record
8 & 16-socket world record
4-socket world record

HPE ProLiant DL580 Gen9
HPE Synergy* 680 Gen9
Server-side Java*:
SPECjbb*2015 Composite Max-jOPS
Overall world records (tied)
HPE Synergy 680 Gen9 Server-side Java*:
SPECjbb*2015 Composite Critical-jOPS
Overall world record
HPE Synergy 680 Gen9 Server-side Java*:
SPECjbb*2015 Distributed Max-jOPS
Overall world record
HPE Synergy 680 Gen9 Server-side Java*:
SPECjbb*2015 Distributed Critical-jOPS

Overall world record

HPE Integrity MC990 X Technical Computing:
SPECompG*_2012
8-socket world record

Partner Platform Segment - Benchmark Importance
Hitachi Compute Blade* 520XB3 Big Data Analytics: 
SAP BW-AML* @ 4 billion (4B) initial
records – Normalized Mean Runtime Single Query Test
World record (Normalized Mean
Runtime Single Query Test) @ 4B 

Partner

Platform

Segment - Benchmark

Importance

Huawei* RH5885H V3

General Computing:
SPECint*_rate_base2006
4-socket world record
Huawei* Kunlun 9016 General Computing:
SPECint*_rate_base2006
16-socket world record
Huawei RH5885H V3 Technical Computing:
SPECfp*_rate_base2006
2-socket world record
4-socket world record
Huawei RH8100 V3 Server-side Java*:
SPECjbb*2015 Multi-JVM Max-jOPS
8-socket world record

Partner

Platform

Segment - Benchmark

Importance

Lenovo System* x3950 X6 General Computing:
SPECint*_base2006

8-socket world record

Lenovo System x3950 X6 Technical Computing:
SPECfp*_base2006
8-socket world record
Lenovo System x3950 X6 Business Processing:
SAP Sales and Distribution 2-tier*
8-socket world record Windows*
Lenovo System x3850 X6 Big Data Analytics:
SAP* BW edition for SAP HANA* @
1.3 billion (1.3B) initial records -
(all 3 key performance Indicators)
Overall world record (Total Runtime
of Data Load/Transformation, Query
Executions Per Hour, Total Runtime
of Complex Query Phase) @ 1.3B
Lenovo System x3950 X6 Infrastructure/Virtualization:
SPECvirt_sc*2013
Overall world record
Lenovo System x3850 X6 Infrastructure/Virtualization:
SPECvirt_sc*2013
4-socket world record
Lenovo System x3850 X6 Business Processing:
TPC Benchmark* E
4-socket world record
Lenovo System x3850 X6 Big Data Analytics:
STAC-M3* Shasta Suite
Overall world record
Shasta Suite (15/15 required)

Partner Platform Segment - Benchmark Importance

SGI* UV 300

Technical Computing: 
SPECompG*_2012

Overall world record
32-socket world record
16-socket world record

World Record Configurations

Results and configurations as of 30 March 2017

Cisco:

Claim based on best-published four-socket SPECint*_base2006 result published at https://www.spec.org/cpu2006/results/ as of 30 March 2017. New configuration: 1-Node, 4 x Intel® Xeon® processor E7-8891 v4 on Cisco Systems with 512 GB total memory on SUSE Linux Enterprise Server* 12 using C/C++: Version 16.0.0.101 of Intel® C++ Studio XE for Linux. Source: https://www.spec.org/cpu2006/results/res2016q2/cpu2006-20160517-41361.html, SPECint*_base2006 score: 71.5.

Claim based on best-published two-socket SPECompG*_base2012 result published at https://www.spec.org/omp2012/results as of 30 March 2017. New configuration: 1-Node, 2 x Intel® Xeon® processor E7-8890 v4 on Cisco* Systems UCS B260 M4 with 256 GB total memory on Red Hat Enterprise Linux* 6.7 kernel 2.6.32-573 using C/C++/Fortran: Version 16.0.0.109 of Intel® Composer for Linux Build 20150815. Source: https://www.spec.org/omp2012/results/res2016q2/omp2012-20160511-00073.html, SPECompG*_base2012 score: 13.4 with 96 base OpenMP threads.

Claim based on best-published four-socket TPC Benchmark* H @ 10,000GB non-cluster results published at http://www.tpc.org/tpch/results/tpch_perf_results.asp as of 30 March 2017. New configuration: 1-Node, 4 x Intel® Xeon® processor E7-8890 v4  (4P, 96C, 192T) on Cisco UCS* C460 M4 server with 6 TB total memory running Windows* Server 2016 Standard Edition and Microsoft* SQL Server 2016. Source: http://www.tpc.org/3326, Score: 1,115,298 QphH@10,000GB, $0.87/QphH@10,000GB available 28 November 2016.

Dell:

Claim based on best-published four-socket SAP SD 2-Tier on Linux* result published at http://global.sap.com/solutions/benchmark/sd2tier.epx as of 30 March 2017. New configuration: 2-tier, 4 x Intel® Xeon® processor E7-8894 v4 (96 cores/192 threads) on Dell PowerEdge* R930 with 1024 GB total memory on Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327 using SAP Enhancement Package 5 for SAP ERP 6.0, SAP NetWeaver 7.20 pl510. Benchmark: SAP* SD 2-Tier enhancement package 5 for SAP ERP 6.0, source: Certificate #2017001, http://global.sap.com/solutions/benchmark/sd2tier.epx. Score: 43,300 benchmark users.

Claim based on best-published SAP BW-AML* @ 2 billion initial records result published at http://www.sap.com/solution/benchmark/appbm/netweaver.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processors E7-8890 v4 (96 cores/192 threads) on Dell PowerEdge* R930 with 1024 GB total memory on SUSE Linux Enterprise Server* 12 for SAP Applications using SAP HANA* 1.0, SAP NetWeaver* 7.50. Benchmark: SAP BW Advanced Mixed Load (BW-AML) @ 2 billion initial records, source: SAP Certificate #2016059, http://www.sap.com/solution/benchmark/appbm/netweaver.advanced-mixed-load-bw-aml.html. Score: Best advanced query navigation steps/hour (40,020).

Claim based on best-published SAP BW-AML* @ 4 Billion initial records result published at http://www.sap.com/solution/benchmark/appbm/netweaver.html as of 30 March 2017. 1-Node, 4 x Intel® Xeon® processors E7-8890 v4 (96 cores/192 threads) on Dell PowerEdge* R930 with 1536 GB total memory on SUSE Linux Enterprise Server* 11 SP4 for SAP Applications using SAP HANA* 1.0, SAP NetWeaver* 7.50. Benchmark: SAP BW Advanced Mixed Load (BW-AML) @ 4 Billion initial records. Source: SAP Certificate #2016054, http://www.sap.com/solution/benchmark/appbm/netweaver.advanced-mixed-load-bw-aml.html. Score: Best total advanced query navigation steps/hour (21,580) and best total runtime delta load/transformation test (294 seconds).

Fujitsu:

Claim based on best-published 2-socket SPECint*_rate_base2006 published at https://www.spec.org/cpu2006/results/ as of 30 March 2017. New configuration: 1-Node, 2x Intel® Xeon® processor E7-8894 v4 on Fujitsu PRIMEQUEST* 2800E3 with 256 GB total memory on SUSE Linux Enterprise Server* 12 SP2 4.4.21-68-default using Version 17.0.0.098 of Intel® C/C++ Compiler for Linux, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170221-46674.pdf SPECint*_rate_base2006 score: 1860.

Claim based on best-published 8-socket SPECint*_rate_base2006 result published at https://www.spec.org/cpu2006/results/ as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8894 v4 on Fujitsu PRIMEQUEST* 2800E3 with 1024 GB total memory on SUSE Linux Enterprise Server* 12 SP2 4.4.21-68-default using Version 17.0.0.098 of Intel® C/C++ Compiler for Linux, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170221-46671.pdf. SPECint*_rate_base2006 score: 7390.

Claim based on best-published 8-socket SPECfp*_rate_base2006 result published at https://www.spec.org/cpu2006/results/ as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8894 v4 on Fujitsu PRIMEQUEST* 2800E3 with 1024 GB total memory on SUSE Linux Enterprise Server* 12 SP2 4.4.21-68-default using Version 17.0.0.098 of Intel® C/C++ Compiler for Linux, Version 17.0.0.098 of Intel Fortran Compiler, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170123-46533.pdf. SPECfp*_rate_base2006 score: 4770.

Claim based on best-published four-socket SPECfp*_base2006 result published at https://www.spec.org/cpu2006/results/ as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8891 v4 on Fujitsu Server PRIMERGY* RX4770 M3 with 512 GB total memory on SUSE Linux Enterprise Server* 12 SP1 (X86_64) Kernel 3.12.49-11-default using Version 16.0.0.101 of Intel® C/C++ Studio XE for Linux, Version 16.0.0.101 of Intel Fortran Studio XE for Linux, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170307-46790.pdf. SPECfp*_base2006 score: 132.

Claim based on best-published VMmark* 2.5.2 performance result published at http://www.vmware.com/a/vmmark as of 30 March 2017. New configuration: Four hosts (realized as completely independent system partitions in two Fujitsu Server PRIMEQUEST 2800E3* systems) with each partition containing 4x Intel® Xeon® processor E7-8890 v4 (96 cores, 192 threads), 2048 GB memory, running VMware* ESXi 6.0.0 U2 Build 3825889 and vCenter Server 6.0.0 U1 Build 3018524, source: http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2016-08-16-Fujitsu-PRIMEQUEST2800E3.pdf. VMmark 2.5.2 Performance score: 114.47 @ 100 Tiles.

Claim based on best-published four-socket VMmark* 2.5.2 performance (matched pair) result published at http://www.vmware.com/a/vmmark as of 30 March 2017. New configuration: Fujitsu Server PRIMERGY RX4770 M3 with 4x Intel® Xeon® processor E7-8890 v4 (96 cores, 192 threads), 1024 GB memory, running VMware* ESXi 6.0.0 U2 Build 3620759 and vCenter Server 6.0.0 Build 3018524. Benchmark: VMmark 2.5.2 Performance, source: http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2016-06-21-Fujitsu-RX4770M3.pdf. VMmark 2.5.2 Performance score: 61.32 @ 52 Tiles.

Claim based on best-published four-socket VMmark* 2.5.2 performance with server power (matched pair) result published at http://www.vmware.com/a/vmmark as of 30 March 2017. New configuration: Fujitsu Server PRIMERGY RX4770 M3 in a matched pair configuration, each with four Intel® Xeon® processor E7-8890 v4 2.2 GHz (96 cores, 192 threads), 1024 GB memory, running VMware* ESXi 6.0.0 U2 Build 3620759 and vCenter Server 6.0.0 Build 3018524; Fibre Channel SAN storage; measured with Hioki* 3334 power meter. Benchmark: VMmark 2.5.2 Performance Server Power. Source: http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2016-06-21-Fujitsu-RX4770M3-serverPPKW.pdf. VMmark 2.5.2 Performance PPKW score: 30.4559 @ 52 Tiles.

HPE:

Claim based on best-published four-socket SPECfp*_base2006 results published at https://www.spec.org/cpu2006/results/ as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8891 v4 on Hewlett Packard Enterprise ProLiant* DL580 Gen9 with 512 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using C/C++: Version 16.0.0.101 of Intel® C++ Studio XE for Linux; Fortran: Version 16.0.0.101 of Intel® Fortran Studio XE for Linux. Source: https://www.spec.org/cpu2006/results/res2016q2/cpu2006-20160517-41419.html, SPECfp_base2006 score: 132.

Claim based on best-published four-socket TPC Benchmark* H @ 3000GB non-cluster results published at http://www.tpc.org/tpch/results/tpch_perf_results.asp as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8890 v4 (4P, 96C, 192T) on Hewlett Packard Enterprise ProLiant* DL580 Gen9 with 3072 GB total memory on Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327 using Actian* Vector Capacity Based VECTOR-PPL VW 5.0. Source: http://www.tpc.org/3323, Scores: 2,140,307 QphH @ 3000GB, $0.38/QphH@3000GB available 6 June 2016.

Claim based on best-published 16-socket SAP SD Standard Application Benchmark* result on Linux* published at http://global.sap.com/solutions/benchmark as of 30 March 2017. New configuration: 1-Node, 16x Intel® Xeon® processor E7-8890 v4 (384 cores/768 threads) on HPE Integrity* Superdome X with 4096 GB total memory on Red Hat Enterprise Linux* 7.2 using SAP Enhancement Package 5 for SAP ERP 6.0, SAP ASE 16. Benchmark: SAP* SD 2-Tier enhancement package 5 for SAP ERP 6.0, Source: Certificate #2016044, http://global.sap.com/solutions/benchmark/sd2tier.epx. Score: 117,611 benchmark users.

Claim based on best-published SAP BW-AML* @ 2 billion initial records results published at http://www.sap.com/solution/benchmark/appbm/netweaver.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processors E7-8894 v4 (96 cores/192 threads) on Hewlett Packard Enterprise CS500 (DL580 Gen9) with 1024 GB total memory on SUSE Linux Enterprise Server* 12 using SAP HANA* 1.0, SAP NetWeaver* 7.50. Benchmark: SAP BW Advanced Mixed Load (BW-AML) @ 2 billion initial records, source: SAP Certificate #2017008, http://www.sap.com/solution/benchmark/appbm/netweaver.advanced-mixed-load-bw-aml.html. Score: Best Normalized Mean Runtime Single Query Test of 6.66 seconds/billion records and Total Runtime Delta Load/Transformation Test of 234 seconds @ 2B.

Claim based on best-published 16-socket SPECjbb*2015 MultiJVM max-jOPS results published at https://www.spec.org/jbb2015/results/jbb2015multijvm.html as of 30 March 2017. New configuration: 1-Node, 16x Intel® Xeon® Processor E7-8890 v4 on Hewlett Packard Enterprise Integrity* Superdome X with 8192 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using Java* HotSpot 64-bit Server VM, version 1.8.0_102. Source: https://www.spec.org/jbb2015/results/res2016q3/jbb2015-20160830-00113.html, SPECjbb2015 MultiJVM scores: 776,269 max-jOPS and 84,557 critical-jOPS.  

Claim based on best-published 16-socket SPECjbb*2015 MultiJVM critical-jOPS results published at https://www.spec.org/jbb2015/results/jbb2015multijvm.html as of 30 March 2017. New configuration: 1-Node, 16x Intel® Xeon® Processor E7-8890 v4 on Hewlett Packard Enterprise Integrity* Superdome X with 8192 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using Java* HotSpot 64-bit Server VM, version 1.8.0_102. Source: https://www.spec.org/jbb2015/results/res2016q3/jbb2015-20160830-00114.html, SPECjbb2015 MultiJVM scores: 439,937 critical-jOPS and 700,536 max-jOPS.

Claim based on best-published 8-socket SPECjbb*2015 MultiJVM critical-jOPS results published at https://www.spec.org/jbb2015/results/jbb2015multijvm.html as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® Processor E7-8890 v4 on Hewlett Packard Enterprise Integrity* Superdome X with 4096 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using Java* HotSpot 64-bit Server VM, version 1.8.0_102. Source: https://www.spec.org/jbb2015/results/res2016q3/jbb2015-20160830-00115.html, SPECjbb2015 MultiJVM scores: 237,725 critical-jOPS and 359,735 max-jOPS.

Claim based on best-published four-socket SPECjbb*2015 MultiJVM critical-jOPS results published at http://www.spec.org/jbb2015/results/jbb2015composite.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® Processor E7-8894 v4 on Hewlett Packard Enterprise Synergy 680 Gen9 with 2048 GB total memory on Red Hat Enterprise Linux* Server 7.3 using Java* HotSpot 64-bit Server VM, version 1.8.0_121. Source: http://www.spec.org/jbb2015/results/res2017q1/jbb2015-20170315-00154.html, SPECjbb2015 MultiJVM scores 138,466 critical-jOPS and 194,068 max-jOPS.

Claim based on best-published four-socket SPECjbb*2015 Composite max-jOPS results published at http://www.spec.org/jbb2015/results/jbb2015composite.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® Processor E7-8894 v4 on Hewlett Packard Enterprise ProLiant DL580 Gen9 with 512 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using Java* HotSpot 64-bit Server VM, version 1.8.0_121. Source: http://www.spec.org/jbb2015/results/res2017q1/jbb2015-20170315-00150.html, SPECjbb2015 Composite scores 186,337 max-jOPS and 86,878 critical-jOPS.

 

Claim based on best-published four-socket SPECjbb*2015 Composite max-jOPS and critical-jOPS results published at https://www.spec.org/jbb2015/results/jbb2015composite.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® Processor E7-8894 v4 on Hewlett Packard Enterprise Synergy 680 Gen9 with 512 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using Java* HotSpot 64-bit Server VM, version 1.8.0_121. Source: https://www.spec.org/jbb2015/results/res2017q1/jbb2015-20170315-00152.html, SPECjbb2015 Composite scores 186,337 max-jOPS and 88,538 critical-jOPS.

 

Claim based on best overall published SPECjbb*2015 Distributed max-jOPS results published at https://www.spec.org/jbb2015/results/jbb2015distributed.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8894 v4 on Hewlett Packard Enterprise Synergy 680 Gen9 with 512 GB total memory on SUSE Linux Enterprise Server* 12 SP2 using Java* HotSpot 64-bit Server VM, version 1.8.0_121. Source: https://www.spec.org/jbb2015/results/res2017q1/jbb2015-20170315-00155.html, SPECjbb2015 Distributed scores: 227,634 max-jOPS and 75,399 critical-jOPS.

Claim based on best overall published SPECjbb*2015 Distributed critical-jOPS results published at https://www.spec.org/jbb2015/results/jbb2015distributed.html as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8894 v4 on Hewlett Packard Enterprise Synergy 680 Gen9 with 2048 GB total memory on Rd Hat Enterprise Linux* Server 7.3, kernel 3.10.0-513 using Java HotSpot 64-bit Server VM, version 1.8.0_121. Source: https://www.spec.org/jbb2015/results/res2017q1/jbb2015-20170315-00153.html, SPECjbb2015 Distributed scores: 142,026 critical-jOPS and 196,434 max-jOPS.

Claim based on best-published 8-socket SPECompG*_base2012 results published at https://www.spec.org/omp2012/results as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8890 v4 on HPE Integrity MC990 X with 2048 GB total memory on Red Hat Enterprise Linux* Server 7.2 kernel 3.10.0-327.18.2.el7.x86_64 using Version 16.0.3.210 of Intel® C++ Studio XE for Linux, Version 16.0.3.210 of Intel® Fortran. Source: https://www.spec.org/omp2012/results/res2016q3/omp2012-20160718-00079.pdf. SPECompG_base2012 score: 37.5 with 384 base OpenMP threads.

Hitachi:

Claim based on best-published SAP BW-AML* @ 4 Billion initial records result published at http://www.sap.com/solution/benchmark/appbm/netweaver.html as of 30 March 2017. 1-Node, 4 x Intel® Xeon® processors E7-8890 v4 (96 cores/192 threads) on Hitachi Compute Blade 520XB3, with 1536 GB total memory on SUSE Linux Enterprise Server* 12 for SAP Applications using SAP HANA* 1.0, SAP NetWeaver* 7.50. Benchmark: SAP BW Advanced Mixed Load (BW-AML) @ 4 Billion initial records, Source: SAP Certificate #2016052, http://www.sap.com/solution/benchmark/appbm/netweaver.advanced-mixed-load-bw-aml.html. Score: Best normalized mean runtime single query test (5.56 seconds / billion records).

Huawei:

Claim based on best-published four-socket SPECint*_rate_base2006 result published at https://www.spec.org/cpu2006/results as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8894 v4 (24 cores, 48 threads) on Huawei* RH5885H V3 with 512 GB total memory on SUSE* Linux Enterprise Server 12 (x86_64) SP1, Kernel 3.12.49-11-default, Version 16.0.0.101 of Intel® C++ Studio XE for Linux, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170123-46508.pdf. SPECint_rate_base2006 score: 3800.

Claim based on best-published 16-socket SPECint*_rate_base2006 result published at https://www.spec.org/cpu2006/results as of 30 March 2017. New configuration: 1-Node, 16x Intel® Xeon® processor E7-8890 v4 (24 cores, 48 threads) on Huawei Kunlun 9016 with 2048 GB total memory on SUSE* Linux Enterprise Server 12 (x86_64) SP1, Kernel 3.12.49-11-default, Version 16.0.0.101 of Intel® C++ Studio XE for Linux*, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170302-46704.pdf. SPECint_rate_base score: 13800.

Claim based on best-published two-socket SPECfp*_rate_base2006 result published at https://www.spec.org/cpu2006/results as of 30 March 2017. New configuration: 1-Node, 2x Intel® Xeon® processor E7-8890 v4 (24 cores, 48 threads) on Huawei* RH5885H V3 with 256 GB total memory, Red Hat Enterprise Linux Server release 7.2 (Maipo) 3.10.0-327.e17.x86_64, Version 16.0.0.101 of Intel® C++ Studio XE for Linux*, Version 16.0.0.101 of Intel® Fortran Studio XE for Linux, source: https://www.spec.org/cpu2006/results/res2016q2/cpu2006-20160517-41370.pdf. SPECfp_rate_base2006 score: 1240.

Claim based on best-published four-socket SPECfp*_rate_base2006 result published at https://www.spec.org/cpu2006/results as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8894 v4 (24 cores, 48 threads) on Huawei* RH5885H V3 with 512 GB total memory on SUSE* Linux Enterprise Server 12 (x86_64) SP1, Kernel 3.12.49-11-default, Version 16.0.0.101 of Intel® C++ Studio XE for Linux*, Version 16.0.0.101 of Intel® Fortran Studio XE for Linux, source: https://www.spec.org/cpu2006/results/res2017q1/cpu2006-20170123-46525.pdf.. SPECfp_rate_base2006 score: 2460.

Claim based on best-published 8-socket SPECjbb*2015 MultiJVM Critical-jOPS result published at https://www.spec.org/jbb2015/results/ as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8890 v4 (24 cores, 48 threads) on Huawei* RH8100 V3 with 1024 GB total memory on SUSE* Linux Enterprise Server* 12 using Oracle Java* SE 8u92, Java HotSpot 64-bit Server VM, version 1.8.0_92. Source: https://www.spec.org/jbb2015/results/res2016q2/jbb2015-20160511-00092.html. SPECjbb*2015 - MultiJVM score: 411,801 max-jOPS and 119,520 critical-jOPS.

Lenovo:

Claim based on best-published 8-socket SPECint*_base2006 benchmark published at https://www.spec.org/cpu2006/results as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8891 v4 (10 cores, 20 threads) on Lenovo* System x*3950 X6 with 1024 GB memory on SUSE* Linux Enterprise Server 12 SP1, using Version 16.0.0.101 of Intel® C/C++ Studio XE for Linux*, Source: https://www.spec.org/cpu2006/results/res2016q3/cpu2006-20160809-43451.pdf. SPECint_base2006 score: 71.1.

Claim based on best-published 8-socket SPECfp*_base2006 benchmark published at https://www.spec.org/cpu2006/results as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8891 v4 (10 cores, 20 threads) on Lenovo* System x*3950 X6 with 1024 GB memory on SUSE* Linux Enterprise Server 12 SP1, using Version 16.0.0.101 of Intel® C/C++ Studio XE for Linux*, Version 16.0.0.101 of Intel® Fortran Studio XE for Linux, Source: https://www.spec.org/cpu2006/results/res2016q3/cpu2006-20160809-43447.pdf. SPECfp_base2006 score: 129.

Claim based on best-published 8-socket SAP SD Standard Application Benchmark* result on Microsoft Windows* published at http://global.sap.com/solutions/benchmark as of 30 March 2017. New configuration: 2-tier, 8x Intel® Xeon® processor E7-8894 v4 (192 cores/384 threads) on Lenovo System x3950 X6 with 2048 GB total memory on Windows Server* 2012 R2 Standard Edition using SAP Enhancement Package 5 for SAP ERP 6.0 and IBM DB2 10.1. Benchmark: SAP* SD 2-Tier enhancement package 5 for SAP ERP 6.0. Source: Certification #2017002, http://global.sap.com/solutions/benchmark/sd2tier.epx. Score: 77,098 benchmark users.

Claim based on best-published SAP* BW edition for SAP HANA Standard Application Benchmark* @ 1.3 billion initial records result published at http://global.sap.com/solutions/benchmark as of 30 March 2017. New configuration: 4x Intel® Xeon® processor E7-8894 v4 (96 cores/192 threads) on Lenovo System x3850 X6 with 2048 GB total memory on SUSE Linux Enterprise Server 11 using SAP HANA 1.0, SAP NetWeaver 7.50. Benchmark: SAP BW for SAP HANA @ 1.3B initial records, Source: Certification #2017003, http://www.sap.com/solution/benchmark/appbm/netweaver.sap-bw-edition-for-sap-hana-standard-application.html. Score: Runtime of Data Load/Trans (14,939 secs), Query Executions per Hour (4,273), Runtime of Complex Query (154 seconds).

Claim based on best-published 8-socket SPECvirt_sc*2013 results published at https://www.spec.org/virt_sc2013/results/ as of 30 March 2017. New configuration: 1-Node, 8x Intel® Xeon® processor E7-8890 v4 on Lenovo* System x3950 X6 with 4096 GB total memory on Red Hat Enterprise Linux* 7.2 (KVM). Source: https://www.spec.org/virt_sc2013/results/res2016q3/virt_sc2013-20160830-00062-perf.html, SPECvirt_sc2013 score: 8284 @ 462 VMs.

Claim based on best-published SPECvirt_sc*2013 results published at https://www.spec.org/virt_sc2013/results/ as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8890 v4 on Lenovo* System x3850 X6 with 2048 GB total memory on Red Hat Enterprise Linux* 7.2 (KVM). Source: https://www.spec.org/virt_sc2013/results/res2016q3/virt_sc2013-20160913-00063-perf.html, SPECvirt_sc2013 score: 4377 @ 247 VMs.

Claim based on best-published four-socket TPC Benchmark* E results published at http://www.tpc.org/tpce/results/tpce_perf_results.asp as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8890 v4 on Lenovo* System x3850 X6 with 4096 GB total memory on Windows Server* 2012 R2 Standard using SQL Server* 2016 Enterprise Edition. Availability: July 31, 2016. Source: www.tpc.org/4078. Score: 9,068 tpsE, at a price/performance ratio of $139.85 USD/tpsE*.

Claim based on best-published STAC-M3* 15 world records (Shasta Suite) at http://www.stacresearch.com/m3 as of 30 March 2017. New configuration: 1-Node, 4x Intel® Xeon® processor E7-8890 v4 on Lenovo* System x3850 X6 with 6144 GB total memory on Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327 using Kx Systems* kdb+ 3.3 software. STAC-M3 Tick Analytics Benchmarks, Shasta Suite (15 of 15 benchmarks required) source: http://www.STACresearch.com/KDB160425.

SGI:

Claim based on best-published 32-socket SPECompG*_base2012 results published at https://www.spec.org/omp2012/results as of 30 March 2017. New configuration: 1-Node, 32x Intel® Xeon® processor E7-8867 v4 on SGI* UV 300 with 8192 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using C/C++/Fortran: Version 16.0.3.210 of Intel® Composer XE for Linux, Build 20150415. Source: https://www.spec.org/omp2012/results/res2016q3/omp2012-20160613-00077.pdf, SPECompG_base2012 score: 84.5 with 513 base OpenMP threads.

Claim based on best-published 16-socket SPECompG*_base2012 results published at https://www.spec.org/omp2012/results as of 30 March 2017. New configuration: 1-Node, 16x Intel® Xeon® processor E7-8867 v4 on SGI* UV 300 with 4096 GB total memory on SUSE Linux Enterprise Server* 12 SP1 using C/C++/Fortran: Version 16.0.3.210 of Intel® Composer XE for Linux, Build 20160415, source: https://www.spec.org/omp2012/results/res2016q3/omp2012-20160613-00078.pdf, SPECompG_base2012 score: 57.0 with 512 base OpenMP threads. 

Additional information: 6 7 8 9 10 11 12 13 14

Informacje o produktach i wydajności

1

Nawet 2,1 razy szybsze doraźne zapytania na podstawie testu porównawczego TPC-H przy współczynniku skali 3000 GB w porównaniu serwera HPE ProLiant* DL580 Gen9 z procesorami Intel Xeon E7-8890 v4 (4 platformy, 96 rdzeni, 192 wątki), wynik w bazie danych Actian* Vector 5.0: 2 140 307 QphH przy 3000 GB, 0,38 USD/QphH przy 3000 GB na 6 czerwca 2016 r. (źródło: http://www.tpc.org/3323) względem procesora E7-8890 v3 (4 platformy, 72 rdzenie/144 wątki), 1 071 018 QphH przy 3000 GB, 0,60 USD/QphH przy 3000 GB na 6 stycznia 2016 r. (źródło: http://www.tpc.org/3322)

2

Nawet 19 razy więcej zapytań na godzinę przy koszcie niższym o 98% (na zapytanie) w porównaniu serwera HPE* DL580 Gen9 z procesorami Intel Xeon E7-8890 v4 (4 platformy, 96 rdzeni, 192 wątki), wynik w bazie danych Actian*: 2 140 307 QphH przy 3000 GB, 0,38 USD/QphH przy 3000 GB na 6 czerwca 2016 r. (źródło: http://www.tpc.org/3323) względem procesora Xeon X7460 (16 platform, 96 rdzeni, 96 wątków), wynik w bazie danych SQL Server* 2008 Datacenter Edition R2: 102 778 QphH przy 3000 GB, 21,05 USD/QphH przy 3000 GB na 5 czerwca 2010 r. (źródło historyczne: http://www.tpc.org/3245)

3

Nawet 1,3 razy wyższa średnia wydajność w głównych testach porównawczych (SPECjbb*2015 Multi-JVM Critical and Max jOPS, SPECint*_rate_base2006, SAP SD* 2-tier, SPECvirt_sc*2013 oraz TPC-E*) najlepszych opublikowanych wyników dla czterogniazdowych serwerów OEM na stronach internetowych SPEC.org, SAP.com/benchmarks i TPC.org. Więcej informacji można znaleźć pod adresem www.intel.com/E7v4Record.

4

Nawet 1,35 razy więcej maszyn wirtualnych w oparciu o wynik testu porównawczego SPECvirt_sc*2013 względem 1 węzła, czterech procesorów Intel® Xeon® E7-8890 v3 z obsługą pamięci całkowitej 2 TB w systemie Red Hat Enterprise Linux* 6.6 (KVM). Źródło danych: http://www.spec.org/virt_sc2013/results/res2016q1/virt_sc2013-20160126-00041-perf.html, test porównawczy: SPECvirt_sc* 2013, wynik: 3118 przy 174 maszynach wirtualnych względem 1 węzła, czterech procesorów Intel® Xeon® E7-8890 v4 na platformie Hewlett Packard Enterprise z obsługą pamięci całkowitej 2048 GB w systemie Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327. Źródło: https://www.spec.org/virt_sc2013/results/res2016q2/virt_sc2013-20160517-00050-perf.html, test porównawczy: SPECvirt_sc* 2013, wynik: 4231 przy 237 maszynach wirtualnych (im wyższy, tym lepszy)

5

Nawet o jedną trzecią mniej wdrożonych serwerów oraz obniżenie wydatków operacyjnych deklarowane na podstawie szacunkowych założeń estymatora oszczędności z wymiany starych serwerów w porównaniu serwerów czterogniazdowych z 8 portami GbE na serwer, koszty obsługi oprogramowania na poziomie 1399 USD (na serwer na rok), koszty weryfikacji oprogramowania na poziomie 1000 USD (na serwer), 0,10 USD/kWh przy 10-procentowym średnim wykorzystaniu, o 50% niższe koszty pracy, koszty utrzymania serwera na poziomie 2399 USD (na serwer na rok) oraz koszty utrzymania sieci na poziomie 15 USD (na serwer na rok):

  • 100 procesorów Intel® Xeon® E7-4870 (30 MB pamięci cache, 2,4 GHz, wcześniejsza nazwa kodowa: „Westmere-EX”), szacunkowy wynik testu SPECint*_rate_base2006: 1100, wersja kompilatora: Intel Compiler 12.1, szacowana moc: 392 W (bezczynność)/692 W (aktywność)
  • względem 33 procesorów E7-8890 v4 (60 MB pamięci cache, 2,2 GHz, nazwa kodowa: „Broadwell-EX”), szacunkowy wynik testu SPECint*_rate_base2006: 3380, wersja kompilatora: Intel Compiler 14, szacowana moc: 250 W (bezczynność)/1200 W (aktywność)
6

Wyniki testów uzyskano przed instalacją najnowszych poprawek oprogramowania i aktualizacji oprogramowania sprzętowego, które służą do likwidacji luk w zabezpieczeniach określanych mianem „Spectre” i „Meltdown”. Po zainstalowaniu tych aktualizacji wyniki te mogą nie mieć zastosowania do posiadanego urządzenia lub systemu. 

Oprogramowanie i obciążenia wykorzystane w testach wydajności mogły zostać zoptymalizowane pod kątem wydajnego działania tylko na mikroprocesorach Intel®. Testy wydajności, takie jak SYSmark* i MobileMark*, mierzą wydajność określonych systemów komputerowych, komponentów, oprogramowania, operacji i funkcji. Jakakolwiek zmiana wyżej wymienionych czynników może spowodować uzyskanie innych wyników. Aby wszechstronnie ocenić planowany zakup, w tym wydajność danego produktu w porównaniu z konkurencyjnymi, należy zapoznać się z informacjami z innych źródeł oraz innymi testami wydajności. Więcej informacji można znaleźć na stronie http://www.intel.pl/benchmarks.

7

Firma Intel nie ma wpływu i nie weryfikuje projektu ani zastosowania testów wydajności innych firm ani witryn wspomnianych w tym dokumencie. Intel zachęca swoich klientów do odwiedzenia wymienionych tu lub innych podobnych witryn, na których ogłaszane są podobne testy wydajności i do potwierdzenia, czy wspomniane testy wydajności są dokładne i odzwierciedlają parametry systemów dostępnych w sprzedaży.

8

Ogłoszenie o optymalizacji: Kompilatory Intela nie zawsze optymalizują w tym samym stopniu procesory innych firm w przypadku tych optymalizacji, które nie są specyficzne dla procesorów Intel®. Optymalizacje te dotyczą między innymi zestawów instrukcji Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® SSE3 oraz Supplemental Streaming SIMD Extensions 3 (SSSE3). Firma Intel nie gwarantuje dostępności, funkcjonalności czy skuteczności każdej optymalizacji w przypadku procesorów wyprodukowanych przez inne firmy. Optymalizacje zależne od procesora dla tego produktu dotyczą wyłącznie procesorów firmy Intel. Niektóre optymalizacje niespecyficzne dla mikroarchitektury Intel są zarezerwowane dla procesorów Intela. Więcej informacji dotyczących konkretnych zestawów instrukcji omawianych w niniejszym ogłoszeniu można znaleźć w materiałach informacyjnych i podręcznikach użytkownika właściwych dla produktu. Nr wersji ogłoszenia: 20110804

9

Cechy i zalety technologii Intel® zależą od konfiguracji systemu i mogą wymagać obsługującego je sprzętu, oprogramowania lub aktywacji usług. Wydajność może być inna od podanej w zależności od konfiguracji sprzętu. Żaden system komputerowy nie jest w stanie zapewnić całkowitego bezpieczeństwa. Zapytaj dostawcę oprogramowania, producenta komputera lub sprzedawcę albo dowiedz się więcej na stronie http://www.intel.com/software/tsx.

10

Procesory Intel® o tym samym kodzie SKU mogą różnić się częstotliwością lub mocą w wyniku naturalnej zmienności w procesie produkcji.

11

SPEC* oraz nazwy testów wydajności SPECint*, SPECfp*, SPECjbb*, SPECjEnterprise*, SPECvirt_sc*, SPECpower_ssj*, SPECompM* i SPECompL* są zastrzeżonymi znakami towarowymi firmy Standard Performance Evaluation Corporation.

12

TPC Benchmark, TPC-C, tpmC, TPC-H, QphH, TPC-E i tpsE są znakami towarowymi organizacji Transaction Processing Council. Więcej na stronie www.tpc.org.

13

SAP i SAP NetWeaver są zastrzeżonymi znakami towarowymi firmy SAP AG w Niemczech i kilku innych krajach. Więcej informacji można znaleźć pod adresem www.sap.com/benchmark.

14

VMware jest zastrzeżonym znakiem towarowym, a VMmark znakiem towarowym firmy VMware, Inc.